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Abstract - This research addresses the gap in comprehensive automated bridge damage diagnosis systems by developing and 

implementing a system based on Artificial Intelligence (AI) and image processing to diagnose damage to bridges in Lima, Peru. 

Using the YOLOv7, YOLOv8, and YOLOv10 models, a comparative analysis was performed regarding accuracy, sensitivity, and 

mAP. The results show that YOLOv8 achieved a mAP50 of 47% and a mAP50-95 of 32%, significantly outperforming YOLOv10 

(21% and 9%, respectively) and YOLOv7 (9% and 3.8%). In addition, YOLOv8 obtained a precision of 60% and a recall of 50%, 

positioning itself as the most effective model for detecting cracks, corrosion, and concrete spalling. The CRISP -DM methodology 

was selected for the development process, from collecting a robust dataset of 7,934 images to implementing  a web application 

that automates the diagnosis. The system generates detailed reports and specific recommendations, optimizing efficiency and 

reducing inspection times by up to 40%. The field val idation included 202 images collected from Lima bridges, demonstrating 

the applicability and reliability of the system in real scenarios. This solution, in addition to improving the safety and sus tainability 

of infrastructures, represents a significant advance in the automation of structural inspections, promoting the adoption of 

innovative technologies in civil engineering. 

Keywords - Artificial Intelligence, Damage detection, Road infrastructure, Cracking, Corrosion. 

1. Introduction  

Structural damage detection using artificial intelligence 

techniques has gained relevance in recent years. 

Convolutional Neural Networks (CNNs) have been applied to 

identify patterns in medical diagnosis [1] and evaluate 

concrete strength [2]. In the field of civil engineering, these 

techniques have been adapted for structural damage detection, 

including the use of fully convolutional neural networks [3], 

the extraction of precise urban features for inspection [4], and 

deep learning methods [5]. Furthermore, innovative 

approaches such as ProtoNet-based few-example learning 

have been developed for damage detection with limited  

samples [6] and unsupervised machine learning approaches 

that increase the effectiveness and efficiency of inspections 

[7]. In this context, adapting methodologies such as CRISP-

DM to digital medical image processing [8] offers a 

framework to structure data analysis projects in various fields, 

including structural engineering. The proposal of a Data 

Analytical Problem Structure (DAPS) [9] contributes to the 

definition phase of analysis projects. Regarding challenges, 

literature related to issues such as quality control in 

constructing roads and bridges through three-dimensional 

laser scanning was addressed [10], and reviews have been 

carried out on the use of technologies based on image 

processing for monitoring structural health [11]. 

In terms of infrastructure, road infrastructure is key to 

cities' economic and social development, and bridges are 

essential for efficient and safe transportation. The inspection 

of structural damage in bridges is critical, but “traditional” 

methods are limited in precision, time, and resources [12]. 

These approaches depend heavily on the experience of 

engineers, which can generate variability and risks, especially 

in the face of aging and deterioration of infrastructure [13].  

Internationally, a  study applied to bridges in New South 

Wales, Australia, developed an unsupervised methodology 

based on computer vision for Bridge Structural Health 

Monitoring (BSHM) and used the drive-by inspection 

technique [14]. On the other hand, in a study conducted at a  

university in China, they investigated the damage evolution 

behavior of corroded steel cables under alternating loads, with 

a focus on cable-stayed bridges [15]. Said established a model 

of damage evolution based on the theory of continuous 

damage mechanics. In a nother study in China, on the 

Dashengguan Bridge on the Yangtze River, they developed a 

three-dimensional detection and localization method for 
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surface damage on bridges, combining computer vision, deep 

learning, and 3D reconstruction [16]. In the Peruvian context, 

a  group of researchers carried out a study to develop a damage 

model for El Niño events in Peru using data mining techniques 

[17]. The research was based on a national building survey 

conducted after the 2017 El Niño event, which caused heavy 

rain, flooding, and landslides. 

Based on this background, this research is justified by 

developing and implementing a comprehensive Artificial 

Intelligence (AI) system that encompasses more than simple 

damage detection, providing a complete diagnosis of bridges 

in Lima, Peru. This work contributes through (1) the 

implementation and comparison of three YOLO models (v7, 

v8, and v10) specifically for bridge damage diagnosis, (2) the 

development of a web application that automates the entire 

diagnostic process from image capture to report generation, 

and (3) field validation through 202 images collected from 

Lima bridges with demonstrated efficiency improvements of 

up to 40% in inspection times. This comprehensive approach 

addresses the complete diagnostic workflow: detection, 

classification, and report generation (quantification) for 

specific damage types (cracks, corrosion, and concrete 

spalling). 

Despite the advances in structural damage detection 

through AI, which are documented in the literature, a  

significant gap persists in the development of automated 

systems for comprehensive bridge damage diagnosis. The 

documented studies primarily focus on detecting individual 

damage patterns in infrastructure but do not provide a holistic 

approach that combines detection, classification, and 

quantification of detected damage to generate specific 

recommendations. This limitation is particularly critical in 

contexts such as Peru, where adaptation of solutions to local 

infrastructure conditions is required. 

This research aims to address the absence of 

comprehensive automated systems for structural damage 

diagnosis in bridges in Lima, Peru, considering that these 

systems must detect, classify, and quantify damage in bridge 

infrastructure. The combination of the country's varied 

geography and traditional diagnostic methods (which depend 

on the inspector's experience) requires considerable 

investment in resources such as time and money. These 

considerations compromise the safety and sustainability of the 

city's road infrastructure (and other regions of the country). 

Finally, this study was aligned with the UN Sustainable 

Development Goal 9, which promotes industry, innovation 

and resilient infrastructure. By improving efficiency and 

accuracy in damage diagnosis, the proposed system extends 

the useful life of bridges and reduces the need for costly 

reconstructions, minimizing the environmental impact 

associated with large infrastructure works. This represents a 

significant advance in the practical application of AI in civil 

engineering and demonstrates how the technology can be 

leveraged to address critical infrastructure challenges in 

emerging economies. 

This paper is structured with the following sections: 

Section II presents the literature review, Section III explains 

the materials and methods used, Section IV details the 

methodology used, Section V shows the results of the study, 

Section VI presents the findings of the discussion regarding 

the Project, and finally, in Section VII, the conclusions and 

recommendations for future work are presented. 

2. Literature Review  

Artificial intelligence (AI) and image processing offer a 

promising alternative to automate and improve reviews and 

inspections ranging from agricultural disciplines [18], 

intelligent tutoring systems [19], object detection and tracking 

[20], to any kind in general [21, 22]. In this sense, there are 

various techniques and tools for image processing. These 

differences must be measured and compared to proceed with 

the selection of the most appropriate ones for research [23]. 

As a result, these technologies allow damage or obstructions 

to be identified and classified more accurately and quickly, 

reducing dependence on manual methods [24]. Techniques for 

image processing of mode shapes have been investigated 

using CNN to identify damage [25], as well as image stitching 

methods based on accelerated robust features (SURF) to 

analyze cracks from different angles [26]. Additionally, 

photometry and the use of drones [27] have expanded 

inspection possibilities, while techniques such as YOLO have 

been applied specifically for crack detection [28]. These 

technologies have proven to be particularly useful in the visual 

inspection of reinforced concrete bridges [29]. 

In this technological framework, the diagnosis of 

structural damage in bridges, through AI and image 

processing, is a  rapidly evolving field within civil engineering. 

This section explores the key concepts of recent studies that 

support this research in the context of Lima, Peru. In 

particular, convolutional neural networks excel in automated 

image analysis for structural damage detection and 

classification. According to recent studies, CNNs improve 

accuracy and reduce inspection time, identifying everything 

from microscopic cracks to major deformations [30]. 

However, high precision requires a large sample of training 

images (datasets). This can be avoided by using pre-trained 

networks [31]. 

Especially in the field of application, AI systems not only 

detect but also classify different types of damage caused by 

weather or natural disasters [32], facilitating the planning of 

more efficient and detailed maintenance interventions [33]. In 

this context, corrosion is a critical factor in the deterioration 

of structures. Research has been carried out on the influence 

of corrosion on the seismic behavior of viaducts, considering 
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the impact of climate change [34]. The use of Machine 

Learning for corrosion detection [35] and the study of the 

impact of corrosion on Ground Penetrating Radar responses 

[36] are significant advances in this field. As a result, these 

techniques contribute to the early detection and effective 

maintenance of structures such as bridges [37]. In the local 

context, the lack of an automated and efficient system for 

diagnosing bridges in Lima represents a risk for both safety 

and resource management. Consequently, the use of AI can 

optimize inspections of different types of damage [38], 

avoiding late or inaccurate diagnoses and reducing 

maintenance costs. Therefore, researching and developing a 

diagnostic system based on AI and image processing for 

Lima's bridges is essential to improve its road infrastructure's 

safety, efficiency and sustainability. Table 1 below shows a 

comparison of recent studies with regard to the variables under 

investigation.

 
Table 1. Summary of relevant studies on bridge damage diagnosis 

Study Summary Description Relevance Models / Algorithms Used Metrics 

[14] 

Bridge monitoring with drive-

by inspection and unsupervised 

learning (CVAE and CAAE), 

reducing training time by 60%. 

Efficiency in contexts with 

limited damage data. 

CVAE (Convolutional 

Variational Autoencoder) 

and CAAE (Convolutional 

Adversarial Autoencoder) 

Training time, 

detection accuracy 

(exact values not 

specified) 

[15] 

ANSYS model to evaluate 

corrosion in cable-stayed 

bridge cables; crack nucleation 

represents ~80% of fatigue life. 

Provides the basis for 

corrosion assessment in 

critical elements. 

Continuous damage 

mechanics model, traffic–

bridge–wind simulation in 

ANSYS 2020R2 

Fatigue life, stress 

concentration 

[16] 

UAV + 3D reconstruction and 

YOLOv7 for damage detection 

with centimetre-level accuracy 

and damage mapping. 

Combines aerial inspection 

and computer vision for 

accurate diagnosis. 

YOLOv7, 3D reconstruction 

with photogrammetry 

Positioning 

accuracy (cm), 

detection accuracy 

(m) 

[17] 

Post–El Niño 2017 damage 

classification in Peru using 

data mining and remote 

sensing on more than 10,000 

records. 

Methodology applicable to 

damage assessment for 

extreme weather events. 

Random Forest, 

unsupervised clustering 

Damage probability 

by levels (D1–D4), 

explanatory 

variables 

Study 

Proposal 

Development and 

implementation of an AI and 

image processing system for 

damage diagnosis in bridges in 

Lima. 

Improves inspection 

accuracy and efficiency, 

contributing to road safety 

and infrastructure 

sustainability. 

YOLOv7, YOLOv8, 

YOLOv10 

mAP50,  

mAP50–95, 

precision, recall,  

F1-score 

3. Materials and Methods 

This work employed an approach based on pre-trained 

models optimized through transfer learning to detect and 

classify bridge damage. Three main architectures were 

selected to evaluate their performance in identifying cracks, 

corrosion, concrete spalling, and exposed surfaces. Steel. The 

materials and methods used are described in detail.  

Below. 

3.1. Dataset 

The study used two sets of data. The first was a public set 

that included 7,934 labeled images from online repositories 

specializing in structural damage. These images covered 

varied scenarios and diverse environmental conditions, 

ensuring adequate representation of typical damages. The 

second set was prepared independently, comprising 202 

images captured on bridges in Lima, Peru. These images were 

taken using high-resolution cameras and different lighting 

configurations to expand the diversity of  the set. Both sets 

were preprocessed. The images were resized to 640x640 

pixels, their color values were normalized, and data 

augmentation techniques such as rotation, brightness 

adjustment, and cropping were applied. This improved the 

robustness of the models against variations in input 

conditions. 

3.2. Pretrained Models 

Three widely recognized deep learning architectures were 

used in object detection tasks: YOLOv7, YOLOv8, and 

YOLOv10. These architectures stand out for their ability to 

perform accurate and real-time detections. YOLOv7, known 

for its efficiency, was selected for its low computational 

requirements. YOLOv8 introduced significant improvements 

in accuracy, while YOLOv10 represented the latest iteration 

with advanced optimizations for multi-class tasks. The models 

were implemented in Python, using the Ultralytics library. 

Using pre-trained weights in ImageNet, the models were fitted 

with the described data sets. The hyperparameters used during 

training are summarized in Table 2.  
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Table 2. Hyperparameter table 

Hyperparameter Value Description 

Lot size Values 
Number of images processed simultaneously during a training iteration. A smaller size 

allows for greater precision at the cost of more time. 

Epoch Values 
Total number of completed passes over the training set. More epochs can improve accuracy , 

but increase the risk of overfitting. 

Evaluation 

Metrics 
Values 

mAP evaluates the average precision at different IoU thresholds. Precision measures the 

proportion of correct predictions over the total, and recall measures the correct detections of 

real objects. 

3.3. Experimental Process 

The experimental process included data loading and 

processing, the training and validation phase of the models, 

and the evaluation of their performance. During loading and 

processing, the data were divided into subsets for training,  

Validation, testing, and maintaining a ratio of 70%, 20%, and 

10%, respectively.  

Additionally, custom scripts were developed to convert 

the tags between YOLO, COCO, and Pascal VOC formats. In 

the training stage, the models were fine-tuned using an 

NVIDIA RTX 3060 GPU with CUDA support, allowing for 

accelerated calculations. Precision and recall metrics were 

continuously monitored to evaluate learning progress. The 

models were evaluated by analyzing their ability to detect and 

classify defined structural damages. The main metrics were 

precision, recall, mAP50 and mAP50-95. 

3.4. System Design 

The design of the proposed system included data 

processing, damage prediction, and report generation 

modules. This system was implemented in a web 

environment, where the most efficient model was integrated 

for practical use. The web application allows users to upload 

images of bridges, receive automatic predictions of detected 

damage, and get specific suggestions for repair. 

4. Solution Methodology 

For the development of this Project, the CRISP-DM 

methodology was selected because it provides guidelines for 

the development process of the data mining application to 

achieve the defined objectives [39, 40]. “Bridges located in 

Lima, Peru, in the year 2024” were defined as the study 

population and those bridges that were not accessible for the 

analysis were excluded, or those that, due to their physical 

characteristics, do not allow their evaluation with the proposed 

solution. This research used a data set of cracks, corrosion, 

exposed steel, detachment and crocodile skin (crack group) in 

bridges from online data sets and 202 images collected from 

bridges in the city of Lima, Peru.  

The YOLOv7, YOLOv8 and YOLOv10 models were 

used. The models were used to detect and compare the 

effectiveness in identifying the previously mentioned 

damages in the analyzed images. This comparison allowed us 

to determine which of the models offers the best results in 

terms of precision and performance in detecting the 

aforementioned damages. The stages of the design and 

application of the CRISP-DM methodology, which  

summarize the phases of the project process, are presented 

below, as shown in Figure 1: (A) Business Understanding, (B) 

Data Understanding, (C) Data Preparation, (D) Modeling, (E) 

Evaluation, and (F) Deployment. 

In the (A) “business understanding” phase, an in-depth 

analysis of the Project’s specific needs and objectives was 

carried out, focusing on the automated diagnosis of bridge 

damage. This began with a comprehensive review of current 

literature on monitoring and detecting damage in civil 

infrastructure, especially bridges. Both traditional and novel 

approaches were investigated, and emerging technologies 

were proven effective in addressing challenges in this area. 

The review included methodologies, techniques, and tools 

applied to damage detection, highlighting the use of Artificia l 

Intelligence (AI) algorithms and image processing. 

In the (B) “data understanding” phase, data collection 

began with a search for reliable sources that would provide 

labeled damage-related datasets. Among the available options, 

the Roboflow platform was selected due to the diversity and 

quality of its resources, which are categorized and, in many 

cases, accurately labeled. Damage types relevant to this study 

include corrosion, cracks, and the phenomenon known as 

alligator skin on pavements, selected for their direct impact on 

bridge integrity. Initially, 1,848 images were obtained from 

this platform, organized into specific classes such as cracks 

(946 images), corrosion (627 images), and alligator skin (287 

images) (See Figure 2).  

Data collection included both public sources and a 

proprietary database, ultimately resulting in a robust dataset of 

7,934 images that also included additional samples of exposed 

steel and concrete spalling. To enhance the dataset with local 

representativeness, 202 images of Lima bridges were 

collected during 2024, captured under various lighting 

conditions and angles. This combination of high-quality 

external data and local samples provided technical robustness, 

realism, and regional representativeness to the model training 

and validation process. In the (C) “data preparation” phase, a  

detailed evaluation of class identifiers was performed to 
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ensure correct representation during model training. One of 

the main challenges was the diversity of annotation formats, 

as some datasets were in YOLO format while others used 

Pascal VOC or COCO. Custom scripts were developed to 

convert and unify these formats, allowing the datasets to be 

integrated into a consolidated set and minimizing annotation 

errors. Before modeling, the images were reviewed to ensure 

labeling quality and consistency. 

 
Fig. 1 Representation of the CRISP-DM methodology phases 

 
Fig. 2 Roboflow platform screenshot 

Two working configurations were defined: a lightweigh t  

dataset of 1,848 images for initial testing and a robust dataset 

of 7,934 images for final training. Data augmentation 

techniques, including rotations, flips, brightness changes, and 

crops, were subsequently applied to improve model 

generalization. Additionally, all images were normalized to 

640x640 pixels to optimize processing. Finally, the data was 

divided into training (70%), validation (20%) and testing 

(10%) subsets to ensure a robust evaluation of the model's 

performance (See Figure 3). 

 
Fig. 3 Set of images from the dataset 

In the (D) “modeling” phase, the YOLOv7, YOLOv8, and 

YOLOv10 models were trained in the PyCharm Community 

development environment, using Python 3.9.0 and the 

Ultralytics library. The official repositories for each model 

were cloned and configured in virtua l environments, ensuring 

the correct installation of dependencies. Pre-trained weights 

(transfer learning) were used, and a 100-epoch training session 



Fernando Sierra-Liñan et al. / IJETT, 73(9), 141-154, 2025 

 

146 

was defined with a batch size adapted to the available 

resources. Tests were run on an NVIDIA RTX 3060 GPU with  

CUDA support. During this phase, the data.yaml files were 

configured with the dataset and class paths, and key 

hyperparameters such as learning rate and momentum were 

tuned to improve convergence (See Figure 4). 

 
Fig. 4 YOLOv10 repository 

In the (E) “evaluation” phase, model validation was 

performed using the test dataset and labeled assets in the 

"valid" folder, allowing a direct comparison between model 

predictions and expected results. Three versions of YOLO 

were evaluated: YOLOv7, YOLOv8, and YOLOv10. 

Although they follow the same convolutional neural network-

based approach for object detection in static images, they 

exhibit key differences in their performance. Results were 

measured using standard computer vision metrics: precision, 

recall, F1 score, mAP@50, and mAP@50-95, allowing the 

strengths and limitations of each YOLO version to be 

identified. Results showed poor performance for YOLOv7, 

intermediate performance for YOLOv10, and improved 

performance for YOLOv8, which achieved an mAP@50 of 

47% and an mAP@50-95 of 32% on the robust dataset (See 

Figure 5). 

 
Fig. 5 Valid folder 

In the final (F) "deployment" phase of the Project, the 

selected model (YOLOv8) was integrated into a structural 

diagnostic web application. The system allows the user to 

upload bridge images and obtain automatic damage detection 

results with graphical visualization and detailed reports that 

include maintenance recommendations. The interface was 

designed to be intuitive and accessible, helping to reduce 

inspection times and facilitating decision-making in road 

infrastructure management. 

One of the main challenges encountered was the diversity 

in the labeling formats of the collected datasets, since some 

datasets came in YOLO format, while others used the Pascal 

VOC and COCO formats. To solve this incompatibility 

problem, it was necessary to develop a series of custom scripts 

that allowed the conversion of tags between the three formats. 

A diagram detailing the labeling formats found is shown in 

Figure 6.   

 
Fig. 6 Labeling formats 

Labeling Formats 

Pascal VOC format 

.xml files 

Image name, size, objects 

Label, coordinates 

COCO format 

.json files 

Information 

Coordinates, category, area 

YOLO format 

.txt files 

Class center_x center_y width height 
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Subsequently, the different collected datasets, which were 

initially separated by damage types, were combined into a 

single unified dataset. Likewise, it facilitated the training of 

the models by having a single set of images and labeling. For 

this task, a  “light” and a “robust” data set were used. The 

structure and values of the dataset labels were validated 

through the creation of additional scripts. These validations 

consisted of identifying and correcting possible errors in the 

labels, such as missing identifiers or inconsistencies in the 

coordinates of the labeled objects. 

5. Results 

5.1. About the Models 

In this research, the YOLOv7, YOLOv8, and YOLOv10 

models were evaluated in the detection of structural damage 

in bridges in Lima, using key performance metrics, such as 

precision, sensitivity (recall), mAP50 and mAP50-95. These 

metrics allowed for a rigorous comparison of the performance 

of the models in Terms of damage detection and classification. 

YOLOv7 presented the lowest values in all the metrics 

evaluated, with a mAP50 of approximately 9% and a mAP50-

95 of 3.8%. The precision and recall of this model remained 

around 20%. This reflects significantly limited performance, 

as the model showed a low ability to correctly detect areas of 

interest and failed to identify a considerable proportion of the 

corrosion instances present. This combination of low 

precision and recall suggests that YOLOv7 generates a 

considerable number of false positives and misses many 

correct detections, limiting its applicability in the context of 

structural inspection (See Figure 7). 

 
Fig. 7 YOLOv7 model results

On the other hand, YOLOv8 proved to be the most robust 

model, achieving a mAP50 of 28% and a mAP50-95 of 14%. 

Its precision fluctuated between 40% and 60%, while its recall 

remained around 30%. These results indicate that YOLOv8 

can perform a higher number of correct detections and  

maintains a better balance between the number of true 

positives and the number of correctly detected instances.  

The higher precision suggests that YOLOv8 is more 

reliable in reducing the number of false positives, while its 

better recall ensures that it detects a greater number of 

corrosion areas (See Figure 8). 

YOLOv10, although inferior to YOLOv8, showed 

intermediate performance with a mAP50 of 21% and a 

mAP50-95 of 9%. Its precision was approximately 40%, and 

its recall reached 25%. These results position YOLOv10 as a 

model that balances accuracy and detection capacity 

reasonably well, although it does not reach the level of 

effectiveness of YOLOv8.  

 The accuracy of YOLOv10, similar to that of YOLOv8, 

indicates an acceptable ability to minimize false positives, but 

its lower recall suggests that it may miss more instances of 

corrosion than YOLOv8 (See Figure 9).
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Fig. 8 YOLOv8 model results 

 
Fig. 9 YOLOv10 model results 

Table 3. Training results table 

Models 
Table Header 

mAP50 mAP50-95 Precision Recall 

YOLOv7 9.0% 3.8% 20.0% 20.0% 

YOLOv8 28.0% 14.0% 
40.0% - 

60.0% 
30.0% 

YOLOv10 21.0% 9.0% 40.0% 25.0% 

Table 3 shows that the analysis of the results shows that 

YOLOv8, with both the light and robust data sets, 

significantly outperforms the YOLOv7 and YOLOv10 

models. This indicates that it can allow for more precise and 

balanced detections. Training with the robust data set further 

improved the results of YOLOv8, reaching a precision of 

60.0% and a recall of 50.0%. Furthermore, the mAP50 and 

mAP50-95 values also increased considerably, with a mAP50 

of 47.0% and a mAP50-95 of 32.0% (See Figure 10).
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Fig. 10 Results from the robust YOLOv8 model

 
Fig. 11 Lima bridges dataset 2024 

YOLOv7 shows limited performance, with precision and 

recall values of around 20.0% and a mAP50 of only 9.0%. 

These results indicated a high rate of false positives and 

omissions of important detections, making them unsuitable for 

application in this Project. For its part, YOLOv10 offers 

intermediate performance, but still below YOLOv8, with a 

precision of 40.0% and a recall of 25.0%. This suggests that 

although it reduced false positives, it still missed a 

considerable number of relevant instances. The comparison 

shows that YOLOv8 is the most suitable model for bridge 

diagnosis, due to its ability to balance precision and 

sensitivity, minimizing false positives and maximizing 

damage detection. For the validation stage of the proposed 

software, a  total of 202 images were collected from six bridges 

located in Lima, Peru. This data set includes general images 

of the bridges and more specific snapshots of areas with  

obvious structural defects. The collection covered a variety of 

bridges, from vehicular traffic bridges to pedestrian bridges, 

providing a representative spectrum of  the city's road 

infrastructure (See Figure 11). The diversity of this proprietary 

data set is particularly relevant, as it includes examples of 

different types of damage that may not have been sufficiently 

represented in the initial training datasets. While the training 

data focused on high-resolution images labeled for corrosion, 

cracking, spalling, and rebar obtained from global sources, the 

proprietary dataset provides local context, reflecting specific 

conditions and challenges of Lima's infrastructure. This 

diversity allows us to evaluate the model's ability to adapt and 

generalize to real-world situations, improving its applicability 

and reliability in the diagnosis of structural damage. 

 

5.2. Acerca del Sistema Web 

The damage detection model was implemented in a web 

application designed to offer an optimal user experience. Once 

the images are entered into the system, the processing is 

activated using the trained model, applying object detection 

algorithms that have proven effective in identifying damage 

patterns in bridge structures (See Figure 12). For crack and 

corrosion detections, the system identified the affected areas 

with high precision, providing the exact location and an 

estimate of the confidence level associated with each 

prediction. Representative examples of detections performed 

on processed images are presented in Figure 13. In these 

illustrations, predictions are marked with outlines indicating 

the affected areas and the type of damage identified. 
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Fig. 12 Software main screen 

 
Fig. 13 Crack and Corrosion Detection 

On the other hand, the detections of significant 

detachments focused on areas where the exposure of steel or 

loss of concrete material was evident. These damages 

represent critical risks to structural integrity, so the 

recommendations generated by the system focused on 

immediate repair strategies. Figure 14 illustrates notable 

examples of detachments detected in different structures. In 

these images, the system identifies damage and generates 

specific alerts to guide maintenance decisions. 

A detailed breakdown of each damage detected in the 

images processed through the software is presented in Figure 

15. As previously noted, the system provides specific 

information on the type of damage, along with 

recommendations and relevant details, such as its location 

within the analyzed image. 

 
Fig. 14 Detection of Exposed Steel and Spalling 

 
Fig. 15 Detail view of structural damage 

5.3. About the Indicators 

5.3.1. kpi 1: Reduction of Data Collection Time 

During the validation phase, the average time required to 

collect images of the bridge areas without using the proposed 

system was measured. In this scenario, the manual capture and 

registration process took between 15 and 20 minutes per area. 

Subsequently, with the incorporation of the system, data 

collection was reduced to an average of 8 minutes per area, 

since additional manual annotations and initial damage 

classification were no longer required. This contrast 

demonstrated an approximate 50% reduction in collection 

time (See Figure 16). 

5.3.2. kpi 2: Reduction of Inspection Time 

Inspection time was evaluated in two scenarios: without 

the system and with the system in place. In the first, manual 

review of the collected images required an average of 30 

minutes per image set due to the exhaustive visual analysis. 

The developed tool reduced this process to 10 minutes per set, 

as the model automatically highlighted the affected areas and 

provided a preliminary report of findings. The difference 

between the two approaches reflected a 66% reduction in 

inspection time (See Figure 17). 
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Fig. 16 KPI-1 chart 

 
Fig. 17 KPI-2 chart 

5.3.3. kpi 3: Reduction in Diagnostic Time 

The total time required to complete the diagnosis was also 

compared between traditional methods and the proposed 

system. Without the software, consolidating observations and 

writing a diagnostic report took between 1 and 2 hours per 

bridge. In contrast, with the developed system, generating 

structured reports, including damage type, location, and 

recommendations, took less than 15 minutes. This represented 

a more than 80% reduction in diagnostic time, demonstrating 

the efficiency achieved after implementing the model (See 

Figure 18). 

 
Fig. 18 KPI-3 chart 

6. Discussion 

The results of the evaluation of the models, YOLOv7, 

YOLOv8, and YOLOv10, used to detect bridge damage, were 

presented. The focus is on specific machine learning 

performance metrics, including precision, sensitivity (recall), 

mAP50, and mAP50-95. These metrics were essential to 

evaluate the capacity of the models to detect and classify 

damage. The implementation of artificial intelligence and 

image processing techniques for the diagnosis of structural 

damage in bridges has proven to be an effective and prom ising 

tool. Throughout the study, different object detection models 

were evaluated, highlighting YOLOv8 for its balance between 

precision and recall, which positions it as the most suitable 

model for this type of task. 

The evaluation results show that the YOLOv8 model, 

trained with a robust dataset, can accurately identify various 

structural damages, such as concrete spalling, corrosion, and 

cracks. The ability of the model to correctly detect these 

damages in images of bridges in Lima reaffirms the viability 

of applying AI technologies in monitoring critical 

infrastructures. However, the research also reveals areas for 

improvement. Although the results are promising, the 

precision and recall of the model indicate that there is still 

room to increase the effectiveness of the system. This could 

be achieved by incorporating a more extensive and diversified 

dataset, including a greater variety of structural damage, 

lighting scenarios, and capture angles. The integration of local 

data, such as images of bridges in different regions and under 

various environmental conditions, is essential to adapt the 

system to the specific characteristics of each environment. 

This will improve the robustness of the model and ensure its 

effectiveness in different geographical and climatic contexts, 

increasing its practical usefulness. 

To avoid issues related to the copyright of bridge images, 

all images were captured by project members, except for 

images from public datasets available on the internet that were 

used for training. Furthermore, the analyzed bridges are 

publicly accessible, so no regulations were violated, and no 

additional permits were required. It should be noted that, 

although ethical aspects are taken into account in the 

development of this Project, the results are not absolute. In 

other words, the results represent a quantified assessment of 

the damage and its relationship to the need for attention, so the 

final decision must always be supervised by experts in bridge 

structural integrity. Traditional bridge inspection methods rely 

heavily on inspector experience and direct visual analysis, 

which entails high subjectivity and inter-rater variability. 

Recent studies have shown that these manual inspections are 

slower and have accuracy limitations. For example, authors 

[12] report that traditional visual detection can miss up to 30% 

of minor damage due to eye strain and coverage limitations. 

Similarly, [13] emphasize that variability in crack 

identification can compromise the reliability of structural 
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diagnosis. In contrast, the proposed system based on YOLOv8 

reduced collection, inspection, and diagnosis times (KPIs 

defined in this study), generating more consistent and 

replicable results. Although accuracy still depends on the 

quality of the dataset and capture conditions, automation 

reduces the subjectivity of the process, which is consistent 

with studies such as [16], which validated that the combination 

of computer vision and 3D reconstruction improves the 

objectivity of bridge inspections. Although the results 

obtained demonstrate the effectiveness of the artificial 

intelligence-based system, there are several limitations that 

must be considered. First, the size and diversity of the local 

dataset (202 images of bridges in Lima) were limited  

compared to the international datasets used in training. This 

could affect the model's generalization ability in contexts 

other than Lima. Second, the system depends on the quality of 

the captured images; factors such as poor lighting, the 

presence of vehicles, or adverse weather conditions can reduce 

the accuracy of detections. Finally, while the system 

automates detection and diagnosis, it does not replace the 

experience of the structural engineer, as the results must be 

validated in the field to ensure safe decisions. 

7. Conclusion 

The YOLOv8 model has proven to be the most effective 

among those evaluated for the detection of structural damage 

in bridges, standing out for its ability to balance precision and 

sensitivity. This model allows different types of damage to be 

more accurately identified, such as cracks, corrosion, and 

detachments, contributing significantly to the automation and 

improvement of inspection processes in road infrastructure. 

Although the results obtained are promising, the need to 

have a more diversified and extensive dataset is evident. The 

inclusion of a greater variety of images, representative of 

different structural conditions and types of damage, is crucial 

to improve the generalization capacity of the model and its 

applicability in more diverse real scenarios. This study 

demonstrates how the application of artificial intelligence can 

revolutionize infrastructure inspection practices, improving 

accuracy and efficiency in damage identification, and 

contributing to the safety and sustainability of road 

infrastructure. 

The research highlights how the application of artificial 

intelligence and image processing can transform infrastructure 

management, providing more accurate and efficient tools for 

damage detection and diagnosis. This advance not only 

optimizes resources and inspection times but also improves 

the safety and sustainability of road infrastructure, 

contributing to urban development and the prevention of 

catastrophic failures. Finally, future research could explore 

different models in search of more accurate and faster results. 

Likewise, it is recommended that we explore more 

applications and different damages to evaluate, without 

limiting ourselves to the damages evaluated in this research. 
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