
International Journal of Engineering Trends and Technology Volume 73 Issue 9, 202-206, September 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I9P118 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Multi-Coverage Analysis Tool for Test Case

Prioritization (TCP)

Mustafe Abdirashid Musse1, Jamal Abdullahi Nuh2, Salmi Baharom1, Mohamed Abdullahi Ali3,4,
Abdihak Ahmed Abdullahi3

1Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia .
2Faculty of Information Sciences and Engineering, Management and Science University, Shah Alam, Malaysia .

3Faculty of Engineering and Technology, Salaam University, Mogadishu, Somalia .
4Department of Software Engineering, Faculty of Computer Science and Information Technology, Hormuud University,

Mogadishu, Somalia.

2Corresponding Author : jamal_abdullahi@msu.edu.my

Received: 15 April 2025 Revised: 28 August 2025 Accepted: 13 September 2025 Published: 30 September 2025

Abstract - Regression testing is a crucial process for verifying that changes in the code do not introduce new faults. One widely

used and effective technique to enhance regression testing is Test Case Prioritization (TCP), which focuses on determining the

optimal order of test case execution to improve the rate of fault detection, especially in the early stages of testing. TCP tools are

typically based on either single or multiple coverage criteria. However, tools based on single coverage criteria are often

inefficient for regression testing, as they require repeated testing for each criterion , leading to increased time and cost. On the

other hand, multiple coverage TCP tools offer a more comprehensive approach ; they often lack empirical evidence regarding

the most effective combinations of coverage criteria to use concurrently. To address these challenges, this study proposes a novel

test environment for TCP and empirically compares various combinations of coverage criteria. A case study was conducted to

evaluate the proposed environment. The results demonstrate its practical feasibility and improved effectiveness in enhancing the

regression testing process.

Keywords - TCP, Multi-coverage, Software Testing.

1. Introduction
Software testing is the action taken when we need to

figure out the completeness, accura cy and productivity of a

software by inspecting the behavior of the software to

determine if what the user needed, and the product made are

the same and their differences [2]. Regression testing is a

crucial phase in the testing process during the SDLC because

it certifies that the updates made to the software did not

interfere with the other parts of the software to prevent

unwanted behaviors [3]. The number of test suites used

throughout the testing process increases as the development

goes on, so it will cost too much to execute all the suites for

every modification that is made. Moreover, regression testing

checks that current features still work after changes have been

made to the system to ensure that no new bugs have been

added [11, 12]. Test case prioritization is a useful and

productive approach that can be used to minimize the cost and

time of the testing activities by organizing the test cases and

detecting the faults earlier [6]. Many companies worldwide ,

such as Microsoft and Google, have recently used these

techniques to make testing activities easier. Many test case

prioritization techniques exist, such as coverage-based,

requirement-based and change-based techniques [10]. There

are several existing TCP tools that have been based on both

single and multiple coverages. The single coverage TCP tools

are not efficient for regression testing. Consequently, testing

should be conducted multiple times for each coverage

criterion, and this will result in time and cost [2]. Moreover,

the multiple coverage TCP tools do not have empirical

evidence on which of the coverage combinations are the most

effective ones that can be used at the same time. Hence, in this

study, a test environment for TCP has been proposed, and the

combinations of coverage criteria have been empirically

compared. Furthermore, a case study has been selected to

evaluate the proposed TCP environment. The evaluation

shows the practical feasibility and effectiveness of the TCP

environment.

The remainder of the paper is organized as follows:

Section 2 gives a literature review on the existing TCP tools.

Section 3 presents the proposed TCP environment. Section 4

provides for the evaluation of the proposed TCP environment.

Section 5 discusses this work. Section 6 gives the conclusion

of the study.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Jamal Abdullahi Nuh et al. / IJETT, 73(9), 202-206, 2025

203

2. Literature Review
Early research indicated that one of TCP's most important

factors was coverage. According to the scope of code

elements (such as statements or branches) that test cases cover,

Rothermel et al. [13] provided a set of approaches that include

total and additional coverage priority. Tests that cover the

greatest ground overall are prioritized by total coverage,

whereas tests that cover elements not covered in earlier runs

are selected by additional coverage. These results were

validated by real-world studies by Elbaum et al. [14], which

demonstrated that using a single criterion, such as statement

coverage, improved defect detection rates. Sinaga [15]

developed a branch coverage-based TCP technique where test

cases are arranged according to their ability to test various

branches. The approach repeatedly selects tests covering the

least unknown branches using a greedy algorithm. The

Average Percentage of Faults Detected (APFD) on benchmark

programs has been demonstrated to increase by 20–30%.

The novel test case prioritizing approach introduced by

Alazzam and Nahar [7] incorporates both the line of code

coverage metrics and the percentages of method coverage.

They discovered that the more weighted test cases had a better

chance of identifying flaws in the early stages of the testing

procedure. The calculation was done by dividing the total

number of methods and lines of code by the sum of the

methods and lines of code covered combined. Srisura and

Lawanna [8] proposed a method for choosing the generated

false test cases during regression testing, and they did a

systematic experiment to evaluate the quality of the method.

A TCP technique called PORT was introduced by Prakash and

Gomathi [2] and primarily concentrates on four factors:

implementation complexity, fault proneness, customer

priority, and requirements volatility of each demand.

Additionally, they conducted multiple post hoc studies and an

academic feasibility assessment.

To determine which code is prone to errors and modify

the coverage-based TCP techniques to account for the code’s

defects, Wang and Tan [4] reviewed some of the current code

testing methodologies to propose a new TCP methodology

dubbed QTEP. Alemerien and Magel [15] conducted an

experiment in another study to verify that the code coverage

measures’ values are consistent across branch, line, method,

and statement.

Single-coverage analysis is straightforward and has been

demonstrated to be effective in identifying faults in TCP;

nevertheless, it has significant issues with scalability, the

extent of fault identification, tool support, and metric

consistency. More empirical testing, better hybrid

measurements, algorithm optimization, and stronger tools are

needed to ensure that single-coverage TCP remains effective

in complex, current software development environments.

Single-Coverage Analysis's Drawbacks and Difficulties for

Test Case Prioritization:

• The limited scope of single-coverage measurements, like

branch or statement coverage, sometimes leaves out

intricate program relationships and interactions.

• Scalability and Computational Overhead: Approaches

such as Sinaga’s greedy approach for branch coverage

and Alazzam and Nahar’s method that integrates method

and line coverage are computationally demanding for

extensive test suites or intricate systems. The iterative

process of prioritizing more coverage, as highlighted by

Rothermel et al., intensifies this problem in large-scale

applications.

• Validation and Generalizability: Empirical validations,

including those conducted by Elbaum et al., Sinaga, and

Prakash and Gomathi, are frequently confined to

benchmarks or scholarly case studies. Real-world

industrial applications, as observed by Srisura and

Lawanna, are hardly examined, prompting inquiries over

generalizability.

• Limited Fault Detection Scope: While single-coverage

techniques, such as those by Elbaum et al. and Sinaga,

improve the Average Percentage of Faults Detected

(APFD), they may miss faults not directly tied to the

chosen coverage metric. For example, Wang and Tan’s

QTEP technique adjusts for fault-proneness but still

focuses on code-based coverage, potentially neglecting

faults in non-code elements (e.g., configuration or

integration issues).

This section discusses the literature on the existing TCP

tools, shows that none of the reviewed TCP tools have

addressed ranking test cases, and provides evidence on which

coverage combinations are effective.

Therefore, this paper has been turned to propose a TCP

environment that tackles the limitations of the previous TCP

tools.

3. The Proposed TCP Environment
In this section, we have shown the proposed TCP

environment and how the environment works. To use our TCP

environment, the tester can follow these eight steps.

Step 1: Based on our tool, first, the user will visit a

browser with the address below.

Fig. 1 Browser visit

Step 2: After that, the front end of the tool will appear as

follows.

Jamal Abdullahi Nuh et al. / IJETT, 73(9), 202-206, 2025

204

Fig. 2 Choose source code and test case

Step 3: The user will then upload both the source code

and the test cases to be tested.

Fig. 3 Upload source code and test case

Step 4: After the upload process is complete, the user will

then select which of the coverages they want to test.

Fig. 4 Select coverages

Step 5: After the selection, they will then process all the

requests from the user and generate the next table that shows

the coverage values of the test cases.

Fig. 5 View coverage values

Step 6: The system generates the next figure that shows

the criteria value, the priority value, and the weight and

average percentages of the test cases.

Fig. 6 View criteria value, priority value, average percentage and weight

Step 7: Then the system shows the user each test case and

its priority value.

Fig. 7 View test case values

Step 8: Lastly, the rank of the test cases is shown to the

user.

Fig. 8 View test case ranking

4. Evaluations of the Proposed TCP

Environment
To evaluate the effectiveness of the proposed Test Case

Prioritization (TCP) environment, a case study was conducted

using a simple Java program designed to determine the largest

of three input numbers. This program was chosen because it

provides a straightforward yet non-trivial example, with

multiple possible execution paths depending on the input

values.

Jamal Abdullahi Nuh et al. / IJETT, 73(9), 202-206, 2025

205

Fig. 9 Case study

For this evaluation, seven carefully designed test cases

were created to validate the correctness of the program under

different input conditions, including:

1. All numbers being equal.

2. Two numbers are equal and greater than the third.

3. One number is clearly larger than the other two.

4. Boundary values such as negative inputs and zero.

The Java code and corresponding test cases were

uploaded to the TCP environment. The system was then

executed under multiple coverage criteria, including statement

coverage, branch coverage, and path coverage.

Fig. 10 Test cases

The TCP environment automatically processed the test

suite and generated the following outputs:

1. A coverage matrix mapping each test case against the

program’s statements and branches.

2. A table of computed criteria values, weights, and the

corresponding average percentages.

3. A final prioritized ranking table showing the execution

order of the test cases based on their effectiveness.

This evaluation highlighted the ability of the TCP

environment to:

a) Combine multiple coverage criteria into a weighted

prioritization strategy.

b) Demonstrate how certain test cases achieve higher

coverage efficiency.

c) Provide actionable insights into optimizing the execution

order of tests for faster fault detection.

Overall, the case study confirmed that the proposed TCP

environment can produce meaningful prioritization results

while offering flexibility in selecting and combining coverage

criteria. This ensures more efficient software testing,

especially in larger systems where test execution costs are

significant.

5. Discussions
Several TCP tools have been proposed in the past

literature. These tools have been ignored to show evidence to

the tester which of the coverage combinations are effective to

be used at the same time, and they did not show the ranking of

test cases based on coverage value. So, the tester decides on

which test case to run first. Moreover, most of the previous

studies were based on single coverage, which was time-

consuming. Furthermore, multiple coverage TCP tools do not

have empirical evidence on which of the coverage

combinations are the most effective ones that can be used at

the same time. Unlike the previous studies, we have addressed

the issues of the previous studies by proposing a TCP

environment. We demonstrated how to rank the test cases and

evidence on effective coverage combinations by using the

proposed TCP environment. We have conducted a case study

to evaluate practically how the proposed TCP environment is

effective. We conclude that the proposed environment will

significantly reduce TCP time and cost and increase

productivity.

6. Conclusion
Prioritizing the test cases is an effective and broadly used

technique to carry out regression testing or to identify errors

at the early stages of the testing process. TCP concerns basic

planning of the test case execution, aiming to enhance the

success of the software testing process by raising the rate of

fault detection. Therefore, several TCP tools have been

Jamal Abdullahi Nuh et al. / IJETT, 73(9), 202-206, 2025

206

proposed based on both single and multiple coverages. The

single coverage TCP tools are not efficient for regression

testing. Consequently, testing should be conducted multiple

times for each coverage criterion, and this will result in time

and cost consumption. In addition, the multiple coverage TCP

tools do not have empirical evidence on which of the coverage

combinations are the most effective ones that can be used at

the same time. Nevertheless, a TCP environment has been

proposed for prioritizing test cases based on multiple coverage

criteria. Additionally, a case study has been conducted to

evaluate the practical feasibility and effectiveness of the

proposed TCP environment. In short, the proposed

environment will significantly reduce TCP time and cost and

increase productivity. The limitations of this study include the

fact that test case results cannot be exported to different file

formats, such as PDF, and the proposed TCP environment is

limited to testing a few lines of code. Future work: The

environment will be improved for exporting different file

formats. Moreover, it can expand the proposed environment

to accept large amounts of code.

References
[1] Isha Sharma, Jasleen Kaur, and Manisha Sahni, “A Test Case Prioritization Approach in Regression Testing,” International Journal of

Computer Science and Mobile Computing, vol. 3, no. 7, pp. 607-614, 2014. [Google Scholar] [Publisher Link]

[2] Iyad Alazzam, and Khalid M. O Nahar, “Combined Source Code Approach for Test Case Prioritization,” Proceedings of the 2018

International Conference on Information Science and System, Jeju Republic of Korea, pp. 12-15, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[3] Zan Wang et al., “Improved Annealing-Genetic Algorithm for Test Case Prioritization,” Computing and Informatics, vol. 36, no. 3, pp.

705-732, 2017. [Google Scholar] [Publisher Link]

[4] Song Wang, Jaechang Nam, and Lin Tan, “QTEP: Quality-Aware Test Case Prioritization,” Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering, Paderborn Germany, pp. 523-534, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[5] N. Prakash, and K. Gomathi, “Improving Test Efficiency through Multiple Criteria Coverage based Test Case Prioritization,” International

Journal Science Engineering Research, vol. 5, no. 4, pp. 430-435, 2014. [Google Scholar]

[6] Khalid Alemerien, and Kenneth Magel, “Examining the Effectiveness of Testing Coverage Tools: An Empirical Study,” International

Journal of Software Engineering and its Applications, vol. 8, no. 5, pp. 139-162, 2014. [Google Scholar] [Publisher Link]

[7] Benjawan Srisura, and Adtha Lawanna, “False Test Case Selection: Improvement of Regression Testing Approach,” 2016 13th

International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-

CON), Chiang Mai, Thailand, pp. 1-6, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[8] D.R. Medhun Hashini, and B. Varun, “Clustering Approach to Test Case Prioritization using Code Coverage Metric,” International

Journal of Engineering and Computer Science, vol. 3, no. 4, pp. 5304- 5306, 2014. [Google Scholar] [Publisher Link]

[9] Alessandro Marchetto et al., “A Multi-Objective Technique to Prioritize Test Cases,” IEEE Transactions on Software Engineering, vol.

42, no. 10, pp. 918-940, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[10] Dharmveer Kumar Yadav, and Sandip Dutta, “Regression Test Case Prioritization Technique using Genetic Algorithm,” Advances in

Computational Intelligence, Ranchi, India, pp. 133-140, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[11] Paul Ammann, and Jeff Offutt, Introduction to Software Testing, Cambridge University Press, 2016. [CrossRef] [Google Scholar]

[Publisher Link]

[12] G. Rothermel, and M.J. Harrold, “Analyzing Regression Test Selection Techniques,” IEEE Transactions on Software Engineering, vol.

22, no. 8, pp. 529-551, 1996. [CrossRef] [Google Scholar] [Publisher Link]

[13] Gregg Rothermel et al., “Prioritizing Test Cases for Regression Testing,” IEEE Transactions on Software Engineering, vol. 27, no. 10,

pp. 929-948, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[14] S. Elbaum et al., “Test Case Prioritization: A Family of Empirical Studies,” IEEE Transactions on Software Engineering, vol. 28, no. 2,

pp. 159-182, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[15] Arnaldo Marulitua Sinaga, “Branch Coverage Based Test Case Prioritization,” ARPN Journal of Engineering and Applied Sciences, vol.

10, no. 3, pp. 1131-1137, 2015. [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?q=A+test+case+prioritization+approach+in+regression+testing&hl=en&as_sdt=0,5
https://ijcsmc.com/pastpapers/volume_3_issue_7.htm
https://doi.org/10.1145/3209914.3209936
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Combined+Source+Code+Approach+for+Test+Case+Prioritization&btnG=
https://dl.acm.org/doi/abs/10.1145/3209914.3209936
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+Annealing-Genetic+Algorithm+for+Test+Case+Prioritization&btnG=
https://www.cai.sk/ojs/index.php/cai/article/view/2017_3_705
https://doi.org/10.1145/3106237.3106258
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=QTEP%3A+quality-aware+test+case+prioritization&btnG=
https://dl.acm.org/doi/abs/10.1145/3106237.3106258
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+test+efficiency+through+multiple+criteria+coverage+based+test+case+prioritization&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Examining+the+effectiveness+of+testing+coverage+tools%3A+An+empirical+study&btnG=
https://www.earticle.net/Article/A230627
https://doi.org/10.1109/ECTICon.2016.7561371
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=False+test+case+selection%3A+Improvement+of+regression+testing+approach&btnG=
https://ieeexplore.ieee.org/abstract/document/7561371
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clustering+approach+to+test+case+prioritization+using+code+coverage+metric&btnG=
https://www.ijecs.in/index.php/ijecs/article/view/248
https://doi.org/10.1109/TSE.2015.2510633
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+multi-objective+technique+to+prioritize+test+cases&btnG=
https://ieeexplore.ieee.org/abstract/document/7362042
https://doi.org/10.1007/978-981-10-2525-9_13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Regression+test+case+prioritization+technique+using+genetic+algorithm&btnG=
https://link.springer.com/chapter/10.1007/978-981-10-2525-9_13
https://doi.org/10.1017/CBO9780511809163
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Paul+Ammann%2C+Jeff+Offutt%2C+Introduction+to+Software+Testing%2C&btnG=
https://www.cambridge.org/core/books/introduction-to-software-testing/EE74986D7F75690F6E08532775D64DDF
https://doi.org/10.1109/32.536955
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analyzing+regression+test+selection+techniques&btnG=
https://ieeexplore.ieee.org/abstract/document/536955
https://doi.org/10.1109/32.962562
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prioritizing+test+cases+for+regression+testing&btnG=
https://ieeexplore.ieee.org/abstract/document/962562
https://doi.org/10.1109/32.988497
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Test+case+prioritization%3A+A+family+of+empirical+studies&btnG=
https://ieeexplore.ieee.org/abstract/document/988497
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Branch+coverage+based+test+case+prioritization&btnG=
https://www.arpnjournals.com/jeas/volume_03_2015.htm

