
International Journal of Engineering Trends and Technology Volume 73 Issue 9, 229-235, September 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I9P121 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Machine Learning Software Component Quality: Current

Status, Challenges, and Future Directions

Mohamed Abdullahi Ali1*,2, Ng Keng Yap1, Hazura Zulzalil1, Novia Indriaty Admodisastro1,

Amin Arab Najafabadi1, Jamal Abdullahi Nuh3

1Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia .
2Faculty of Engineering and Technology, Salaam University, Mogadishu, Somalia

3Faculty of Information Sciences and Engineering, Management and Science University, Shah Alam, Malaysia .

*Corresponding Author : moha.abdalla315@gmail.com

Received: 15 April 2025 Revised: 15 August 2025 Accepted: 22 September 2025 Published: 30 September 2025

Abstract - Traditional software is developed by writing code. As big data analytics and Artificial Intelligence (AI) technologies

advanced, many Machine Learning (ML) based software and applications became widely accepted and used in people's daily

lives. Such software is developed from trained data, and this behaviour differs from traditional software development. At this

moment, building ML software consumes time and effort and requires knowledge of statistics and ML model training. To

overcome this, several recent studies proposed building ML software through an ML software component-based method.

Consequently, this approach will increase reusability and reduce development effort in ML software. Presently, there is a high

demand for creating a quality model for ML software components, as traditional software component quality models cannot

support specific quality aspects of ML software components. For instance, ML software component behaviour differs from

conventional software components because they are built from trained data rather than being written in programming code.

Thus, the ML software component quality model became essential due to their unique nature. This study offers an outline and

insights for researchers to better understand the present condition of machine learning software component quality models,

related challenges, future directions, and the advantages of adopting a component -based software development approach for

machine learning software (i.e., machine learning software components).

Keywords - ML software, Quality model, ML software component.

1. Introduction
With the rise of Big Data, Cloud Computing, and

Machine Learning (ML), the field of Software Engineering

(SE) has evolved from a simple calculating engine. Each time

one of these transitions occurs, SE goals are modified to fit

these trends, which encourages the investigation of new and

reliable techniques [1]. AI and big data technologies have

advanced rapidly, leading to widespread adoption of AI -based

applications in daily life [2]. ML models now form the core of

modern software development, with 7 million developers

already using them and 9.5 million more expected to adopt

them soon [4, 5]. This study defines ML software as systems

built using ML models (data and algorithms). Such software

increasingly impacts critical decisions like medical diagnoses

and financial approvals, underscoring its societal importance

[6]. Traditional software quality assurance is well-established,

with proven industry practices [7]. However, these approaches

often fail for ML systems, where behavior emerges from

training data rather than explicit programming [8]. Unlike

deductively coded traditional systems with predefined rules,

ML systems learn patterns inductively, creating unique quality

challenges that require new validation paradigms beyond

conventional software engineering methods [9]. Significant

efforts are advancing industrial AI and ML applications, yet

quality evaluation and assurance remain key challenges [10].

While development support for ML systems has grown, their

unique data-driven nature creates novel quality concerns. The

rapid evolution of AI technologies has intensified demand for

high-quality AI software, but traditional quality approaches

often prove inadequate for these distinctive systems [2]. ML

software development is complex and expertise-intensive

[11]. Component-based approaches help address challenges,

but data-driven ML components employing various

techniques introduce unique quality concerns beyond

traditional software [12-16]. ML components possess unique

quality traits like accuracy and fairness, requiring distinct

measurement methods from traditional software. Different

development paradigms demand tailored quality models to

address their specific characteristics [17, 18]. Nonetheless,

there exist scholarly studies on the quality of AI software [19],

surveys about the quality of ML software [20], and Systematic

Mapping Studies (SMS) pertaining to the quality of software

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:moha.abdalla315@gmail.com

Mohamed Abdullahi Ali et al. / IJETT, 73(9), 229-235, 2025

230

for AI-based systems, components, and software.

Nevertheless, none of the existing literature examines models

addressing the quality of machine learning software

components, the challenges they present, or the benefits of

employing a component-based approach for machine learning

software. The primary aim of this work is to elucidate the

constraints established by the prior studies. Section 2 presents

the relevant contextual information of the study. Section 3

provides a comprehensive explanation of the research

methodology employed in this study. Section 4 of the study

contains a summary of the results and supplementary analysis.

Section 5 of the study examines the conclusions drawn from

the evidence and contemplates alternatives for future research.

2. Literature Review
2.1. Component-Based Software Engineering (CBSE)

According to Crnkovic [22], Component-based Software

engineering involves developing systems as an assembly of

parts (components), developing parts as reusable entities, and

customising and replacing parts to maintain and upgrade

systems. Component-Based Development (CBD), as defined

by Lau and Wang [23], utilises pre-built software elements or

components to assemble systems. Instead of being created as

a single entity, a system is composed of smaller components.

Such a method reduces production costs by constructing a

system from pre-existing parts rather than building it from

scratch. The ability to reuse components across different

systems also facilitates software reuse. As a result, CBD

promises the advantages of more reuse, cost-effectiveness,

and shorter time to market.

2.2. Software Quality

According to the IEEE [24], software quality is the level

to which a system, part, or process meets certain standards.

Software engineering is a subject that places a strong emphasis

on developing high-quality software products. Hence, the

significance of software quality is obvious. Over the last three

decades, software engineering researchers have paid close

attention to software quality [25, 26], focusing on the market

value of software products [27, 28]. It takes a lot of work to

create high-quality products since product developers must

also cope with difficulties, including competitors, quality

problems, and client satisfaction [29]. As noted in [27, 30], an

increasing number of firms and organizations are imposing

requirements on both the quality of the processes utilized in

software development and the quality of the products they

acquire or create.

2.3. Software Quality Model

Software quality models are defined by ISO/IEC IS 9126-

1 [31] and consist of a collection of qualities and the

relationships between them. These attributes form the basis for

quality evaluations and the establishment of quality standards.

Quality models have been established to delineate the essential

components, referred to as characteristics, and their

corresponding sub-factors, known as sub-characteristics, for

the assessment of software quality. Each sub-factor is

assigned a specific set of measurements for the evaluation.

Software quality models are primarily categorized into basic

and customized quality models.

Because of their hierarchical structure, the Basic Models

are open to review and improvement and can be used for any

type of software product. Look at these six: Various models

and standards have been developed for international software,

including McCall et al., 1977; Boehm et al., 1978; FURPS

Model, 1992; Dromey Model, 1995 [32]; and ISO 9126-1

model, 2001 [31]. In 2003, ISO/IEC 9126-2 was issued for

external metrics, and in 2004, for internal metrics and quality

in use, ISO/IEC 9126-4 was issued. Taking into account

feedback from previous models, the ISO-9126 model specifies

criteria for assessing software quality. The 2007 revision of

the ISO 25010 concept, as published in ISO/IEC CD 25010

[33], included certain changes. ISO 25010, which stands for

"Software Engineering—Software Product Quality

Requirements and Evaluation," is an acronym for software

engineering.

Tailored Quality Models were first demonstrated by the

Bertoa, Alvaro, and Rawashdesh models [34-36]. Their

primary characteristic is that they are customized for a

particular application area, and feature adjustments can differ

when compared to a universal model. These models were

created in response to the need for high-quality models to

evaluate specific components in organizations and the

software industry. The latest software development, ISO

9126, is one example of how they are built utilizing sub-

factors that are either added to or modified from Basic Models

to satisfy the requirements of specific domains or specialized

applications.

2.4. Intersection between AI and SE

The "AI spells" dominate SE research and communities

[37]. While AI is defined as the process of giving machines

intelligence, SE is a practical engineering topic and is defined

as the process of defining, developing, and deploying systems.

Software and engineering are two terms that SE made [38].

Engineering pertains to the methodologies employed in design

and building to ascertain the cost of effective solutions,

whereas software denotes programs that integrate instructions

to provide required functionality. A systematic methodology

for the design, development, implementation, and

maintenance of a software system constitutes another

definition of Software Engineering (SE) [39].

The SE community has adopted and tailored numerous

valuable AI-related approaches, methodologies, and

procedures. These AI algorithms and methodologies

influence nearly every software engineering action. SE for ML

involves the development, design, and upkeep of software

systems that incorporate machine learning capabilities.

Academic researchers are currently engaged in the

Mohamed Abdullahi Ali et al. / IJETT, 73(9), 229-235, 2025

231

examination of differences between ML software and

conventional software. Additionally, they are putting forth

novel methodologies and instruments to address these

differences.

ML for SE involves the use or customisation of AI

techniques to various software engineering activities [40].

Software defect prediction [41], code smell detection [42],

reusability metric prediction, and project cost estimation [43]

represent a subset of these tasks; however, they are not

exhaustive. Software engineers can enhance the velocity and

efficacy of program development by utilising machine

learning models derived from software engineering data,

encompassing source code, requirement specifications, and

test cases.

2.5. Related Works

This part discusses past studies on the quality of AI

software and systems, comparing the study's goals, scope, and

conclusions.

Gezici and Tarhan conducted a comprehensive

assessment of 29 papers concerning the quality of AI software.

To identify contemporary quality models for AI -driven

software quality, they examined quality attributes, their

assurance, challenges, and solutions from 1988 to 2020.

Researchers aim to evaluate the efficacy of AI software

comprehensively.

A total of seventy-two research papers pertaining to the

creation, maintenance, issues, and solutions of ML-based

software systems were reviewed by Lwakatare et al. [21].

Since the software under review is ML-based, this study does

not place an emphasis on product quality.

Riccio et al. [54] mapped out all 70 papers that were

written on functional testing for Machine Learning Systems

(MLS). Reference [54] talks about ML software testing,

problems, and solutions, while this work is mostly about AI -

based software, systems, and parts. Even though the research

subjects are testing-related, this study is mostly about the

quality of ML software components. Because of this, [54]'s

contributions and consequences are very different from those

of this work.

Habibullah et al. [55] present the most comprehensive

synthesis of quality indicators among all the evaluated

publications. The collection of QAs was established from

conversations with professionals in the domain of designing

ML-enabled solutions. The authors gathered 37 quality

attributes (non-functional needs of the system) pertinent to

product operation, revision, and transition. Indykov et al. [56]

proposed a quality model for machine learning-based systems.

The analysis showed 11 prominent quality attributes, 16

applicable architectural techniques, and 85 probable quality

trade-offs. The outcomes organize current research in the

building of ML-enabled system architectures.

Prior research has enhanced our understanding of AI -

based software scenarios and instances; nevertheless, it has

not elucidated the quality of machine learning software

components in academic, industrial, and experimental

contexts.

3. Research Methodology
To accomplish the study objective, it is essential to

develop a well-structured plan that outlines the specific

sequence of tasks to be undertaken. This section outlines the

sequential procedures undertaken to conduct the research.

A comprehensive literature review on machine learning

software component quality was carried out in the IEEE

Xplore, Scopus, Google Scholar, and ACM Digital Library

databases. The search included both conference and journal

publications written in English. The literature search was

conducted with three research aims in consideration. Firstly ,

to determine the benefits of using component-based software

development in the machine learning software context.

Secondly, to assess the status of machine learning software

component quality. And finally, to examine the problems

associated with it.

4. Results and Discussion
4.1. Benefits of the Adoption Component-based Approach

for ML Software Development

Traditional SE practices, such as encapsulation and

modular design, have demonstrated the value of clear

abstraction boundaries [44]. However, several difficulties

have been encountered when developing ML software from

scratch, such as the need for experts, time consumption,

complexity, and cost, rather than reusing a model that

addresses these difficulties. Implementing ML from scratch

into applications is difficult, time-consuming, and necessitates

expert knowledge [11]. Furthermore, ML has seen widesprea d

adoption in a wide range of real-world problem domains, from

business to healthcare to agriculture [45]. However,

developing effective ML solutions necessitates highly

specialized experts who are proficient in both statistics and

programming. Furthermore, starting ML from scratch requires

more training cost and time than utilizing an existing model

[11].

In order to overcome these challenges, a number of earlier

studies have employed Component-Based Development

(CBD) strategies; these studies centre on the idea of

componentizing Machine Learning (ML) models and

Artificial Intelligence (AI) neural networks through the reuse

of component-based approaches; the goal of this strategy is to

shorten the time it takes to develop ML software and do away

with the need for software engineers to have deep knowledge

of ML algorithms and models [12-14]. Additionally, it aims to

Mohamed Abdullahi Ali et al. / IJETT, 73(9), 229-235, 2025

232

reduce the complexity associated with software maintenance.

By assembling a system from pre-built software units or

components rather than from scratch, the CBD approach aims

to reduce production costs [11]. The software industry has

long wished for increased reuse, lower production costs, and

quicker time to market, which is why CBD makes these

promises. These components are easily reusable across several

applications [12]. The benefits of an ML software component

are as follows: The concept of reusability in software

engineering refers to the ability of a software component to be

reused without requiring knowledge of its underlying

implementation. Reusability: This is achieved by the creation

of a coherent and loosely linked module that can be easily

integrated into different systems. Plug-ability: The ability of

the software components to be quickly replaced. It offers

pluggability both when running and when not.

4.2. Current Status and Challenges for ML Software

Component Quality

There are enormous efforts to improve the quality of ML

software, such as [10, 47, 48]. These studies only contain a

quality characteristic from the ML software perspective.

Nevertheless, as ML software components own both ML

software and software component characteristics, these

studies are irrelevant and inappropriate for assessing ML

software components due to the lack of software component

quality characteristics.

On the other hand, many studies on software component

quality have been conducted [35, 49-51], but dealing with ML

software components differs from dealing with conventional

software components due to the involvement of training data

[3]. Furthermore, because their functionality is derived from

data, AI-based software components, particularly ML-based

software components, present significant issues for quality

assurance [16]. In fact, there are presently multiple software

development paradigms [17]. Due to each software paradigm's

uniqueness, a specific software quality model must be

developed for it. According to this, a study by [18] stated that

new characteristics might be added, and existing definitions

may be modified when considering the nature of the product

itself. So far, no study has been presented on the current

quality status and problems with ML software components.

As a quality standard, this ideal model should be used for both

software parts and machine learning apps. Therefore, Gharib

et a l. [52] stressed how important it is to make a quality model

for machine learning software components that includes a

quality feature of these components. The product's overall

quality and functionality will diminish if these components are

unsuccessful [53]. Traditional systems and software's

dependability is judged by several quality indicators.

However, it is hard to use or modify these criteria to evaluate

the quality of AI-based pieces because they are not usually

good enough for directly analysing ML software and systems

[3]. Special features of AI software systems mean that new

quality models and measures are needed for software that uses

AI [19, 48].

5. Conclusion
Conventional software is constructed by writing code.

Many ML-based software and applications have received

much interest and use in people’s daily lives. However,

developing such ML software requires time, effort, and

training in both statistics and ML. To address this, numerous

studies already in progress have been inspired to create ML

software using ML software components. The behaviour of

ML software components is distinct from that of conventional

software components. Instead of being explicitly

programmed, such components are constructed from trained

data. However, because of their unique characteristics, ML

software components do not adhere to conventional software

component quality models and practices.

This study analysed both the shortcomings and

advantages of employing a component-based methodology for

the development of machine learning software, along with the

present state of the quality of machine learning software

components. This review revealed only papers focused on the

standpoint of machine learning software quality. The

functionality of ML-based software components is contingent

upon data, presenting novel issues for quality assurance [16].

At present, various software development paradigms are in

use. Each software paradigm's distinctiveness necessitates the

creation of a tailored software quality model. Similarly,

another study [18] asserted that, depending on the product's

characteristics, new attributes may be incorporated, and

existing definitions may be modified. To the best of our

knowledge, no quality model exists for machine learning

software at the component level. Consequently, a quality

model for machine learning software components must be

established by examining quality characteristics and metrics

pertinent to their nature and functionality. Finally, the

practicality of the established quality model must be assessed

via expert evaluation and case study.

References
[1] Saleema Amershi et al., “Software Engineering for Machine Learning: A Case Study,” 2019 IEEE/ACM 41st International Conference on

Software Engineering: Software Engineering in Practice (ICSE-SEIP), Montreal, QC, Canada, pp. 291-300, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[2] Chuanqi Tao, Jerry Gao, and Tiexin Wang, “Testing and Quality Validation for AI Software-Perspectives, Issues, and Practices,” IEEE

Access, vol. 7, pp. 120164-120175, 2019. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Engineering+for+Machine+Learning%3A+A+Case+Study&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Engineering+for+Machine+Learning%3A+A+Case+Study&btnG=
https://ieeexplore.ieee.org/document/8804457
https://doi.org/10.1109/ACCESS.2019.2937107
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Testing+and+Quality+Validation+for+AI+Software-Perspectives%2C+Issues%2C+and+Practices&btnG=
https://ieeexplore.ieee.org/document/8811507

Mohamed Abdullahi Ali et al. / IJETT, 73(9), 229-235, 2025

233

[3] Fuyuki Ishikawa, “Concepts in Quality Assessment for Machine Learning-From Test Data to Arguments,” International Conference on

Conceptual Modeling, Xi'an, China, pp. 536-544, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[4] Tammo Rukat et al., “Towards Automated ML Model Monitoring: Measure, Improve and Quantify Data Quality,” Amazon Science:
MLSys 2020 Workshop on MLOps Systems, pp. 1-3, 2020. [Google Scholar] [Publisher Link]

[5] Worldwide Developer Population Report, Global Developer Population Numbers and Statistics: 2025 through 2030, Evans Data

Corporation, 2025. [Online]. Available: https://evansdata.com/reports/viewRelease.php?reportID=9/

[6] Jennifer Horkoff, “Non-Functional Requirements for Machine Learning: Challenges and New Directions ,” 2019 IEEE 27th International

Requirements Engineering Conference (RE), Jeju, Korea (South), pp. 386-391, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[7] Nayan B. Ruparelia, “Software Development Lifecycle Models,” ACM SIGSOFT Software Engineering Notes, vol. 35, no. 3, pp. 8-13,

2010. [CrossRef] [Google Scholar] [Publisher Link]

[8] Hiroshi Kuwajima, and Fuyuki Ishikawa, “Adapting Square for Quality Assessment of Artificial Intelligence Systems,” 2019 IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW), Berlin, Germany, pp. 13-18, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

[9] Foutse Khomh et al., “Software Engineering for Machine-Learning Applications: The Road Ahead,” IEEE Software, vol. 35, no. 5, pp.

81-84, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[10] Gaku Fujii et al., “Guidelines for Quality Assurance of Machine Learning-Based Artificial Intelligence,” International Journal of Software

Engineering and Knowledge Engineering, vol. 30, no. 11n12, pp. 1589-1606, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[11] Marc-Oliver Pahl, and Markus Loipfinger, “Machine Learning as a Reusable Microservice,” NOMS 2018 - 2018 IEEE/IFIP Network

Operations and Management Symposium, Taipei, Taiwan, pp. 1-7, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[12] Uzair Ahmad et al., “CompoNet: Programmatically Embedding Neural Networks into AI Applications as Software Component,” 19th

IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), Patras, Greece, vol. 1, pp. 194-201, 2007. [CrossRef]

[Google Scholar] [Publisher Link]

[13] Sundaravelpandian Singaravel, Philipp Geyer, and Johan Suykens, “Component-Based Machine Learning Modelling Approach for Design

Stage Building Energy Prediction: Weather Conditions and Size,” Proceedings of Building Simulation 2017: 15th Conference of IBPSA,

San Francisco, CA, USA, pp. 2617-2626, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[14] Sundaravelpandian Singaravel, Johan Suykens, and Philipp Geyer, “Deep-Learning Neural-Network Architectures and Methods: Using

Component-Based Models in Building-Design Energy Prediction,” Advanced Engineering Informatics, vol. 38, pp. 81-90, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[15] Julien Siebert et al., “Towards Guidelines for Assessing Qualities of Machine Learning Systems,” International Conference on the Quality

of Information and Communications Technology, Faro, Portugal, pp. 17-31, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[16] Michael Kläs et al., “Using Complementary Risk Acceptance Criteria to Structure Assurance Cases for Safety-Critical AI Components,”

Proceedings of the Workshop on Artificial Intelligence Safety: Co-Located with the Thirtieth International Joint Conference on Artificial

Intelligence (IJCAI 2021), pp. 1-7, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[17] Toufik Marir et al., “QM4MAS: A Quality Model for Multi-Agent Systems,” International Journal of Computer Applications in

Technology, vol. 54, no. 4, pp. 297-310, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[18] Pere Botella et al., Towards a Quality Model for the Selection of ERP Systems, Component-Based Software Quality, pp. 225-245, Springer,

Berlin, Heidelberg, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[19] Bahar Gezici, and Ayça Kolukısa Tarhan, “Systematic Literature Review on Software Quality for AI-Based Software,” Empirical

Software Engineering, vol. 27, no. 3 2022. [CrossRef] [Google Scholar] [Publisher Link]

[20] Satoshi Masuda et al., “A Survey of Software Quality for Machine Learning Applications,” 2018 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), Västerås, Sweden, pp. 279-284, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[21] Lucy Ellen Lwakatare et al., “Large-Scale Machine Learning Systems in Real-World Industrial Settings: A Review of Challenges and

Solutions,” Information and Software Technology, vol. 127, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[22] Ivica Crnkovic, “Component‐Based Software Engineering-New Challenges in Software Development,” Software Focus, vol. 2, no. 4, pp.

127-133, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[23] Kung-Kiu Lau, “Software Component Models,” Proceedings of the 28th International Conference on Software Engineering, Shanghai,

China, pp. 1081-1082, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[24] “IEEE Standard Glossary of Software Engineering Terminology,” IEEE Std 610.12-1990, pp. 1-84, 1990. [CrossRef] [Publisher Link]

[25] Dag I.K. Sjoberg, Tore Dyba, and Magne Jorgensen, “The Future of Empirical Methods in Software Engineering Research,” Future of

Software Engineering (FOSE '07), Minneapolis, MN, USA, pp. 358-378, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[26] Niklaus Wirth, “A Brief History of Software Engineering,” IEEE Annals of the History of Computing, vol. 30, no. 3, pp. 32-39, 2008.

[CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/978-3-030-00847-5_39
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Concepts+in+Quality+Assessment+for+Machine+Learning-From+Test+Data+to+Arguments&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-00847-5_39
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+Automated+ML+Model+Monitoring%3A+Measure%2C+Improve+and+Quantify+Data+Quality&btnG=
https://www.amazon.science/publications/towards-automated-data-quality-management-for-machine-learning
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://doi.org/10.1109/RE.2019.00050
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Non-Functional+Requirements+for+Machine+Learning%3A+Challenges+and+New+Directions&btnG=
https://ieeexplore.ieee.org/document/8920538
https://doi.org/10.1145/1764810.1764814
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Development+Lifecycle+Models&btnG=
https://dl.acm.org/doi/10.1145/1764810.1764814
https://doi.org/10.1109/ISSREW.2019.00035
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adapting+SQuaRE+for+Quality+Assessment+of+Artificial+Intelligence+Systems&btnG=
https://ieeexplore.ieee.org/document/8990311
https://doi.org/10.1109/MS.2018.3571224
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Engineering+for+Machine-Learning+Applications%3A+The+Road+Ahead&btnG=
https://ieeexplore.ieee.org/document/8474484
https://doi.org/10.1142/S0218194020400227
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Guidelines+for+Quality+Assurance+of+Machine+Learning-Based+Artificial+Intelligence&btnG=
https://www.worldscientific.com/doi/abs/10.1142/S0218194020400227
https://doi.org/10.1109/NOMS.2018.8406165
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+as+a+Reusable+Microservice&btnG=
https://ieeexplore.ieee.org/document/8406165
https://doi.org/10.1109/ICTAI.2007.16
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CompoNet%3A+Programmatically+Embedding+Neural+Networks+into+AI+Applications+as+Software+Component&btnG=
https://ieeexplore.ieee.org/document/4410283
https://doi.org/10.26868/25222708.2017.059
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Component-Based+Machine+Learning+Modelling+Approach+for+Design+Stage+Building+Energy+Prediction%3A+Weather+Conditions+and+Size&btnG=
https://publications.ibpsa.org/conference/paper/?id=bs2017_059
https://doi.org/10.1016/j.aei.2018.06.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep-Learning+Neural-Network+Architectures+and+Methods%3A+Using+Component-Based+Models+in+Building-Design+Energy+Prediction&btnG=
https://www.sciencedirect.com/science/article/pii/S1474034617305359?via%3Dihub
https://doi.org/10.1007/978-3-030-58793-2_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+Guidelines+for+Assessing+Qualities+of+Machine+Learning+Systems&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-58793-2_2
https://doi.org/10.1007/978-3-030-58793-2_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+Complementary+Risk+Acceptance+Criteria+to+Structure+Assurance+Cases+for+Safety-Critical+AI+Components&btnG=
https://ceur-ws.org/Vol-2916/
https://doi.org/10.1504/IJCAT.2016.080485
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=QM4MAS%3A+A+Quality+Model+for+Multi-Agent+Systems&btnG=
https://www.inderscience.com/offers.php?id=80485
https://doi.org/10.1007/978-3-540-45064-1_11
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+a+Quality+Model+for+the+Selection+of+ERP+Systems&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-45064-1_11
https://doi.org/10.1007/s10664-021-10105-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Systematic+Literature+Review+on+Software+Quality+for+AI-Based+Software&btnG=
https://link.springer.com/article/10.1007/s10664-021-10105-2
https://doi.org/10.1109/ICSTW.2018.00061
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Software+Quality+for+Machine+Learning+Applications&btnG=
https://ieeexplore.ieee.org/document/8411764
https://doi.org/10.1016/j.infsof.2020.106368
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Large-Scale+Machine+Learning+Systems+in+Real-World+Industrial+Settings%3A+A+Review+of+Challenges+and+Solutions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584920301373?via%3Dihub
https://doi.org/10.1002/swf.45
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Component%E2%80%90Based+Software+Engineering-New+Challenges+in+Software+Development&btnG=%5d
https://onlinelibrary.wiley.com/doi/10.1002/swf.45
https://doi.org/10.1145/1134285.1134516
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Component+Models&btnG=
https://dl.acm.org/doi/10.1145/1134285.1134516
https://doi.org/10.1109/IEEESTD.1990.101064
https://ieeexplore.ieee.org/document/159342
https://doi.org/10.1109/FOSE.2007.30
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Future+of+Empirical+Methods+in+Software+Engineering+Research&btnG=
https://ieeexplore.ieee.org/document/4221632
https://doi.org/10.1109/MAHC.2008.33
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Brief+History+of+Software+Engineering&btnG=
https://ieeexplore.ieee.org/document/4617912

Mohamed Abdullahi Ali et al. / IJETT, 73(9), 229-235, 2025

234

[27] Kumi Jinzenji et al., “An Experience Report for Software Quality Evaluation in Highly Iterative Development Methodology Using

Traditional Metrics,” 2013 IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), Pasadena, CA, USA, pp.

310-319, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[28] Aiman M. Solyman, Osama A. Ibrahim, and Arafat Abdulgader Mohammed Elhag, “Project Management and Software Quality Control

Method for Small and Medium Enterprise,” 2015 International Conference on Computing, Control, Networking, Electronics and

Embedded Systems Engineering (ICCNEEE), Khartoum, Sudan, pp. 123-128, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[29] Wilder Perdomo, Julia Prior, and John Leaney, “How do Colombian Software Companies Evaluate Software Product Quality?,”

Proceedings of the 30th International Workshop on Software Measurement and the 15th International Conference on Software Process

and Product Measurement (IWSM Mensura 2020), Mexico City, Mexico, pp. 1-17, 2020. [Google Scholar] [Publisher Link]

[30] Karina Curcio et al., “An Analysis of the Factors Determining Software Product Quality: A Comparative Study,” Computer Standards &

Interfaces, vol. 48, pp. 10-18, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[31] “ISO/IEC 9126-1:2001, Software Engineering-Product Quality,” International Organization for Standardization, 2001. [Publisher Link]

[32] R.G. Dromey, “A Model for Software Product Quality,” IEEE Transactions on Software Engineering, vol. 21, no. 2, pp. 146-162, 1995.

[CrossRef] [Google Scholar] [Publisher Link]

[33] “ISO/IEC 25010: 2011: Systems and Software Engineering-Systems and Software Quality Requirements and Evaluation (SQuaRE)-

System and Software Quality Models,” International Organization for Standardization, 2011. [Google Scholar] [Publisher Link]

[34] Manuel F. Bertoa, and Antonio Vallecillo, “Quality Attributes for COTS Components,” I+ D Computacion, vol. 1, no. 2, pp. 128-143,

2002. [Google Scholar]

[35] Alexandre Alvaro, Eduardo Santana De Almeida, and Silvio Lemos Meira, “A Software Component Quality Model: A Preliminary

Evaluation,” 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO'06), Cavtat, Croatia,

pp. 28-37, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[36] Adnan Rawashdeh, and Bassem Matalkah, “A New Software Quality Model for Evaluating COTS Components ,” Journal of Computer

Science, vol. 2, no. 4, pp. 373-381, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[37] Mark Harman, “The Role of Artificial Intelligence in Software Engineering,” 2012 First International Workshop on Realizing AI Synergies

in Software Engineering (RAISE), Zurich, Switzerland, pp. 1-6, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[38] Mohammad Shehab et al., “(AIAM2019) Artificial Intelligence in Software Engineering and Inverse,” International Journal of Computer

Integrated Manufacturing, vol. 33, no. 10-11, pp. 1129-1144, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[39] Emily Winter, Steve Forshaw, and Maria Angela Ferrario, “Measuring Human Values in Software Engineering,” ESEM '18: Proceedings

of the 12th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Oulu, Finland, pp. 1-4. 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[40] Xie, Tao. “Intelligent Software Engineering: Synergy between AI and Software Engineering,” ISEC '18: Proceedings of the 11th

Innovations in Software Engineering Conference, Hyderabad, India, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[41] Ruchika Malhotra, “A Systematic Review of Machine Learning Techniques for Software Fault Prediction,” Applied Soft Computing, vol.

27, pp. 504-518, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[42] Muhammad Ilyas Azeem et al., “Machine Learning Techniques for Code Smell Detection: A Systematic Literature Review and Meta-

Analysis,” Information and Software Technology, vol. 108, pp. 115-138, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[43] Rasmita Panigrahi et al., “Software Reusability Metrics Prediction and Cost Estimation by Using Machine Learning

Algorithms,” International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 23, no. 4, pp. 317-328, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[44] Anders Arpteg et al., “Software Engineering Challenges of Deep Learning,” 2018 44th Euromicro Conference on Software Engineering

and Advanced Applications (SEAA), Prague, Czech Republic, pp. 50-59, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[45] Doris Jung-Lin Lee, and Stephen Macke, “A Human-in-the-Loop Perspective on AutoML: Milestones and the Road Ahead,” IEEE Data

Engineering Bulletin, pp. 59-70, 2020. [Google Scholar] [Publisher Link]

[46] Valentina Lenarduzzi et al., “Software Quality for AI: Where We are Now?,” International Conference on Software Quality, Vienna,

Austria, vol. 1, pp. 43-53, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[47] Shin Nakajima, “Quality Evaluation Assurance Levels for Deep Neural Networks Software,” 2019 International Conference on

Technologies and Applications of Artificial Intelligence (TAAI), Kaohsiung, Taiwan, pp. 1-6, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[48] Koji Nakamichi et al., “Requirements-Driven Method to Determine Quality Characteristics and Measurements for Machine Learning

Software and its Evaluation,” 2020 IEEE 28th International Requirements Engineering Conference (RE), Zurich, Switzerland, pp. 260-

270, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[49] Manuel F. Bertoa, José M. Troya, and Antonio Vallecillo, “Measuring the Usability of Software Components,” Journal of Systems and

Software, vol. 79, no. 3, pp. 427-439, 2006. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ISSRE.2013.6698884
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Experience+Report+for+Software+Quality+Evaluation+in+Highly+Iterative+Development+Methodology+Using+Traditional+Metrics&btnG=
https://ieeexplore.ieee.org/document/6698884
https://doi.org/10.1109/ICCNEEE.2015.7381442
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Project+Management+and+Software+Quality+Control+Method+for+Small+and+Medium+Enterprise&btnG=
https://ieeexplore.ieee.org/document/7381442
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+do+Colombian+Software+Companies+Evaluate+Software+Product+Quality%3F&btnG=
https://ceur-ws.org/Vol-2725/
https://doi.org/10.1016/j.csi.2016.04.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Analysis+of+the+Factors+Determining+Software+Product+Quality%3A+A+Comparative+Study&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0920548916300228?via%3Dihub
https://www.iso.org/standard/22749.html
https://doi.org/10.1109/32.345830
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Model+for+Software+Product+Quality&btnG=
https://ieeexplore.ieee.org/document/345830
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Systems+and+Software+Engineering-Systems+and+Software+Quality+Requirements+and+Evaluation+%28SQuaRE%29-System+and+Software+Quality+Models&btnG=
https://www.iso.org/standard/35733.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quality+Attributes+for+COTS+Components&btnG=
https://doi.org/10.1109/EUROMICRO.2006.13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Software+Component+Quality+Model%3A+A+Preliminary+Evaluation&btnG=
https://ieeexplore.ieee.org/document/1690122
https://doi.org/10.3844/jcssp.2006.373.381
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Software+Quality+Model+for+Evaluating+COTS+Components&btnG=
https://thescipub.com/abstract/jcssp.2006.373.381
https://doi.org/10.1109/RAISE.2012.6227961
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Role+of+Artificial+Intelligence+in+Software+Engineering&btnG=
https://ieeexplore.ieee.org/document/6227961
https://doi.org/10.1080/0951192X.2020.1780320
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%28AIAM2019%29+Artificial+Intelligence+in+Software+Engineering+and+inverse&btnG=
https://www.tandfonline.com/doi/full/10.1080/0951192X.2020.1780320
https://doi.org/10.1145/3239235.3267427
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Measuring+Human+Values+in+Software+Engineering&btnG=
https://dl.acm.org/doi/10.1145/3239235.3267427
https://doi.org/10.1145/3172871.3172891
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+Software+Engineering%3A+Synergy+between+AI+and+Software+Engineering&btnG=
https://dl.acm.org/doi/10.1145/3172871.3172891
https://doi.org/10.1016/j.asoc.2014.11.023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Systematic+Review+of+Machine+Learning+Techniques+for+Software+Fault+Prediction&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1568494614005857?via%3Dihub
https://doi.org/10.1016/j.infsof.2018.12.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+Techniques+for+Code+Smell+Detection%3A+A+Systematic+Literature+Review+and+Meta-Analysis&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584918302623?via%3Dihub
https://doi.org/10.3233/KES-190421
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Reusability+Metrics+Prediction+and+Cost+Estimation+by+Using+Machine+Learning+Algorithms&btnG=
https://journals.sagepub.com/doi/full/10.3233/KES-190421
https://doi.org/10.1109/SEAA.2018.00018
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Engineering+Challenges+of+Deep+Learning&btnG=
https://ieeexplore.ieee.org/document/8498185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Human-in-the-loop+Perspective+on+AutoML%3A+Milestones+and+the+Road+Ahead&btnG=
https://par.nsf.gov/biblio/10161752
https://doi.org/10.1007/978-3-030-65854-0_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Quality+for+AI%3A+Where+we+are+now%3F&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-65854-0_4
https://doi.org/10.1109/TAAI48200.2019.8959916
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quality+Evaluation+Assurance+Levels+for+Deep+Neural+Networks+Software&btnG=
https://ieeexplore.ieee.org/document/8959916
https://doi.org/10.1109/RE48521.2020.00036
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Requirements-Driven+Method+to+Determine+Quality+Characteristics+and+Measurements+for+Machine+Learning+Software+and+its+Evaluation&btnG=
https://ieeexplore.ieee.org/document/9218162
https://doi.org/10.1016/j.jss.2005.06.026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Measuring+the+Usability+of+Software+Components&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121205001263?via%3Dihub

Mohamed Abdullahi Ali et al. / IJETT, 73(9), 229-235, 2025

235

[50] Rikard Land, Alexandre Alvaro, and Ivica Crnkovic, “Towards Efficient Software Component Evaluation: An Examination of Component

Selection and Certification,” 2008 34th Euromicro Conference Software Engineering and Advanced Applications, Parma, Italy, pp. 274-

281, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[51] Sharma, Arun, Rajesh Kumar, and P.S. Grover, “Estimation of Quality for Software Components: An Empirical Approach,” ACM

SIGSOFT Software Engineering Notes, vol. 33, no. 6, pp. 1-10, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[52] Mohamad Gharib et al., “On the Safety of Automotive Systems Incorporating Machine Learning Based Components: A Position Paper,”

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Luxembourg,

Luxembourg, pp. 271-274, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[53] Hasan Kahtan, Nordin Abu Bakar, and Rosmawati Nordin, “Reviewing the Challenges of Security Features in Component Based Software

Development Models,” 2012 IEEE Symposium on E-Learning, E-Management and E-Services, Kuala Lumpur, Malaysia, pp. 1-6, 2012.

[CrossRef] [Google Scholar] [Publisher Link]

[54] Vincenzo Riccio et al., “Testing Machine Learning Based Systems: A Systematic Mapping,” Empirical Software Engineering, vol. 25,

no. 6, pp. 5193-5254, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[55] Khan Mohammad Habibullah, Gregory Gay, and Jennifer Horkoff, “Non-Functional Requirements for Machine Learning: Understanding

Current Use and Challenges Among Practitioners,” Requirements Engineering, vol. 28, no. 2, pp. 283-316, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[56] Vladislav Indykov, Daniel Strüber, and Rebekka Wohlrab, “Architectural Tactics to Achieve Quality Attributes of Machine-Learning-

Enabled Systems: A Systematic Literature Review,” Journal of Systems and Software, vol. 223, pp. 1-20, 2025. [CrossRef] [Google

Scholar] [Publisher Link]

https://doi.org/10.1109/SEAA.2008.76
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+Efficient+Software+Component+Evaluation%3A+An+Examination+of+Component+Selection+and+Certification&btnG=
https://ieeexplore.ieee.org/document/4725732
https://doi.org/10.1145/1449603.1449613
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Estimation+of+Quality+for+Software+Components%3A+An+Empirical+Approach&btnG=
https://dl.acm.org/doi/10.1145/1449603.1449613
https://doi.org/10.1109/DSN-W.2018.00074
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+Safety+of+Automotive+Systems+Incorporating+Machine+Learning+Based+Components%3A+A+Position+Paper&btnG=
https://ieeexplore.ieee.org/document/8416259
https://doi.org/10.1109/IS3e.2012.6414955
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reviewing+the+Challenges+of+Security+Features+in+Component+Based+Software+Development+Models&btnG=
https://ieeexplore.ieee.org/document/6414955
https://doi.org/10.1007/s10664-020-09881-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Testing+Machine+Learning+Based+Systems%3A+A+Systematic+Mapping&btnG=
https://link.springer.com/article/10.1007/s10664-020-09881-0
https://doi.org/10.1007/s00766-022-00395-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Non-Functional+Requirements+for+Machine+Learning%3A+Understanding+Current+Use+and+Challenges+Among+Practitione&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Non-Functional+Requirements+for+Machine+Learning%3A+Understanding+Current+Use+and+Challenges+Among+Practitione&btnG=
https://link.springer.com/article/10.1007/s00766-022-00395-3
https://doi.org/10.1016/j.jss.2025.112373
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Architectural+Tactics+to+Achieve+Quality+Attributes+of+Machine-Learning-Enabled+Systems%3A+A+Systematic+Literature+Review&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Architectural+Tactics+to+Achieve+Quality+Attributes+of+Machine-Learning-Enabled+Systems%3A+A+Systematic+Literature+Review&btnG=
https://www.sciencedirect.com/science/article/pii/S016412122500041X?via%3Dihub

