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Abstract - The article investigates the application of classical Machine Learning (ML) Algorithms for enhanced equipment for
reliability and failure prognosis within complex industrial systems, specifically focusing on the brewing industry. The objective
is to develop a Robust Machine Learning framework to anticipate equipment breakdowns and ensure optimal operational
performance accurately. This methodology encompasses a dual approach, first leveraging comprehensive simulation data sets
derived from a demanding manufacturing environment to identify operational irregularities and predict potential equipment
failures. Second, undertake a rigorous comparative analysis of various supervised learning models, including Decision Trees,
Random Forests, Logistic Regression, Support Vector Machines (SVM), and K-nearest neighbors. These models were
implemented using Python and evaluated meticulously through metrics such as confusion matrices, classification reports, ROC
curves, and stratified cross-validation. Results indicate that the Random Forest model demonstrates superior overall
performance for binary classification in this context. This comparative assessment provides critical insights for selecting and
implementing the most effective predictive maintenance strategies, aiming to optimize brewing operations. Future work will
concentrate on refining the identified high-performing models and exploring class-specific performance metrics to mitigate

further the costs associated with false positives and false negatives.

Keywords - Brewing Industry, Machine Learning, Predictive Maintenance, Model performance.

1. Introduction

This century has seen a tremendous evolution in the
industrial sector, leading to the emergence of the complex
industry and all of its associated technologies [1-5]. However,
when a portion of the production system is started, a fault that
spreads cannot be quickly and accurately traced by the
operator in the manufacturing sector [6]. Furthermore, once
the procedure has been initiated, the machines cannot be
interrupted. However, a tracing system is necessary to
safeguard and preserve the plant and its output, which are
expensive assets [7, 8]. In order to prevent production
stoppages brought on by failures, flaws that spread during
plant startup must also be identified and fixed. The use of
Artificial Intelligence (Al) in industrial processes has
revolutionized productivity and creativity [9]. Real-time
defect diagnosis, prediction, and operation optimization are
made possible by the integration of Al into automation
systems and data analytics, which enhances industrial
processes [10, 11]. Al makes it possible to put solutions like
automated repetitive tasks, predictive maintenance, and better
inventory management into practice [12, 13]. When paired
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with data analysis, these technologies provide a notable boost
in operational decision-making and production performance.
The use of Machine Learning (ML) lowers operating costs and
allows for product personalization, which propels the digital
transformation of numerous sectors [14-18]. Using linked data
on equipment failures in the brewing sector, five machine
learning models will be considered for classification in the rest
of the work, including Decision Trees, Random Forests,
Logistic Regression, Support Vector Machines (SVM), and k-
nearest neighbors. The classification report, the ROC curve,
stratified cross-validation, and confusion matrices are the
instruments used to assess performance [19]. In order to
determine the optimal model, we compare these tools at the
conclusion.

2. Literature Review

Numerous techniques have been employed in
publications that review the literature on fault propagation,
including the development of a Neuro-Fuzzy Monitoring tool
[20-22], stochastic modeling based on the MEE (State Space
Model), and the ALTARICA DATA FLOW application,

e | his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Achille EBOKE et al. / IJETT, 74(1), 1-24, 2026

which functions as a kind of black box that brings out all the
necessary parameters to determine the OEE (Synthetic Rate
Of Return), a performance indicator par excellence, while
relying on the NFE 60-182 [23-26]. Later, using this same
indication, additional models, including LSTM, were
employed to assess dynamic reliability [27-29]. In his thesis,
he employs the detection and localization of problems in
electric motors as one of his methods and discusses this topic.
He uses topological, nominal, and linear models for
diagnostics and comes to the conclusion that the monitoring
features improve equipment management by reducing
downtime, streamlining maintenance, and boosting
operational safety [30, 21]. Advanced defect diagnosis and
detection methods are discussed by [31-33] , Here, he utilizes
evolutionary algorithms to find leaks in water pipes and comes
to the conclusion that the more search space there is, the less
precise the results are. In his theme titled "Detection of
Defects in a Predictive Maintenance Environment, [34-36]
lays out a methodology that can predict a variety of defects
using signals obtained from direct current motors. He uses
MATLAB Simulink's predictive models, Deep Learning,
FcN, Resnet, the encoder, and the LSTM as tools. He
concludes that by adjusting the encoder model's
hyperparameters, an average accuracy of 88.53% was
achieved, which is higher than he had anticipated [37, 38].

Discusses fatigue harm and the management of additive
manufacturing flaws; in his work, he will intentionally create
model flaws and determine how detrimental they are to
fatigue. It will produce deterministic submillimeter flaws with
sizes ranging from 150 to 1000 pum using non-destructive
porosity detection techniques in additive manufacturing. [39]
were inspired by [40] talk about the use of Bayesian networks
for fault diagnosis and detection in systems. In their article,
Implementation of Bayesian networks in an embedded system
to help diagnose failures of industrial machines, they suggest
an embedded system that enables the collection, processing,
and filtering of operating data from an industrial machine.
This is so that a diagnostic support tool based on graphical
probabilistic models (Bayesian networks) can be developed by
utilizing vast amounts of data from several machine-
embedded sensors. With the use of Bayesian networks
produced by learning algorithms, this tool will enable the
diagnosis of potential faults in the observed system without
the need for knowledge of the physical models of the system's
constituent parts. In his thesis, "Applications of Artificial
Intelligence (Al) to the detection and isolation of multiple
faults in a telecommunications network”, [41-44], he suggests
a general probabilistic approach that makes it easier to model
how faults spread across big telecommunications networks. A
model of the transmission of faults and alerts on the Fiber to
the Home (FTTH) access network of the Gigabit Passive
Optical Network (GPON) type is developed using this
approach, which is based on the formalism of Bayesian
networks. It demonstrates that the diagnostic performance of
the "expert" model of the GPON-FTTH network is reasonably

enhanced by the probabilistic model with optimized
parameters. In their paper Adaptation of epidemiological
models for the analysis of the propagation of failures in a
production resource, [45, 46], the authors reviewed the
literature. First, they examined the primary models of
disruptive phenomenon propagation for industrial systems.
They then presented the principles of epidemiological models
and how they can be adapted to non-living systems. Similarly,
[47] present a SIQS model that considers quarantine and
vaccination. In his book "Mathematical Modelling of the
Propagation of an Epidemic,” [48] begins with the SIR model
and its variations while considering a dynamic system. He
then discusses the spatio-temporal model of the spread of an
epidemic, develops some models like the percolation and
forest fire models, compares biological and artificial neural
networks in all of their aspects, and concludes by developing
some known propagation networks. The project "Detection,
classification, and localization of faults in transmission lines
by Artificial Neural Networks" by [49-51], examines the
application of Neural Networks for the rapid and accurate
detection, classification, and localization of faults in electric
power transmission lines in order to support a new generation
of protection relay systems. In addition to causing equipment
damage and system outages, faults also pose a serious threat
to the power grid's stability and operability. For each of the
three phases, a feedforward Neural Network and a
backpropagation algorithm utilizing MATLAB Simulink will
be used to identify whether a fault is present or absent,
categorize it based on its transitory characteristics, and
indicate where it is located on a transmission line. In the
framework of Industry 4.0, [52], whose thesis focuses on the
use of Machine Learning Algorithms for the detection of
bearing failures on rotating machines, first applies techniques
that enable us to extract features from a rotating machine's
data. After that, he installed a mechanism to keep an eye on
the machine's condition by establishing a threshold for
appropriate operation and another to sound an alarm when the
latter is achieved. Second, he classified the various failure
levels using MATLAB's machine learning methods.

The estimating technique known as "Cross-Validation"
yielded a reliability of 99.3% after the time and frequency
domain features of the signals were extracted. The model
parameters are optimized during this learning phase to match
the data best. Next, it assesses "test set validation," another
validation method. For huge datasets, this method is advised.
Following a number of tests, we achieved a 100%
categorization rate for the various defect levels taken into
account. Contribution to the detection of faults for the
predictive maintenance of mechatronic systems using
methods based on observers [53-55]. Sparse reconstruction is
a novel diagnostic technique that has been applied to gear
transmissions to study and diagnose various errors that arise
in dynamic systems. A dynamic algorithm that uses a few
system observations to estimate a sparse fault vector is the
foundation of the sparse reconstruction technique. A non-
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linear global system that describes the mechatronic
interactions is obtained by using an integrated modeling
technique that respects the inputs and outputs of each
subsystem. The fact that a limited "parsimonious™ number of
defects can exist simultaneously is one of its peculiarities. The
number of sensors that must be installed determines this
figure. We can identify more issues if we increase the number
of sensors. The fact that this technology provides an online
diagnostic is one of its benefits. In their paper Detection and
classification of flaws for a GPV: Comparative research
between the thresholding approach and neural networks, [56,
57], they did a comparison of the thresholding method to
examine the neural approach's performance. Based on his
simulation results, he finds that, in comparison to the
thresholding method, Artificial Neural Networks are the most
appropriate (simple and easy) strategy for GPV diagnosis.
Patch analysis, the foundation of our system, enables the
detection of even the most minute flaws.

A multi-class SVM technique and the usage of a GAN's
discriminative component form the basis of the article by [58],
titled One-Class detection and classification of faults on
concrete surfaces. The findings are intriguing because they
demonstrate how well a cGAN can employ descriptors in this
case, LBPs to detect abnormalities. To be more specific, our
approach allows for the detection of all kinds of flaws and
resulting in a categorization of defects where the multi-OC-
SVM performs well with a 91% accuracy rate. In his thesis,
"Machine learning applied to the analysis and prediction of
failures in HPC systems," [59].

More specifically, his thesis makes two major
contributions: the first is about anticipating processor
overheating in High-Performance Computing (HPC) systems,
and the second is about analyzing and emphasizing the
connections between the events that are recorded in the system
logs. Real data from a sizable HPC system in use for
production is utilized to assess these two contributions. In their
paper Strategies for AltaRica modeling of fault propagation in
dynamic systems, published in 2022 [60] provide advice on
how to take full advantage of this dynamic modeling feature.
As part of the System & Safety Continuity (S2C) project of
the IRTs Saint Exupéry and System, a group of experts in

traditional safety and Model Based Safety Assessment
(MBSA) created the suggested guidelines [20, 22 ,61, 62]. In
his essay titled "Improving Machine Availability with
Machine Learning," [63] states that businesses can use
machine learning models to examine machine data in real
time, identify abnormalities, and foresee issues before they
arise. As a result, unplanned downtime is decreased, MTTR
and MTBF are optimized, productivity rises, and maintenance
expenses fall.

3. Materials and Methods
3.1. Methodology for Acquiring Data

The preferred strategy for monitoring, steering, failure
detection, and prediction at the moment is data-driven
methodologies, sometimes referred to as data-driven methods,
which have grown in favor [64-67]. These approaches have a
distinct edge since they leverage the utilization of large data
sets and intricate Machine Learning Techniques [68]. From
the gathered data, this method enables the extraction of
pertinent and valuable information [12]. As seen in Figure 1
in the illustration, this data is gathered in a serial configuration
production line.

A . 5 ’ 4 \«'

1 Overall view of the brewing production system

Fig

The decoder, washer, filler, tester, labeler, packer, and
coder are the seven major equipment blocks that make up the
synoptic shown in Figure 2 of our brewing production system.
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Fig. 2 Industrial brewing process diagram
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[131]: df = pd.read_excel("sobraga_work.x1sx™)

[132]: | df
par: Heures Cpr Prod  Enirées AM . . . ) ) )
d payées Cad. Soutireuse théorique  magasin s:lr:e:;: Décaiss. Laveuse Soutireuse Mireuse Eiqueteuse Encaiss. Codeuse defaillance Mois

0 65 133 0 200651 283300 200640 0.707723 45 0 0 0 0 0 Laveuse Janvier

133 1.0 1 157992 273000 157416 0.572422 60 0 0 0 0 0 Laveuse ~ NaN

2 65 00 0 202121 210000 200460  0.954571 0 0 0 0 0 0 aucune  NaN

3 33 9.5 1 190847 237500 190728 0.803065 0 0 0 0 0 0 aucune  NaN

4 65 90 0 17147 189000 171216 0.905805 0 0 0 0 0 0 aucune  NaN

289 65 135 1 231139 283500 230844  0.814265 0 30 0 0 0 0 Soutireuse  NaN

290 65 13.0 1 215550 273000 215280  (0.788571 0 0 0 15 57 8 Encaisseuse  NalN

291 33 145 0 245520 362500 245520  0.677297 40 30 0 45 0 0 Etqueteuse  NaN

292 65 1.5 1 214587 241500 214416 (0.887851 0 0 0 0 0 15 Codeuse  NaN

293 60 ns A 165788 241500 165576 0.685615 0 0 0 0 0 50  Codeuse  NaN

294 rows % 16 columns

Fig. 3 Dataset of Sobraga

Loading the libraries we previously downloaded into our
workspace and then the file containing our dataset is the first
step in the preprocessing procedure. The next stage is
complete data cleansing, which involves changing data
formats and handling missing values. While numerical codes
can be preserved or altered by label coding, categorical
variables, such as defect categories, are managed through
techniques like one-hot coding or ordinal coding. Numerical
variables are subjected to normalization. Lastly, we employ

data

fault-based encoding to reverse dictionary keys and values and
temporal aggregation to streamline and improve the analysis
(see Figure 4). This methodical approach guarantees precision
and effective implementation, providing a strong basis for the
creation of advanced prediction models and well-informed
operational decision-making. In image 5, she offers a
summary of a supervised learning problem, drawing
inspiration from the book titled Introduction to ML by Chloe
Agathe Azencot [69].

L ______________________________________________________J 4
[27]: . Rdt{EM sur
d waﬁ < .Cph ez F"md Entrec.as Prod théo) Décaiss. Laveuse Soutireuse Mireuse Etiqueteuse Encaiss. Codeuse defaillance encodage
payees q L o
0 65 135 200651 283500 200640 0.707725 0 45 0 0 0 0 0 Laveuse 2
13 1.0 157992 275000 157416 0.572422 0 60 0 0 0 0 0 Laveuse 2
2 100 202121 210000 200460 0.954571 0 0 0 0 0 0 0 aucune 0
13 95 190847 237500 190728 0.803065 0 0 0 0 0 0 0 aucune 0
4 65 90 171471 189000 171216 0.905805 0 0 0 0 0 0 0 aucune 0
289 65 135 31139 283500 230844 0.814265 0 0 30 0 0 0 0 Soutireuse 3
200 65 130 215550 273000 215280 0.788571 0 0 0 0 15 57 8 Encaisseuse [
201 3 145 245520 362500 245520 0.677297 0 40 30 0 43 0 0 Etiqueteuse 5
202 65 1.3 214587 241500 214416 0.887851 0 0 0 0 0 0 15 Codeuse 7
203 60 15 165788 241500 165576 0.685615 0 0 0 0 0 0 50 Codeuse 7

294 rows = 15 columns

Fig. 4 Data following preprocessing
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Fig. 6 Data collection failure distribution

The various distributions resulting from the failures
documented in the collection of failures at the level of these
seven pieces of equipment, as well as the months, which stand
in for the days of information gathering, are flawlessly
depicted in Figure 6. One way to formulate a supervised
learning problem is as follows: The objective of supervised
learning is to identify a function f: X — Y such that f(X) =
y for all pairs (X,y) € X x Y having the same relationship as
the observed pairs, given n observations, {¥!,%2,...,¥"},
where each observation ¥ Is an element of the space of
observations X and their labels{y?,y?,...,y™}, where each
label y* Belongs to the space of labels, Y. The learning game
is made up of everything. D = {(X',y")};=1,._,. This article
will examine a specific instance of Y ={1,2,...,c} that
involves a multi-class categorization. The decision function
for this case will be:

g.: X =0 Suchas

£

argmax g, (x)
c=1,..c

M

The space can be divided into decision regions thanks to
this idea of a decision function.

Then, we have C decision regions in the multi-class
scenario.

@

However, a C-class classification problem can be solved
with any binary classification technique, either one-against-all
or one-against-one.

Re={iex

9:(®) = max g ()}
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£

argmax Yy, gc (%)
c=1,..c

f (@) acrglmaX(Zm 9er (X)) 3)

3.2. The Many Algorithms that are Employed
3.2.1. Logistic Regression

One of the basic and widely used strategies for resolving
classification issues is logistic regression. To observe a
discrete set of classes, LR is a supervised machine learning
classification algorithm. A statistical technique for modeling
the likelihood of a binary event based on one or more
independent variables is called Logistic Regression [70]. The
reason for the term "Logistic Regression™ is that the
fundamental methodology is quite similar to that of linear
regression. This categorization method's usage of the Logit
function is where the term "Logistics" originates. Logistic
regression forecasts the likelihood that an event will fall into
either the positive class (1) or the negative class (0), in contrast
to linear regression, which forecasts continuous values [71,
72]. The model is known as logistic regression:

fix - G(ET X) (4)

The coefficients of which are derived by:

argmax Yi. 1ylloga([?T )+ (1 —yHlog(1 — o*(,[?T FD)
BERp41
()

3.2.2. Decision Tree

A decision tree is a type of prediction model that can be
shown as a tree. Every child node in the tree represents a
potential response to the condition that each node tests on a
variable[73, 74]. Each label is represented by a leaf on the tree.
We "follow" the test answers from the tree's root to forecast
the label of an observation, then return the label of the leaf we
arrive at. A decision tree divides the observation space X into
as many regions as its leaves; all observations are then
assigned the same label inside a single zone. This label is the
most common label in the area when there is a categorization
issue. We can write if n observations. ¥, %2, ..., X" of X are
labeled by y1,y2,...,y™ and R regions R;, R,, ..., Ry .

f(x) Zr 1 xER argmale XieR, S(yl C) (6)

Even if the latter results from the former of the two
classes, we will address the multi-class issue in this article.
This label represents the average label of the observations in
this area for a regression problem:

1

fG) = X34 xERT IR, |Zi:.9?ieRryi O

3.2.3. Random Forest

An ensemble learning technique for regression and
classification is called Random Forest. The reason it is named
"Forest” is that it grows a forest of decision trees. Through
bootstrap sampling and random feature selection, this
approach introduces diversity by building several decision
trees. Either a majority vote (classification) or an average
(regression) yields the final prediction. A forest ensures a
more accurate result with more groups and decisions than a
single decision tree, which only offers one outcome and a
limited number of groups. The Random Forest algorithm's
popularity stems from its ability to tackle classification and
regression problems efficiently due to its versatility, high
performance, robustness, and ease of use. This algorithm's
strength rests in its capacity to work with intricate datasets
while preventing overfitting, which makes it an effective tool
for a range of Machine Learning predictive tasks [72, 75]. The
Random Forest algorithm's capacity to handle data sets with
both continuous variables, as in regression, and categorical
variables, as in classification, is one of its primary
characteristics. It is a favored option for classification and
regression tasks due to its strong performance in these
domains [76, 77].

3.2.4. Support Vector Machine

The following optimization problem is what we refer to
as SVM:

argmin —”W”Zt q.v' (W, ) +b)=>1,i=1,.
WeRP beR 2

®)

Consider the answers to equation (8), w*, b*. After that,
the decision function is provided by:

fG) =W’

Equation (9) defines the problem as follows:

,X)+b* 9)

0%?&%2?:1 a; — Zl 1 2 gy y (EL EY (10)

tqXt,ay'=0;,a,=0i=1,..,n

3.2.5. KNN (k Nearest Neighbors)
Given a distance d on a set of n labeled observations,
Ni (%) is the collection of X's k nearest neighbors in D =

{(fi' yi)i=1,...,n} :
e When we use the majority vote to solve a classification

problem, x we adopt the label that is most common
among its K nearest neighbors.

fx) = argénaxzi:.,?iENK(f) 5(y4,0) (11)
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e Theaverage of the labels of k nearest neighbors is used as
the label for a regression problem:

1 .
fx) = }Zi:.fieNK(f)yl (12)

3.3. Instruments Utilized
3.3.1. Python

The Python 3.11.7 programming language was selected
for the development of our algorithms due to its rich
ecosystem of specialized libraries. Tools such as scikit-learn,
TensorFlow, pandas, NumPy, matplotlib, and PyTorch greatly
facilitated the implementation, testing, and optimization of the
models. Python's straightforward syntax and accessibility also
fostered collaboration within our research team, accelerating
the development cycle.

3.3.2. Jupyter Notebook

The Integrated Development Environment (IDE) Jupyter
Notebook 7.0.8 was used for this study. Specifically designed
for data scientists and engineers, it offers advanced features
such as integrated data visualization, real-time code analysis,
and an interactive variable explorer. Its ability to directly
integrate scientific and machine learning libraries (NumPy,
SciPy, Matplotlib, scikit-learn) within the same environment
significantly improved our workflow and enabled efficient
model exploration.

4. Results and Discussion
4.1. Metrics for Evaluation
4.1.1. The Matrix of Confusion

An important technique for assessing a classification
model's performance is a confusion matrix. By contrasting the
predicted and actual values, you can see and comprehend the
model's output. We can see the categorization model's
advantages and disadvantages in depth thanks to the confusion
matrix. By examining the data and computing the relevant
metrics like accuracy, precision, recall score, specificity, and
F1-score, the number of samples correctly classified as not
belonging to the class is represented by True Negatives (TN),
which are represented by formulas based on concepts like row
0 and column 0. False Positives (FP) is the number of samples
that were mistakenly assigned to the class in Row 0, Column
1. The number of samples that belong to the class but are
mistakenly identified as NOT belonging to it is represented by
Line 1, Column Q's False Negatives (FN), and the number of
samples that are correctly classified as belonging to the class
is represented by Line 1, Column 1's True Positives (TP). As
a result, we will apply the following metrics' formulas :

*  Pprecision——1"

TP+ FP

samples that the model predicted as positive, what
proportion were actually positive?

*  Recall(sensitivity) = TP Which indicates what
TP +FN

Which indicates that among all the

percentage of all the genuinely positive samples the
model will accurately detect?

*  Specificity = — N Which outlines the percentage
TN + FP

of all truly negative samples that the model will
accurately classify as negative?

2xPrecisionxRecall \Which is the

Precision + Recall

precision and recall harmonic mean. It offers a fair
assessment of the model's performance, particularly when
there is a class disparity.

®  Accuracy = TP+TN This

TP+FN+TN +FP

overall percentage of samples that were correctly
classified.

F1—score =

represents the

We can gain a better understanding of the model's
operation and, if required, make adjustments.

4.1.2. The Graph-Based Classification Report

The performance of the various categorization models
employed in this work is depicted in this graph. Because it is
a grouped bar chart, comparing three distinct metrics, named
precision, recall, and F1 score for several categories, is simple.
The percentage of accurate positive predictions among all of
the model's optimistic predictions is known as accuracy.

The percentage of real positive cases that the model
correctly identified is known as recall. The categories "micro
avg," "macro avg," "weighted avg," and "samples avg"
represent averages of performance metrics computed in
various ways across all devices. The x-axis represents various
pieces of equipment or classes (numbered 0 to 8) for which
the model was evaluated. The F1 score is a harmonic average
of precision and recall.

4.1.3. The ROC Curve

A useful graphical tool for assessing the effectiveness of
a binary classification model, in this case, determining
whether or not equipment is defective, is the Receiver
Operating Characteristic (ROC) curve. The ratio of inaccurate
optimistic predictions to all actual negative observations is
shown by the x-axis (X) or False Positive Rate (FPR). It is
better if it is lower. The True Positive Rate (TPR), represented
by the y-axis (), is the ratio of accurate optimistic forecasts
to all actual positive observations. It is better if it is higher.

4.1.4. The Stratified Cross-Validation

Stratified cross-validation is an evaluation technique that
preserves the proportion of classes in each subset (fold) of data
used for training and testing. This is particularly important in
the presence of class imbalance. It provides a robust estimate
of the model's ability to generalize, reduces sampling bias, and
helps detect overfitting. In the context of predictive
maintenance, where failures are rare, it guarantees a
meaningful and reliable evaluation [78].
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4.2. Results of the Five Models' Performance Evaluation Following the completion of all the procedures related to
4.2.1. Confusion Matrix precision, recall score, F1 score, specificity, and accuracy, the
Figure 7 below displays the confusion matrix for our five  following tables represent the outcome :

models.

0
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Fig. 7 Confusion matrix for our five models

Table 1. Overview of decision tree model metrics by class

Decision Tree

Class Precision Recall Specificity F1-Score Accuracy
Unpacker 0.16 0.25 0.89 0.20 0.84
Washer 0.13 0.25 0.86 0.17 0.81
Filler 0.09 0.10 0.89 0.16 0.81
Spotter 0.00 0.00 0.88 0.00 0.79
Cash boxer 0.30 0.20 0.92 0.24 0.81
Labeler 0.00 0.00 0.93 0.00 0.81
Coder 0.17 0.23 0.83 0.17 0.76
Normal mode 0.10 0.12 0.90 0.11 0.85
Gradient mode 0.11 0.06 0.91 0.07 0.78

Table 2. Overview of the random forest model
Random Forest

Class Precision Recall Specificity F1-Score Accuracy

Unpacker 0.96 1.00 0.97 0.96 0.98
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Washer 1.00 1.00 1.00 1.00 1.00
Filler 0.80 1.00 0.98 0.88 0.98
Spotter 0.82 1.00 0.97 0.90 0.97
Cash boxer 1.00 0.67 1.00 0.81 0.98
Labeler 0.50 1.00 0.96 0.67 0.92
Coder 0.92 0.85 0.98 0.88 0.96
Normal mode 1.00 0.67 1.00 0.81 0.97
Gradient mode 0.00 0.00 1.00 0.00 0.96
Table 3. Synopsis of logistic regression model metrics by class
Logistic Regression

Class Precision Recall Specificity F1-Score Accuracy
Unpacker 0.00 0.00 0.91 0.00 0.84
Washer 0.11 0.12 0.91 0.12 0.85
Filler 0.00 0.00 0.92 0.00 0.83
Spotter 0.00 0.00 0.83 0.00 0.74
Cash boxer 0.04 0.06 0.75 0.04 0.65
Labeler 0.00 0.00 0.92 0.00 0.80
Coder 0.14 0.23 0.79 0.17 0.72
Normal mode 0.20 0.28 0.92 0.23 0.87
Gradient mode 0.00 0.00 0.98 0.00 0.84

Table 4. Metrics summary by class of SVM model
SVM

Class Precision Recall Specificity F1-Score Accuracy
Unpacker 0.00 0.00 0.91 0.00 0.84
Washer 0.11 0.12 0.91 0.12 0.85
Filler 0.00 0.00 0.92 0.00 0.83
Spotter 0.00 0.00 0.83 0.00 0.74
Cash boxer 0.04 0.06 0.75 0.04 0.65
Labeler 0.00 0.00 0.92 0.00 0.80
Coder 0.14 0.23 0.79 0.17 0.72
Normal mode 0.20 0.28 0.92 0.23 0.87
Gradient mode 0.00 0.00 0.98 0.00 0.84

Table 5. Overview of KNN model metrics by class
KNN

Class Precision Recall Specificity F1-Score Accuracy
Unpacker 0.00 0.00 0.91 0.00 0.84
Washer 0.11 0.12 0.91 0.12 0.85
Filler 0.00 0.00 0.92 0.00 0.83
Spotter 0.00 0.00 0.83 0.00 0.74
Cash boxer 0.04 0.06 0.75 0.04 0.65
Labeler 0.00 0.00 0.92 0.00 0.80
Coder 0.14 0.23 0.79 0.17 0.72
Normal mode 0.20 0.28 0.92 0.23 0.87
Gradient mode 0.00 0.00 0.98 0.00 0.84
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4.2.2. Classification Report of the Five Models
The five-model histogram is shown in Figure 8 below.
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Classification Metrics Report of SVM
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Fig. 8 Histogram of the five models

4.2.3. ROC Curve of the Five Models
The five models of the ROC Curve are shown in Figure 9 below.
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ROC Curve - Random Forest
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ROC Curve - KNN
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Fig. 9 The ROC curve for the five models
4.2.4. Comparison Results of Different Models

The histogram of the distribution probabilities of the various models is shown in Figure 10 below.
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Prédiction Histogram - Logistic Regression
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Fig. 10 Predicted probability distribution histogram of the five models
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4.2.5. Comparison of the Final Model (Based on Overall Accuracy)
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Fig. 11 Probability distribution histogram of the five models

4.2.6. Model Comparison Using the ROC Curve
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4.2.7. Model Comparison using the Stratified Cross-Validation
Figure 13 presents the results of the stratified cross-validation as a histogram.
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Fig. 13 Stratified Cross-validation histogram of the five models

4.2.8. A comparison between Contemporary Boosting Models model (Random Forest) with more recent boosting algorithms
and the Best Random Forest Model (Gradient Boosting, AdaBoost, XGBoost, LightGBM),
Finally, Figure 14 compares the performance of our best highlighting their industrial applicability.
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Fig. 14 Comparison of the best random forest model with recent boosting models
4.3 Discussion of the Confusion Matrix "Casher" class in particular exhibits excellent accuracy and
4.3.1. Confusion Matrix of the Decision Tree specificity. Certain classes, such as "Coder," have a high

With greater F1 scores, the "Cash Boxer" and "Unpacker"  precision but a moderate recall, meaning that while the model
classes appear to fare better overall. On this dataset, the  is mostly correct when predicting "Coder," it occasionally
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fails to identify real-world occurrences of the class. On the
other hand, recall might be greater than precision for other
classes. With 0% precision and recall, the "Sealer and
Labeler" classes perform terribly. This implies that the model
is experiencing trouble accurately recognizing "Scanner and
Labeler" instances. For the majority of classes, the specificity
is comparatively high, indicating that the model is generally
effective in detecting instances that do not fall into the positive
class.

4.3.2 Confusion Matrix of Random Forest

The precision, recall, and F1-Score of the "Unpacker,"
"Washer," and "Coder" classes run flawlessly, ranging from
0.85 to 1.00. Very high scores are also displayed by the
"Normal Mode" and "Casher" classes. The model accurately
detects all actual occurrences of the majority of classes, where
the recall is 1.00, and the precision is less than 1.00. However,
this results in a few false positives, which lowers precision a
little bit in the "Filler" and "Splotter" situations.

With a recall and an F1-score of 0, the Random Forest
model has trouble with the "Degraded Mode" class. This
suggests that no instances of this class were accurately
identified by the model. Since there were no successful
predictions for this class, the accuracy is likewise zero. The
model is effective at identifying occurrences that do not
belong to the positive class, as evidenced by the generally very
high specificity for all classes.

4.3.3. Confusion Matrix of Logistic Regression, SVM, and
KNN

Precision and recall are zero for a number of classes
(Unpacker, Filler, Spotter, Labeler, and Gradient Mode),
suggesting that these models are unable to detect positive
cases accurately. F1 scores are typically extremely low,
indicating that these models struggle to use the one-versus-all
method to rank many steps in our process. These models are
generally effective at correctly identifying negative examples,
as evidenced by the relatively high specificity for the majority
of classes, despite low precision and recall. The “Encoder”
and “Normal Mode” classes have slightly higher precision and
recall than the others, while they are still low.

4.4. Discussion of the Classification Report
4.4.1. The Decision Tree Model Classification Report

Some classes, especially class 3 (Splotter) and, to a lesser
extent, class 5 (Labeler), are difficult for the decision tree
model to handle. The model performs exceptionally well for
the Encoder0, Unpackerl, and Mireuse5 classes, exhibiting
excellent recall and precision. Performances in the Labeler3,
Filler6, and Normal Mode7 courses are mediocre.

4.4.2. The Random Forest Model Classification Report
As evidenced by the rise in precision, recall, and F1
scores, the Random Forest model outperforms the Decision
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Tree for the majority of classes. Random Forest performs
better across classes because it is more resilient and less likely
to overfit than a Decision Tree. Even with the Random Forest's
development, Class 8 is still the hardest to forecast.

4.4.3. The Logistic Regression Model Classification Report

Depending on the classifications, the logistic regression
model displays varying performance. He excels in some
classes (1, 6, 7) but struggles in others (0, 2, 3, 5, 8).

Overall, we find that logistic regression performs worse
than Decision Tree and Random Forest Models. This is due to
the fact that logistic regression is a linear model, whereas
decision trees and random forests are better suited to capture
non-linear correlations in data.

4.4.4. The SVM Model Classification Report

Precision, recall, and a low F1 score indicate that the
model has trouble handling classes (0, 2, 3, 5, 8) (Unboxer,
Filler, Mirage, Labeler, and Gradient Mode). With high
scores, the model appears to work effectively for classes 6
(Coder) and 7, in particular (Normal mode). The micro
average is likewise low, confirming the model's challenges,
and the macro average is extremely low, suggesting that the
model is having trouble overall with all classes.

4.4.5. The KNN Model Classification Report

The model struggles with classes (0, 2, 3, 5, 8) (Unboxer,
Filler, Mirage, Labeler, and Gradient Mode), as evidenced by
precision, recall, and a poor F1 score. The model seems to
function well for classes 6 (Coder) and 7, especially in normal
mode, with high scores. The macro average is incredibly low,
indicating that the model is generally struggling with all
classes, and the micro average is similarly low, confirming the
model’s difficulties.

4.5. Discussion on the Roc curve
4.5.1. The ROC Curve of the Decision Tree Model

It seems that the Decision Tree model has trouble
accurately forecasting the condition of the majority of the
individual pieces of equipment, especially the cash box (Class
4). Although the coder (Class 6) performs the best, even their
AUC is not very high. Additionally, the regular (Class 7) and
deteriorated (Class 8) operational modes can only be predicted
with a modest degree of accuracy.

4.5.2. The ROC Curve of the Random Forest Model

The Random Forest model is very good at determining
the states of the coding machine (Class 6), depalletizer (Class
0), and degraded operational mode (Class 8). Additionally, it
works incredibly well with the Class 1 bottle washer, Class 2
filling machine, and Class 3 inspection machine. Both the
labeler (Class 5) and case packer (Class 4) continue to have
excellent predictions. Although it is harder for the model to
predict the regular operational mode (Class 7) than the other
special states, the performance is still impressive.
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4.5.3. The ROC Curve of the Logistic Regression Model

In addition to determining the states of the unpacker
(Class 0) and the coder (Class 6), the Logistics Regression
model is especially effective at determining the degraded
mode (Class 8). Additionally, it performs admirably for the
candulator (Class 3) and washer (Class 1). While still within
an acceptable range, the case packer's (Class 4) and labeler's
(Class 5) performance is marginally worse. Additionally, the
typical mode (Class 7) prediction is accurate.

4.5.4. The ROC Curve of the SVM Model

The deteriorated mode (Class 8), unpacker (Class 0),
sighter (Class 3), and coder (Class 6) states are all
exceptionally  well-identified by the SVM model.
Additionally, it performs exceptionally well in regular mode
(Class 7), filler (Class 2), and washer (Class 1). Although
significantly worse, the case packer (Class 4) and labeler
(Class 5) nevertheless have excellent performance.

4.5.5. The ROC Curve of the KNN Model

The KNN model performs exceptionally well in detecting
the degraded mode (Class 8), coder (Class 6), and unpacker
(Class 0). It provides both the labeler (Class 5) and the washer
(Class 1) with good performance. Filler (Class 2), candulator
(Class 3), case packer (Class 4), and regular mode (Class 7)
all have poorer performance.

4.6. Discussion of Predicted Probability Distribution

With a noticeable bimodal distribution and a trough at
probability 0.5, the Random Forest model's prediction
probability histogram shows a propensity to provide forecasts
with high confidence. This implies that the model frequently
has a high degree of confidence in the classifications it makes
for that particular class. However, the Decision Tree model
shows a binary prediction behavior, with nearly all of the
probabilities being either 0 or 1. This is consistent with
decision trees, which assign a probability of 0 or 1 in their
"pure" terminal leaves. This feature stands in stark contrast to
the Random Forest model's more complex distribution, which
we previously examined. Compared to the Decision Tree, the
Logistic Regression model has a more complex distribution
with a notable presence of intermediate probabilities,
suggesting the capacity to convey uncertainty. It appears less
extreme than the Random Forest, despite the concentration
near the ends. More freedom to interpret predictions and
modify the classification threshold is offered by this
distribution. We observe that the SVM has a propensity to
generate predictions with a distribution that implies
bimodality and a comparatively high degree of confidence.
While intermediate probabilities do exist, they are less
frequent than those close to 0 or 1. This distribution illustrates
how the SVM uses a separation margin to determine
classification. The KNN model is characterized by significant
frequencies for intermediate probabilities in addition to peaks
at the endpoints (0.0 and 1.0). In contrast to models that
exhibit more pronounced bimodality, this indicates a higher
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frequency of uncertainty in predictions and reflects the
neighborhood-based structure of the model. This distribution
may make it more challenging to choose the categorization
threshold.

4.7. Discussion on the Overall Accuracy of the Confusion
Matrices of our Different Models

Of the five, Random Forest has the highest overall
accuracy (86.7%), followed by Logistic Regression (85.0%),
Decision Tree (84.3%), SVM (83.3%), and Random Forest
(86.7%). KNN (80.3%) has the lowest overall accuracy. The
Random Forest is the best model for this binary classification
job based on total accuracy. While KNN exhibits the lowest
efficiency, Logistic Regression, Decision Tree, and SVM
follow with marginally worse performance. Note that this
conclusion is predicated on overall accuracy. Class-specific
F1 scores may be the subject of future research, especially if
the costs of false positives and false negatives vary by class.
Nonetheless, Random Forest seems to outperform the other
models in terms of sheer overall efficiency.

4.8. Discussion on Comparing the ROC Curve on Models

Following the use of many models, the data indicates that
the best models for forecasting equipment failures and states
in your brewery system are Random Forest, SVM, and
Logistic Regression. Based on the total AUC, the Random
Forest model seems to be marginally better. KNN may be less
dependable across all types of failures and equipment
conditions, despite its respectable performance. The Decision
Tree appears to be the least successful and may need a
significant overhaul or an alternative strategy.

4.9. Discussion on Comparing the Cross-Validation

The  cross-validation  results  revealed  distinct
performance profiles across models: Random Forest achieved
the highest scores across all metrics, with a particularly strong
recall and AUC, indicating excellent class separation and
minimal false negatives. Logistic regression showed stable
and interpretable performance, making it a reliable choice for
regulatory or traceability-sensitive applications. Decision
Tree and KNN exhibited lower generalization capacity, with
reduced F1 and AUC scores, suggesting sensitivity to data
structure and potential overfitting. SVM delivered moderate
results, but its effectiveness may depend on further tuning and
preprocessing steps such as feature scaling or class balancing.

4.10. Discussion on Comparing Contemporary Boosting
Models and the Best Random Forest Model

Significant performance and industrial adaptation
differences are found when Random Forest and boosting
models (Gradient Boosting, AdaBoost, XGBoost, and
LightGBM) are compared in the context of predictive
maintenance in breweries. With an AUC of 0.93, Random
Forest is a dependable option for industrial settings where
stability is crucial because it is resilient and not overly
sensitive to hyperparameters. However, because boosting
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models can manage class imbalances, which are common in
failure data, and capture complex relationships, they perform
somewhat better in accuracy than Random Forest (AUC =
0.94). Examples of these models include XGBoost and
LightGBM. Boosting models offer a strategic advantage in
brewing, where malfunctions are uncommon but crucial, as
they enable more accurate identification of weak signals and
more precise calibration of probabilities, both of which are
necessary for setting intervention priorities. Specifically,
LightGBM combines high precision, low memory usage, and
speed of execution, making it ideal for industrial settings with
limited resources. In conclusion, LightGBM is the most
appropriate model for efficient predictive maintenance in
breweries because of its accuracy, speed, and skillful handling
of unbalanced data, even though Random Forest is still a
reliable and interpretable option.

5. Conclusion

In summary, the Random Forest model seems to be a
good classifier for this binary problem based on its overall
confusion matrix. However, taking into account the problem's
context and contrasting its performance with that of other
models would be necessary for a more thorough assessment.
Based on a direct comparison of their total confusion matrices,
the Decision Tree model appears to be marginally less
effective than the Random Forest model on this binary
classification problem, despite achieving respectable accuracy
and F1 scores. In this overall assessment, Random Forest
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