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Abstract - The article investigates the application of classical Machine Learning (ML) Algorithms for enhanced equipment for 

reliability and failure prognosis within complex industrial systems, specifically focusing on the brewing industry. The objective 

is to develop a Robust Machine Learning framework to anticipate equipment breakdowns and ensure optimal operational 

performance accurately. This methodology encompasses a dual approach, first leveraging comprehensive simulation data sets 

derived from a demanding manufacturing environment to identify operational irregularities and predict potential equipment 

failures. Second, undertake a rigorous comparative analysis of various supervised learning models, including Decision Trees, 
Random Forests, Logistic Regression, Support Vector Machines (SVM), and K-nearest neighbors. These models were 

implemented using Python and evaluated meticulously through metrics such as confusion matrices, classification reports, ROC 

curves, and stratified cross-validation. Results indicate that the Random Forest model demonstrates superior overall 

performance for binary classification in this context. This comparative assessment provides critical insights for selecting and 

implementing the most effective predictive maintenance strategies, aiming to optimize brewing operations. Future work will 

concentrate on refining the identified high-performing models and exploring class-specific performance metrics to mitigate 

further the costs associated with false positives and false negatives. 

Keywords - Brewing Industry, Machine Learning, Predictive Maintenance, Model performance. 

1. Introduction  
This century has seen a tremendous evolution in the 

industrial sector, leading to the emergence of the complex 

industry and all of its associated technologies [1-5]. However, 

when a portion of the production system is started, a fault that 

spreads cannot be quickly and accurately traced by the 

operator in the manufacturing sector [6]. Furthermore, once 

the procedure has been initiated, the machines cannot be 

interrupted. However, a tracing system is necessary to 

safeguard and preserve the plant and its output, which are 
expensive assets [7, 8]. In order to prevent production 

stoppages brought on by failures, flaws that spread during 

plant startup must also be identified and fixed. The use of 

Artificial Intelligence (AI) in industrial processes has 

revolutionized productivity and creativity [9]. Real-time 

defect diagnosis, prediction, and operation optimization are 

made possible by the integration of AI into automation 

systems and data analytics, which enhances industrial 

processes [10, 11]. AI makes it possible to put solutions like 

automated repetitive tasks, predictive maintenance, and better 

inventory management into practice [12, 13]. When paired 

with data analysis, these technologies provide a notable boost 

in operational decision-making and production performance. 

The use of Machine Learning (ML) lowers operating costs and 
allows for product personalization, which propels the digital 

transformation of numerous sectors [14-18]. Using linked data 

on equipment failures in the brewing sector, five machine 

learning models will be considered for classification in the rest 

of the work, including Decision Trees, Random Forests, 

Logistic Regression, Support Vector Machines (SVM), and k-

nearest neighbors. The classification report, the ROC curve, 

stratified cross-validation, and confusion matrices are the 

instruments used to assess performance [19]. In order to 

determine the optimal model, we compare these tools at the 

conclusion. 

2. Literature Review  
Numerous techniques have been employed in 

publications that review the literature on fault propagation, 

including the development of a Neuro-Fuzzy Monitoring tool 

[20-22], stochastic modeling based on the MEE (State Space 

Model), and the ALTARICA DATA FLOW application, 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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which functions as a kind of black box that brings out all the 

necessary parameters to determine the OEE (Synthetic Rate 

Of Return), a performance indicator par excellence, while 

relying on the NFE 60-182 [23-26]. Later, using this same 

indication, additional models, including LSTM, were 
employed to assess dynamic reliability [27-29]. In his thesis, 

he employs the detection and localization of problems in 

electric motors as one of his methods and discusses this topic. 

He uses topological, nominal, and linear models for 

diagnostics and comes to the conclusion that the monitoring 

features improve equipment management by reducing 

downtime, streamlining maintenance, and boosting 

operational safety [30, 21]. Advanced defect diagnosis and 

detection methods are discussed by [31-33] , Here, he utilizes 

evolutionary algorithms to find leaks in water pipes and comes 

to the conclusion that the more search space there is, the less 

precise the results are. In his theme titled "Detection of 
Defects in a Predictive Maintenance Environment, [34-36] 

lays out a methodology that can predict a variety of defects 

using signals obtained from direct current motors. He uses 

MATLAB Simulink's predictive models, Deep Learning, 

FcN, Resnet, the encoder, and the LSTM as tools. He 

concludes that by adjusting the encoder model's 

hyperparameters, an average accuracy of 88.53% was 

achieved, which is higher than he had anticipated [37, 38].  

Discusses fatigue harm and the management of additive 

manufacturing flaws; in his work, he will intentionally create 

model flaws and determine how detrimental they are to 
fatigue. It will produce deterministic submillimeter flaws with 

sizes ranging from 150 to 1000 µm using non-destructive 

porosity detection techniques in additive manufacturing. [39] 

were inspired by [40] talk about the use of Bayesian networks 

for fault diagnosis and detection in systems. In their article, 

Implementation of Bayesian networks in an embedded system 

to help diagnose failures of industrial machines, they suggest 

an embedded system that enables the collection, processing, 

and filtering of operating data from an industrial machine. 

This is so that a diagnostic support tool based on graphical 

probabilistic models (Bayesian networks) can be developed by 

utilizing vast amounts of data from several machine-
embedded sensors. With the use of Bayesian networks 

produced by learning algorithms, this tool will enable the 

diagnosis of potential faults in the observed system without 

the need for knowledge of the physical models of the system's 

constituent parts. In his thesis, "Applications of Artificial 

Intelligence (AI) to the detection and isolation of multiple 

faults in a telecommunications network”, [41-44], he suggests 

a general probabilistic approach that makes it easier to model 

how faults spread across big telecommunications networks. A 

model of the transmission of faults and alerts on the Fiber to 

the Home (FTTH) access network of the Gigabit Passive 
Optical Network (GPON) type is developed using this 

approach, which is based on the formalism of Bayesian 

networks. It demonstrates that the diagnostic performance of 

the "expert" model of the GPON-FTTH network is reasonably 

enhanced by the probabilistic model with optimized 

parameters. In their paper Adaptation of epidemiological 

models for the analysis of the propagation of failures in a 

production resource, [45, 46], the authors reviewed the 

literature. First, they examined the primary models of 
disruptive phenomenon propagation for industrial systems. 

They then presented the principles of epidemiological models 

and how they can be adapted to non-living systems. Similarly, 

[47] present a SIQS model that considers quarantine and 

vaccination.  In his book "Mathematical Modelling of the 

Propagation of an Epidemic," [48] begins with the SIR model 

and its variations while considering a dynamic system. He 

then discusses the spatio-temporal model of the spread of an 

epidemic, develops some models like the percolation and 

forest fire models, compares biological and artificial neural 

networks in all of their aspects, and concludes by developing 

some known propagation networks. The project "Detection, 
classification, and localization of faults in transmission lines 

by Artificial Neural Networks" by [49-51], examines the 

application of Neural Networks for the rapid and accurate 

detection, classification, and localization of faults in electric 

power transmission lines in order to support a new generation 

of protection relay systems. In addition to causing equipment 

damage and system outages, faults also pose a serious threat 

to the power grid's stability and operability. For each of the 

three phases, a feedforward Neural Network and a 

backpropagation algorithm utilizing MATLAB Simulink will 

be used to identify whether a fault is present or absent, 
categorize it based on its transitory characteristics, and 

indicate where it is located on a transmission line. In the 

framework of Industry 4.0, [52], whose thesis focuses on the 

use of Machine Learning Algorithms for the detection of 

bearing failures on rotating machines, first applies techniques 

that enable us to extract features from a rotating machine's 

data. After that, he installed a mechanism to keep an eye on 

the machine's condition by establishing a threshold for 

appropriate operation and another to sound an alarm when the 

latter is achieved. Second, he classified the various failure 

levels using MATLAB's machine learning methods.  

The estimating technique known as "Cross-Validation" 
yielded a reliability of 99.3% after the time and frequency 

domain features of the signals were extracted. The model 

parameters are optimized during this learning phase to match 

the data best. Next, it assesses "test set validation," another 

validation method. For huge datasets, this method is advised. 

Following a number of tests, we achieved a 100% 

categorization rate for the various defect levels taken into 

account. Contribution to the detection of faults for the 

predictive maintenance of mechatronic systems using 

methods based on observers [53-55]. Sparse reconstruction is 

a novel diagnostic technique that has been applied to gear 
transmissions to study and diagnose various errors that arise 

in dynamic systems. A dynamic algorithm that uses a few 

system observations to estimate a sparse fault vector is the 

foundation of the sparse reconstruction technique. A non-
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linear global system that describes the mechatronic 

interactions is obtained by using an integrated modeling 

technique that respects the inputs and outputs of each 

subsystem. The fact that a limited "parsimonious" number of 

defects can exist simultaneously is one of its peculiarities. The 
number of sensors that must be installed determines this 

figure. We can identify more issues if we increase the number 

of sensors. The fact that this technology provides an online 

diagnostic is one of its benefits. In their paper Detection and 

classification of flaws for a GPV: Comparative research 

between the thresholding approach and neural networks, [56, 

57], they did a comparison of the thresholding method to 

examine the neural approach's performance. Based on his 

simulation results, he finds that, in comparison to the 

thresholding method, Artificial Neural Networks are the most 

appropriate (simple and easy) strategy for GPV diagnosis. 

Patch analysis, the foundation of our system, enables the 

detection of even the most minute flaws.  

A multi-class SVM technique and the usage of a GAN's 

discriminative component form the basis of the article by [58], 

titled One-Class detection and classification of faults on 

concrete surfaces. The findings are intriguing because they 

demonstrate how well a cGAN can employ descriptors in this 

case, LBPs to detect abnormalities. To be more specific, our 

approach allows for the detection of all kinds of flaws and 

resulting in a categorization of defects where the multi-OC-

SVM performs well with a 91% accuracy rate. In his thesis, 

"Machine learning applied to the analysis and prediction of 

failures in HPC systems," [59].  

More specifically, his thesis makes two major 

contributions: the first is about anticipating processor 

overheating in High-Performance Computing (HPC) systems, 

and the second is about analyzing and emphasizing the 

connections between the events that are recorded in the system 

logs. Real data from a sizable HPC system in use for 

production is utilized to assess these two contributions. In their 

paper Strategies for AltaRica modeling of fault propagation in 

dynamic systems, published in 2022 [60] provide advice on 

how to take full advantage of this dynamic modeling feature. 

As part of the System & Safety Continuity (S2C) project of 
the IRTs Saint Exupéry and System, a group of experts in 

traditional safety and Model Based Safety Assessment 

(MBSA) created the suggested guidelines [20, 22 ,61, 62]. In 

his essay titled "Improving Machine Availability with 

Machine Learning," [63] states that businesses can use 

machine learning models to examine machine data in real 
time, identify abnormalities, and foresee issues before they 

arise. As a result, unplanned downtime is decreased, MTTR 

and MTBF are optimized, productivity rises, and maintenance 

expenses fall. 

3. Materials and Methods  

3.1. Methodology for Acquiring Data 

The preferred strategy for monitoring, steering, failure 
detection, and prediction at the moment is data-driven 

methodologies, sometimes referred to as data-driven methods, 

which have grown in favor [64-67]. These approaches have a 

distinct edge since they leverage the utilization of large data 

sets and intricate Machine Learning Techniques [68]. From 

the gathered data, this method enables the extraction of 

pertinent and valuable information [12]. As seen in Figure 1 

in the illustration, this data is gathered in a serial configuration 

production line. 

 
Fig. 1 Overall view of the brewing production system 

The decoder, washer, filler, tester, labeler, packer, and 

coder are the seven major equipment blocks that make up the 

synoptic shown in Figure 2 of our brewing production system. 

 
 Fig. 2 Industrial brewing process diagram 

Decoder Washer    Input         

 

Filler Tester 

Labeler Packer Coder  Output  
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Fig. 3 Dataset of Sobraga 

Loading the libraries we previously downloaded into our 
workspace and then the file containing our dataset is the first 

step in the preprocessing procedure. The next stage is 

complete data cleansing, which involves changing data 

formats and handling missing values. While numerical codes 

can be preserved or altered by label coding, categorical 

variables, such as defect categories, are managed through 

techniques like one-hot coding or ordinal coding. Numerical 

variables are subjected to normalization. Lastly, we employ 

fault-based encoding to reverse dictionary keys and values and 
temporal aggregation to streamline and improve the analysis 

(see Figure 4). This methodical approach guarantees precision 

and effective implementation, providing a strong basis for the 

creation of advanced prediction models and well-informed 

operational decision-making. In image 5, she offers a 

summary of a supervised learning problem, drawing 

inspiration from the book titled Introduction to ML by Chloe 

Agathe Azencot [69]. 

 
Fig. 4 Data following preprocessing 
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Fig. 5 An overview of a supervised learning problem 

   

   

 
Fig. 6 Data collection failure distribution 

The various distributions resulting from the failures 
documented in the collection of failures at the level of these 

seven pieces of equipment, as well as the months, which stand 

in for the days of information gathering, are flawlessly 

depicted in Figure 6. One way to formulate a supervised 

learning problem is as follows:  The objective of supervised 

learning is to identify a function 𝑓: 𝑋 →  𝑌  such that 𝑓(𝑥) ≈
𝑦 for all pairs (𝑥, 𝑦) ∈ 𝑋 × 𝑌 having the same relationship as 

the observed pairs, given 𝑛 observations, {𝑥1, 𝑥2, … , 𝑥𝑛}, 
where each observation 𝑥𝑖 Is an element of the space of 

observations 𝑋 and their labels{𝑦1, 𝑦2, … , 𝑦𝑛}, where each 

label 𝑦𝑖  Belongs to the space of labels, 𝑌. The learning game 

is made up of everything. 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1,…,𝑛. This article 

will examine a specific instance of  𝑌 = {1,2, … , 𝑐}  that 

involves a multi-class categorization. The decision function 

for this case will be:  

:cg X   Such as 

𝑓(𝑥⃗) =  argmax
𝐶=1,…,𝑐

𝑔𝑐(𝑥⃗)  (1)   

The space can be divided into decision regions thanks to 

this idea of a decision function.  

Then, we have C decision regions in the multi-class 

scenario. 

𝑅𝑐 = {𝑥⃗ ∈ 𝑋|𝑔𝑐(𝑥⃗) = max
𝑘

𝑔𝑐(𝑥⃗)} (2) 

However, a C-class classification problem can be solved 

with any binary classification technique, either one-against-all 

or one-against-one. 

Labels 

Observations Machine Learning Algorithm Predictive Model 

𝑥⃗1, 𝑥⃗2, … , 𝑥⃗𝑛 ∈ 𝑋 

 

𝑦1, 𝑦2, … , 𝑦𝑛 ∈ 𝑌 

𝑓(𝑥⃗) ≈ 𝑦 
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𝑓(𝑥) =  argmax
𝐶=1,…,𝑐

∑ 𝑔𝑐(𝑥)𝑘≠𝑐                                               

𝑓(𝑥) =  argmax
𝐶=1,…,𝑐

(∑ 𝑔𝑐𝑘(𝑥)𝑘≠𝑐 ) (3) 

3.2. The Many Algorithms that are Employed 

3.2.1. Logistic Regression 

One of the basic and widely used strategies for resolving 

classification issues is logistic regression. To observe a 
discrete set of classes, LR is a supervised machine learning 

classification algorithm. A statistical technique for modeling 

the likelihood of a binary event based on one or more 

independent variables is called Logistic Regression [70]. The 

reason for the term "Logistic Regression" is that the 

fundamental methodology is quite similar to that of linear 

regression. This categorization method's usage of the Logit 

function is where the term "Logistics" originates. Logistic 

regression forecasts the likelihood that an event will fall into 

either the positive class (1) or the negative class (0), in contrast 

to linear regression, which forecasts continuous values [71, 

72]. The model is known as logistic regression: 

𝑓: 𝑥 →  𝜎(𝛽𝑇 𝑥⃗)                                                        (4) 

The coefficients of which are derived by:  

 argmax
𝛽∈ℝ𝑃+1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

∑ 𝑦𝑖𝑙𝑜𝑔𝜎(𝛽𝑇  𝑥𝑖) + (1 − 𝑦𝑖)log (1 − 𝜎(𝛽𝑇  𝑥𝑖)𝑛
𝑖=1 )

 (5) 

3.2.2. Decision Tree 

A decision tree is a type of prediction model that can be 

shown as a tree. Every child node in the tree represents a 

potential response to the condition that each node tests on a 

variable[73, 74]. Each label is represented by a leaf on the tree. 

We "follow" the test answers from the tree's root to forecast 

the label of an observation, then return the label of the leaf we 
arrive at. A decision tree divides the observation space X into 

as many regions as its leaves; all observations are then 

assigned the same label inside a single zone. This label is the 

most common label in the area when there is a categorization 

issue. We can write if n observations. 𝑥1, 𝑥2, … , 𝑥𝑛 of X are 

labeled by 𝑦1, 𝑦2, … , 𝑦𝑛 and R regions 𝑅1, 𝑅2, … , 𝑅𝑅 .  

𝑓(𝑥) =  ∑ 𝛿𝑥∈𝑅𝑟
𝑅
𝑟=1 argmax

𝐶=1,…,𝑐

∑ 𝛿(𝑦𝑖 , 𝐶)𝑖:.𝑥⃗𝑖∈𝑅𝑟
 (6) 

Even if the latter results from the former of the two 

classes, we will address the multi-class issue in this article. 

This label represents the average label of the observations in 

this area for a regression problem: 

𝑓(𝑥) =  ∑ 𝛿𝑥∈𝑅𝑟
𝑅
𝑟=1

1

|𝑅𝑟|
∑ 𝑦𝑖

𝑖:.𝑥⃗𝑖∈𝑅𝑟
 (7)   

 3.2.3. Random Forest 

An ensemble learning technique for regression and 

classification is called Random Forest. The reason it is named 

"Forest" is that it grows a forest of decision trees. Through 

bootstrap sampling and random feature selection, this 
approach introduces diversity by building several decision 

trees. Either a majority vote (classification) or an average 

(regression) yields the final prediction. A forest ensures a 

more accurate result with more groups and decisions than a 

single decision tree, which only offers one outcome and a 

limited number of groups. The Random Forest algorithm's 

popularity stems from its ability to tackle classification and 

regression problems efficiently due to its versatility, high 

performance, robustness, and ease of use. This algorithm's 

strength rests in its capacity to work with intricate datasets 

while preventing overfitting, which makes it an effective tool 

for a range of Machine Learning predictive tasks [72, 75]. The 
Random Forest algorithm's capacity to handle data sets with 

both continuous variables, as in regression, and categorical 

variables, as in classification, is one of its primary 

characteristics. It is a favored option for classification and 

regression tasks due to its strong performance in these 

domains [76, 77]. 

3.2.4. Support Vector Machine 

The following optimization problem is what we refer to 

as SVM: 

argmin
𝑤⃗⃗⃗∈ℝ𝑃,𝑏∈ℝ

1

2
‖𝑤⃗⃗⃗‖2

2𝑡. 𝑞. 𝑦𝑖(〈𝑤⃗⃗⃗, 𝑥𝑖〉 + 𝑏) ≥ 1, 𝑖 = 1, … , 𝑛

 (8) 

Consider the answers to equation (8),  𝑤⃗⃗⃗∗ , 𝑏∗. After that, 

the decision function is provided by: 

 𝑓(𝑥) = 〈𝑤⃗⃗⃗∗, 𝑥〉 + 𝑏∗ (9) 

Equation (9) defines the problem as follows: 

max
𝛼∈ℝ𝑛

∑ 𝛼𝑖 −𝑛
𝑖=1

1

2
∑ ∑ 𝛼𝑖𝛼𝑙𝑦

𝑖𝑦𝑙〈𝑥𝑖 , 𝑥𝑙〉𝑛
𝑙=1

𝑛
𝑖=1  (10) 

𝑡. 𝑞 ∑ 𝛼𝑖𝑦
𝑖𝑛

𝑖=1 = 0; 𝛼𝑖 ≥ 0, 𝑖 = 1, … , 𝑛   

3.2.5. KNN (k Nearest Neighbors) 

Given a distance d on a set of n labeled observations, 

𝑁𝐾(𝑥) is the collection of 𝑥's k nearest neighbors in 𝐷 =
{(𝑥𝑖 , 𝑦𝑖)𝑖=1,…,𝑛} : 

 When we use the majority vote to solve a classification 

problem, x  we adopt the label that is most common 

among its K nearest neighbors.  

𝑓(𝑥) = argmax
𝐶

∑ 𝛿(𝑦𝑖 , 𝐶)𝑖:.𝑥⃗𝑖∈𝑁𝐾(𝑥⃗)   (11) 
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 The average of the labels of k nearest neighbors is used as 

the label for a regression problem: 

𝑓(𝑥) =
1

𝐾
∑ 𝑦𝑖

𝑖:.𝑥⃗𝑖∈𝑁𝐾(𝑥⃗)  (12) 

3.3. Instruments Utilized 
3.3.1. Python 

The Python 3.11.7 programming language was selected 

for the development of our algorithms due to its rich 

ecosystem of specialized libraries. Tools such as scikit-learn, 

TensorFlow, pandas, NumPy, matplotlib, and PyTorch greatly 

facilitated the implementation, testing, and optimization of the 

models. Python's straightforward syntax and accessibility also 

fostered collaboration within our research team, accelerating 

the development cycle. 

3.3.2. Jupyter Notebook 

The Integrated Development Environment (IDE) Jupyter 
Notebook 7.0.8 was used for this study. Specifically designed 

for data scientists and engineers, it offers advanced features 

such as integrated data visualization, real-time code analysis, 

and an interactive variable explorer. Its ability to directly 

integrate scientific and machine learning libraries (NumPy, 

SciPy, Matplotlib, scikit-learn) within the same environment 

significantly improved our workflow and enabled efficient 

model exploration. 

4. Results and Discussion  
4.1. Metrics for Evaluation 

4.1.1. The Matrix of Confusion  

An important technique for assessing a classification 

model's performance is a confusion matrix. By contrasting the 

predicted and actual values, you can see and comprehend the 

model's output. We can see the categorization model's 

advantages and disadvantages in depth thanks to the confusion 

matrix. By examining the data and computing the relevant 

metrics like accuracy, precision, recall score, specificity, and 

F1-score, the number of samples correctly classified as not 
belonging to the class is represented by True Negatives (TN), 

which are represented by formulas based on concepts like row 

0 and column 0. False Positives (FP) is the number of samples 

that were mistakenly assigned to the class in Row 0, Column 

1. The number of samples that belong to the class but are 

mistakenly identified as NOT belonging to it is represented by 

Line 1, Column 0's False Negatives (FN), and the number of 

samples that are correctly classified as belonging to the class 

is represented by Line 1, Column 1's True Positives (TP). As 

a result, we will apply the following metrics' formulas : 

 Pr
TP

ecision
TP FP




 Which indicates that among all the 

samples that the model predicted as positive, what 

proportion were actually positive? 

 Re ( )
TP

call sensitivity
TP FN




Which indicates what 

percentage of all the genuinely positive samples the 

model will accurately detect?  

 TN
Specificity

TN FP



Which outlines the percentage 

of all truly negative samples that the model will 

accurately classify as negative?  

 2 Pr Re
1

Pr Re

ecision call
F score

ecision call

 
 


Which is the 

precision and recall harmonic mean. It offers a fair 

assessment of the model's performance, particularly when 

there is a class disparity.    

 TP TN
Accuracy

TP FN TN FP




  
This represents the 

overall percentage of samples that were correctly 

classified. 

We can gain a better understanding of the model's 

operation and, if required, make adjustments. 

4.1.2. The Graph-Based Classification Report  
The performance of the various categorization models 

employed in this work is depicted in this graph. Because it is 

a grouped bar chart, comparing three distinct metrics, named 

precision, recall, and F1 score for several categories, is simple. 

The percentage of accurate positive predictions among all of 

the model's optimistic predictions is known as accuracy.  

The percentage of real positive cases that the model 

correctly identified is known as recall. The categories "micro 

avg," "macro avg," "weighted avg," and "samples avg" 

represent averages of performance metrics computed in 

various ways across all devices. The x-axis represents various 

pieces of equipment or classes (numbered 0 to 8) for which 
the model was evaluated. The F1 score is a harmonic average 

of precision and recall. 

4.1.3. The ROC Curve 

A useful graphical tool for assessing the effectiveness of 

a binary classification model, in this case, determining 

whether or not equipment is defective, is the Receiver 

Operating Characteristic (ROC) curve. The ratio of inaccurate 

optimistic predictions to all actual negative observations is 

shown by the x-axis (X) or False Positive Rate (FPR). It is 

better if it is lower. The True Positive Rate (TPR), represented 

by the y-axis (Y), is the ratio of accurate optimistic forecasts 

to all actual positive observations. It is better if it is higher. 

4.1.4. The Stratified Cross-Validation  

Stratified cross-validation is an evaluation technique that 

preserves the proportion of classes in each subset (fold) of data 

used for training and testing. This is particularly important in 

the presence of class imbalance. It provides a robust estimate 

of the model's ability to generalize, reduces sampling bias, and 

helps detect overfitting. In the context of predictive 

maintenance, where failures are rare, it guarantees a 

meaningful and reliable evaluation [78]. 
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4.2. Results of the Five Models' Performance Evaluation 

4.2.1. Confusion Matrix 

Figure 7 below displays the confusion matrix for our five 

models.  

Following the completion of all the procedures related to 

precision, recall score, F1 score, specificity, and accuracy, the 

following tables represent the outcome : 
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Fig. 7 Confusion matrix for our five models 

Table 1. Overview of decision tree model metrics by class 

Decision Tree 

Class Precision Recall Specificity F1-Score Accuracy 

Unpacker 0.16 0.25 0.89 0.20 0.84 

Washer 0.13 0.25 0.86 0.17 0.81 

Filler 0.09 0.10 0.89 0.16 0.81 

Spotter 0.00 0.00 0.88 0.00 0.79 

Cash boxer 0.30 0.20 0.92 0.24 0.81 

Labeler 0.00 0.00 0.93 0.00 0.81 

Coder 0.17 0.23 0.83 0.17 0.76 

Normal mode 0.10 0.12 0.90 0.11 0.85 

Gradient mode 0.11 0.06 0.91 0.07 0.78 

 
Table 2. Overview of the random forest model 

Random Forest 

Class Precision Recall Specificity F1-Score Accuracy 

Unpacker 0.96 1.00 0.97 0.96 0.98 
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Washer 1.00 1.00 1.00 1.00 1.00 

Filler 0.80 1.00 0.98 0.88 0.98 

Spotter 0.82 1.00 0.97 0.90 0.97 

Cash boxer 1.00 0.67 1.00 0.81 0.98 

Labeler 0.50 1.00 0.96 0.67 0.92 

Coder 0.92 0.85 0.98 0.88 0.96 

Normal mode 1.00 0.67 1.00 0.81 0.97 

Gradient mode 0.00 0.00 1.00 0.00 0.96 

 
Table 3. Synopsis of logistic regression model metrics by class 

Logistic Regression 

Class Precision Recall Specificity F1-Score Accuracy 

Unpacker 0.00 0.00 0.91 0.00 0.84 

Washer 0.11 0.12 0.91 0.12 0.85 

Filler 0.00 0.00 0.92 0.00 0.83 

Spotter 0.00 0.00 0.83 0.00 0.74 

Cash boxer 0.04 0.06 0.75 0.04 0.65 

Labeler 0.00 0.00 0.92 0.00 0.80 

Coder 0.14 0.23 0.79 0.17 0.72 

Normal mode 0.20 0.28 0.92 0.23 0.87 

Gradient mode 0.00 0.00 0.98 0.00 0.84 

 
Table 4. Metrics summary by class of SVM model 

SVM 

Class Precision Recall Specificity F1-Score Accuracy 

Unpacker 0.00 0.00 0.91 0.00 0.84 

Washer 0.11 0.12 0.91 0.12 0.85 

Filler 0.00 0.00 0.92 0.00 0.83 

Spotter 0.00 0.00 0.83 0.00 0.74 

Cash boxer 0.04 0.06 0.75 0.04 0.65 

Labeler 0.00 0.00 0.92 0.00 0.80 

Coder 0.14 0.23 0.79 0.17 0.72 

Normal mode 0.20 0.28 0.92 0.23 0.87 

Gradient mode 0.00 0.00 0.98 0.00 0.84 

 

Table 5. Overview of KNN model metrics by class 

KNN 

Class Precision Recall Specificity F1-Score Accuracy 

Unpacker 0.00 0.00 0.91 0.00 0.84 

Washer 0.11 0.12 0.91 0.12 0.85 

Filler 0.00 0.00 0.92 0.00 0.83 

Spotter 0.00 0.00 0.83 0.00 0.74 

Cash boxer 0.04 0.06 0.75 0.04 0.65 

Labeler 0.00 0.00 0.92 0.00 0.80 

Coder 0.14 0.23 0.79 0.17 0.72 

Normal mode 0.20 0.28 0.92 0.23 0.87 

Gradient mode 0.00 0.00 0.98 0.00 0.84 
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4.2.2. Classification Report of the Five Models  

The five-model histogram is shown in Figure 8 below. 
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Fig. 8 Histogram of the five models 

 4.2.3. ROC Curve of the Five Models 

The five models of the ROC Curve are shown in Figure 9 below. 
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Fig. 9 The ROC curve for the five models 

4.2.4. Comparison Results of Different Models 

The histogram of the distribution probabilities of the various models is shown in Figure 10 below. 
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Fig. 10 Predicted probability distribution histogram of the five models 
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 4.2.5. Comparison of the Final Model (Based on Overall Accuracy) 
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Fig. 11 Probability distribution histogram of the five models 

4.2.6. Model Comparison Using the ROC Curve 

 
Fig. 12  Overall ROC Curve for the various models 



Achille EBOKE et al. / IJETT, 74(1), 1-24, 2026 

 

18 

4.2.7. Model Comparison using the Stratified Cross-Validation 

Figure 13 presents the results of the stratified cross-validation as a histogram. 

 
Fig. 13 Stratified Cross-validation histogram of the five models 

4.2.8. A comparison between Contemporary Boosting Models 

and the Best Random Forest Model 

Finally, Figure 14 compares the performance of our best 

model (Random Forest) with more recent boosting algorithms 

(Gradient Boosting, AdaBoost, XGBoost, LightGBM), 

highlighting their industrial applicability. 

 
Fig. 14 Comparison of the best random forest model with recent boosting models 

4.3 Discussion of the Confusion Matrix 
4.3.1. Confusion Matrix of the Decision Tree 

With greater F1 scores, the "Cash Boxer" and "Unpacker" 

classes appear to fare better overall. On this dataset, the 

"Casher" class in particular exhibits excellent accuracy and 
specificity. Certain classes, such as "Coder," have a high 

precision but a moderate recall, meaning that while the model 

is mostly correct when predicting "Coder," it occasionally 
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fails to identify real-world occurrences of the class. On the 

other hand, recall might be greater than precision for other 

classes. With 0% precision and recall, the "Sealer and 

Labeler" classes perform terribly. This implies that the model 

is experiencing trouble accurately recognizing "Scanner and 
Labeler" instances. For the majority of classes, the specificity 

is comparatively high, indicating that the model is generally 

effective in detecting instances that do not fall into the positive 

class. 

4.3.2 Confusion Matrix of Random Forest 

The precision, recall, and F1-Score of the "Unpacker," 

"Washer," and "Coder" classes run flawlessly, ranging from 

0.85 to 1.00. Very high scores are also displayed by the 

"Normal Mode" and "Casher" classes. The model accurately 

detects all actual occurrences of the majority of classes, where 

the recall is 1.00, and the precision is less than 1.00. However, 

this results in a few false positives, which lowers precision a 

little bit in the "Filler" and "Splotter" situations. 

With a recall and an F1-score of 0, the Random Forest 

model has trouble with the "Degraded Mode" class. This 

suggests that no instances of this class were accurately 

identified by the model. Since there were no successful 

predictions for this class, the accuracy is likewise zero. The 

model is effective at identifying occurrences that do not 

belong to the positive class, as evidenced by the generally very 

high specificity for all classes. 

 

4.3.3. Confusion Matrix of Logistic Regression, SVM, and 
KNN 

Precision and recall are zero for a number of classes 

(Unpacker, Filler, Spotter, Labeler, and Gradient Mode), 

suggesting that these models are unable to detect positive 

cases accurately. F1 scores are typically extremely low, 

indicating that these models struggle to use the one-versus-all 

method to rank many steps in our process. These models are 

generally effective at correctly identifying negative examples, 

as evidenced by the relatively high specificity for the majority 

of classes, despite low precision and recall. The “Encoder” 

and “Normal Mode” classes have slightly higher precision and 

recall than the others, while they are still low. 

4.4. Discussion of the Classification Report 

4.4.1. The Decision Tree Model Classification Report 

Some classes, especially class 3 (Splotter) and, to a lesser 

extent, class 5 (Labeler), are difficult for the decision tree 

model to handle. The model performs exceptionally well for 

the Encoder0, Unpacker1, and Mireuse5 classes, exhibiting 

excellent recall and precision. Performances in the Labeler3, 

Filler6, and Normal Mode7 courses are mediocre. 

4.4.2. The Random Forest Model Classification Report 

As evidenced by the rise in precision, recall, and F1 

scores, the Random Forest model outperforms the Decision 

Tree for the majority of classes. Random Forest performs 

better across classes because it is more resilient and less likely 

to overfit than a Decision Tree. Even with the Random Forest's 

development, Class 8 is still the hardest to forecast. 

4.4.3. The Logistic Regression Model Classification Report 
Depending on the classifications, the logistic regression 

model displays varying performance. He excels in some 

classes (1, 6, 7) but struggles in others (0, 2, 3, 5, 8).  

Overall, we find that logistic regression performs worse 

than Decision Tree and Random Forest Models. This is due to 

the fact that logistic regression is a linear model, whereas 

decision trees and random forests are better suited to capture 

non-linear correlations in data. 

4.4.4. The SVM Model Classification Report 

Precision, recall, and a low F1 score indicate that the 

model has trouble handling classes (0, 2, 3, 5, 8) (Unboxer, 

Filler, Mirage, Labeler, and Gradient Mode). With high 
scores, the model appears to work effectively for classes 6 

(Coder) and 7, in particular (Normal mode). The micro 

average is likewise low, confirming the model's challenges, 

and the macro average is extremely low, suggesting that the 

model is having trouble overall with all classes. 

4.4.5. The KNN Model Classification Report 

       The model struggles with classes (0, 2, 3, 5, 8) (Unboxer, 

Filler, Mirage, Labeler, and Gradient Mode), as evidenced by 

precision, recall, and a poor F1 score. The model seems to 

function well for classes 6 (Coder) and 7, especially in normal 

mode, with high scores. The macro average is incredibly low, 
indicating that the model is generally struggling with all 

classes, and the micro average is similarly low, confirming the 

model’s difficulties. 

4.5. Discussion on the Roc curve 

4.5.1. The ROC Curve of the Decision Tree Model 

It seems that the Decision Tree model has trouble 

accurately forecasting the condition of the majority of the 

individual pieces of equipment, especially the cash box (Class 

4). Although the coder (Class 6) performs the best, even their 

AUC is not very high. Additionally, the regular (Class 7) and 

deteriorated (Class 8) operational modes can only be predicted 

with a modest degree of accuracy.  

4.5.2. The ROC Curve of the Random Forest Model  

The Random Forest model is very good at determining 

the states of the coding machine (Class 6), depalletizer (Class 

0), and degraded operational mode (Class 8). Additionally, it 

works incredibly well with the Class 1 bottle washer, Class 2 

filling machine, and Class 3 inspection machine. Both the 

labeler (Class 5) and case packer (Class 4) continue to have 

excellent predictions. Although it is harder for the model to 

predict the regular operational mode (Class 7) than the other 

special states, the performance is still impressive. 



Achille EBOKE et al. / IJETT, 74(1), 1-24, 2026 

 

20 

4.5.3. The ROC Curve of the Logistic Regression Model  

In addition to determining the states of the unpacker 

(Class 0) and the coder (Class 6), the Logistics Regression 

model is especially effective at determining the degraded 

mode (Class 8). Additionally, it performs admirably for the 
candulator (Class 3) and washer (Class 1). While still within 

an acceptable range, the case packer's (Class 4) and labeler's 

(Class 5) performance is marginally worse. Additionally, the 

typical mode (Class 7) prediction is accurate. 

4.5.4. The ROC Curve of the SVM Model  

The deteriorated mode (Class 8), unpacker (Class 0), 

sighter (Class 3), and coder (Class 6) states are all 

exceptionally well-identified by the SVM model. 

Additionally, it performs exceptionally well in regular mode 

(Class 7), filler (Class 2), and washer (Class 1). Although 

significantly worse, the case packer (Class 4) and labeler 

(Class 5) nevertheless have excellent performance. 

4.5.5. The ROC Curve of the KNN Model  

The KNN model performs exceptionally well in detecting 

the degraded mode (Class 8), coder (Class 6), and unpacker 

(Class 0). It provides both the labeler (Class 5) and the washer 

(Class 1) with good performance. Filler (Class 2), candulator 

(Class 3), case packer (Class 4), and regular mode (Class 7) 

all have poorer performance.  

4.6. Discussion of Predicted Probability Distribution 

With a noticeable bimodal distribution and a trough at 

probability 0.5, the Random Forest model's prediction 

probability histogram shows a propensity to provide forecasts 
with high confidence. This implies that the model frequently 

has a high degree of confidence in the classifications it makes 

for that particular class. However, the Decision Tree model 

shows a binary prediction behavior, with nearly all of the 

probabilities being either 0 or 1. This is consistent with 

decision trees, which assign a probability of 0 or 1 in their 

"pure" terminal leaves. This feature stands in stark contrast to 

the Random Forest model's more complex distribution, which 

we previously examined. Compared to the Decision Tree, the 

Logistic Regression model has a more complex distribution 

with a notable presence of intermediate probabilities, 

suggesting the capacity to convey uncertainty. It appears less 
extreme than the Random Forest, despite the concentration 

near the ends. More freedom to interpret predictions and 

modify the classification threshold is offered by this 

distribution. We observe that the SVM has a propensity to 

generate predictions with a distribution that implies 

bimodality and a comparatively high degree of confidence. 

While intermediate probabilities do exist, they are less 

frequent than those close to 0 or 1. This distribution illustrates 

how the SVM uses a separation margin to determine 

classification. The KNN model is characterized by significant 

frequencies for intermediate probabilities in addition to peaks 
at the endpoints (0.0 and 1.0). In contrast to models that 

exhibit more pronounced bimodality, this indicates a higher 

frequency of uncertainty in predictions and reflects the 

neighborhood-based structure of the model. This distribution 

may make it more challenging to choose the categorization 

threshold. 

4.7. Discussion on the Overall Accuracy of the Confusion 

Matrices of our Different Models 

Of the five, Random Forest has the highest overall 

accuracy (86.7%), followed by Logistic Regression (85.0%), 

Decision Tree (84.3%), SVM (83.3%), and Random Forest 

(86.7%). KNN (80.3%) has the lowest overall accuracy. The 

Random Forest is the best model for this binary classification 

job based on total accuracy. While KNN exhibits the lowest 

efficiency, Logistic Regression, Decision Tree, and SVM 

follow with marginally worse performance. Note that this 

conclusion is predicated on overall accuracy. Class-specific 

F1 scores may be the subject of future research, especially if 

the costs of false positives and false negatives vary by class. 
Nonetheless, Random Forest seems to outperform the other 

models in terms of sheer overall efficiency. 

4.8. Discussion on Comparing the ROC Curve on Models  

Following the use of many models, the data indicates that 

the best models for forecasting equipment failures and states 

in your brewery system are Random Forest, SVM, and 

Logistic Regression. Based on the total AUC, the Random 

Forest model seems to be marginally better. KNN may be less 

dependable across all types of failures and equipment 

conditions, despite its respectable performance. The Decision 

Tree appears to be the least successful and may need a 

significant overhaul or an alternative strategy. 

4.9. Discussion on Comparing the Cross-Validation   

The cross-validation results revealed distinct 

performance profiles across models: Random Forest achieved 

the highest scores across all metrics, with a particularly strong 

recall and AUC, indicating excellent class separation and 

minimal false negatives. Logistic regression showed stable 

and interpretable performance, making it a reliable choice for 
regulatory or traceability-sensitive applications. Decision 

Tree and KNN exhibited lower generalization capacity, with 

reduced F1 and AUC scores, suggesting sensitivity to data 

structure and potential overfitting. SVM delivered moderate 

results, but its effectiveness may depend on further tuning and 

preprocessing steps such as feature scaling or class balancing. 

4.10. Discussion on Comparing Contemporary Boosting 

Models and the Best Random Forest Model   

Significant performance and industrial adaptation 

differences are found when Random Forest and boosting 

models (Gradient Boosting, AdaBoost, XGBoost, and 

LightGBM) are compared in the context of predictive 

maintenance in breweries. With an AUC of 0.93, Random 

Forest is a dependable option for industrial settings where 

stability is crucial because it is resilient and not overly 

sensitive to hyperparameters. However, because boosting 
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models can manage class imbalances, which are common in 

failure data, and capture complex relationships, they perform 

somewhat better in accuracy than Random Forest (AUC = 

0.94). Examples of these models include XGBoost and 

LightGBM. Boosting models offer a strategic advantage in 
brewing, where malfunctions are uncommon but crucial, as 

they enable more accurate identification of weak signals and 

more precise calibration of probabilities, both of which are 

necessary for setting intervention priorities. Specifically, 

LightGBM combines high precision, low memory usage, and 

speed of execution, making it ideal for industrial settings with 

limited resources. In conclusion, LightGBM is the most 

appropriate model for efficient predictive maintenance in 

breweries because of its accuracy, speed, and skillful handling 

of unbalanced data, even though Random Forest is still a 

reliable and interpretable option. 

5. Conclusion  
In summary, the Random Forest model seems to be a 

good classifier for this binary problem based on its overall 

confusion matrix. However, taking into account the problem's 

context and contrasting its performance with that of other 

models would be necessary for a more thorough assessment. 

Based on a direct comparison of their total confusion matrices, 
the Decision Tree model appears to be marginally less 

effective than the Random Forest model on this binary 

classification problem, despite achieving respectable accuracy 

and F1 scores. In this overall assessment, Random Forest 

produced fewer classification errors. KNN has the lowest 

efficiency, followed by Decision Tree and Logistic 

Regression, both of which perform marginally worse. Note 

that this conclusion is predicated on overall accuracy. Class-

specific F1 scores may be the subject of future research, 
especially if the costs of false positives and false negatives 

vary by class. Nonetheless, Random Forest seems to 

outperform the other models in terms of sheer overall 

efficiency. It would be prudent to concentrate on improving 

and implementing Random Forest, SVM, or Logistic 

Regression models in the future. We may select one of these 

top-performing models based on the particular requirements 

of our brewery (such as interpretability and computational 

cost). Choosing the best model for your brewery's predictive 

maintenance plan will require additional analysis utilizing 

additional metrics like precision, recall, F1 score, and the cost 

of false positives and false negatives. 
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