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Abstract - Electroencephalography-based Brain-Computer Interfacing (EEG-BCI) technologies allow for effortless interaction 

between external hardware and the human brain through monitoring its electric signals. These systems rely on EEG recordings, 

which provide non-invasive and real-time neural information through electrodes placed on the scalp. To advance emotion-

recognizing efficiency and accuracy, this study proposes a deep learning-based method that can extract valuable temporal and 
spatial information from EEG signals. The proposed model includes the use of a Graph Convolution Network (GCN) for learning 

spatial relationships between different EEG channels to model the data in graph form and gain features through that modelling. 

A Convolutional Autoencoder (CAE) is then used to compress data to low dimensions and to reconstruct it so that major features 

are not ignored. Furthermore, the model uses an Attention-based Bidirectional Gated Recurrent Unit (ABiGRU) for temporal 

classification, which can emphasize the most important time steps in both backwards and forward directions. Two standard 

datasets are employed to test the developed approach. The DEAP dataset is used for emotion recognition with a binary response, 

and SEED is used with multi-class classification. The model attains great results of 98.12% accuracy on DEAP and 97.58% on 

SEED datasets. The very high performances show the efficacy of the model for decoding emotional states from EEG signals and 

very strong potential for real-time emotion recognition in affective computing and BCI.  

Keywords - Graph Convolutional Network, Convolutional Autoencoder, Attention-Based Bidirectional Gated Recurrent Unit, 

DEAP, SEED. 

1. Introduction 
EEG-BCIs are high-tech systems equipped to facilitate a 

direct, immediate interface between the brain and an external 

device. EEG technology records brain signals and decodes 

them into application commands [1]. They have attracted 

massive attention in the fields of neuroscience, biomedical 

engineering, and human-computer interaction due to their 
non-invasive nature and versatility in applications [2]. 

Electrodes are set on the scalp in a non-invasive neuroimaging 

method used to detect the brain's electrical activity [3]. BCIs 

are considered safe and utilize EEG signals that reflect 

dynamic brain activity generated by the collective functioning 

of numerous neurons [4].  

1.1. Challenges in EEG Signal Processing 

However, the signals are nonlinear and non-stationary 

most of the time, susceptible to interferences from muscle 

artifacts, environmental noise, and hardware imperfections. In 

addition, EEG data are high-dimensional and largely differ 

from person to person; hence, it becomes difficult to gain good 

and consistent interpretation and for the model to be 

generalized [5]. 

1.2. Role of DL in EEG Emotion Recognition 

To address these limitations, DL has become more 

popular because it can separately acquire complex structures 

from unprocessed EEG signals. Although DL models 

typically demand more computational resources and larger 

labeled datasets, they provide superior generalization and 

reduce the necessity for manually engineering features [9]. DL 

also contributes to signal enhancement, noise reduction, and 

temporal feature discovery in EEG analysis. BCIs are 

generally classified as invasive or non-invasive.  

Non-invasive BCIs, such as EEG-based systems, are 

widely used due to their lower risk, ease of deployment, and 

user-friendliness. They support real-world applications. To 

get high-resolution recordings with low interference, invasive 

BCIs place electrodes directly into the brain [10]. While they 

share superior signal unity, their clinical use is limited due to 

https://www.internationaljournalssrg.org/
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surgical risks and ethical considerations. These systems are 

mainly used in emotional expression in patients with severe 

neurological impairments. 

 
Fig. 1 EEG Signal processing flow for emotion detection 

1.3. Advancements in EEG-BCI Applications 

Recent advancements in signal processing and wearable 

hardware are rapidly moving EEG-BCIs from research labs to 

real-world use. They are making substantial progress in areas 

like healthcare (e.g., emotion monitoring) [11]. Given the 

potential of EEG-BCIs, it is essential to improve signal 
quality. With continued innovation and responsible 

development, EEG-BCIs can enhance human abilities and 

improve quality of life across medical, social, and interactive 

domains [12]. 

1.4. Limitations of Existing Methods 

DL methods have made major and impressive 

advancements in emotion recognition. At the same time, there 

are still several common restrictions that have not been 

overcome. The models based on CNN concentrate largely on 

the extraction of spatial features. However, their main 

drawback is the inability to model the temporal dimension. 
The case is different for LSTMs and GRUs, which, to a great 

extent, capture temporal dependencies but fail to consider the 

spatial relationships between EEG channels. Methods based 

on GCNet are similar in that they incorporate the spatial 

structure but still use shallow temporal encoders that are not 

able to capture the long periods and perform the gradual 

transitions in the emotional state. The combination of the 

Transformer with CNN or RNN achieves high accuracy, but 

at the same time, incurs high computational costs and training 

instability, which is one of the reasons they are not suitable for 

real-time BCI databases. 

1.5. Research Gap 
Although using DL techniques to recognize emotions on 

EEG signals has brought about significant improvements, 

there are still many limitations in the architectures. The CNN 

and LSTM models do not have the capacity to discover the 

spatial organization of the EEG electrodes, and the opposite 

applies to GCN methods, which do not have strong temporal 

modeling. However, the transformer-based hybrids give the 

highest accuracy, but at the same time, they bring about high 

computational cost and instability during the training process. 
Moreover, there are various studies that depend on single-

stage feature extraction, and this solely limits the richness of 

the spatiotemporal patterns that are being learned. 

Most recent research has pointed out even more 

limitations. A majority of current CNN/LSTM models assess 

EEG channels as separate and do not define connectivity 

according to their own criteria, ultimately resulting in a partial 

representation of the functional brain relations. However, 

views based on GCN have a strong understanding of the 

spatial structure but struggle with limited usage of deep 

recurrent units in their ability to track dynamic emotional 

shifts. Moreover, the approach based on the transformer 
requires massive labeled datasets and suffers from unstable 

convergence, which is a limitation for subject-dependent EEG 

data. Also, the prior works predominantly test their models on 

one data set, which restricts their generalization claims. Not 

many studies have successfully united feature compression, 

graph-based spatial learning, attention-based temporal 

modeling, and computational efficiency into a single 

architecture. The existence of these gaps also drives the 

researchers to come up with a more integrated and robust 

framework. 

1.6. Research Problem and Hypothesis 
A wide range of DL methodologies have been presented 

for recognizing emotions from EEG signals; however, the 

current techniques do not combine feature compression, 

learning of spatial dependency, and attention-driven temporal 

modeling within the same framework. It is a major drawback, 

since it does not allow the models to go deep in detecting the 

complex spatiotemporal dynamics that are associated with 

EEG signals. Furthermore, the need for such architectures has 

grown, which would be capable of providing high accuracy 

without accompanying huge computational costs, especially 

in the framework of real-time BCI applications. 

By combining CAE to reduce the dimensionality of 
features, GCN to represent the spatial relationships among 

EEG channels, and an Attention-Based BiGRU to capture 

temporal dependencies in both forward and backward 

directions, more distinct spatiotemporal representations will 

be produced, leading to a considerable gain in classification 

performance over current DL models. 

1.7. Problem Statement 

The technique reduces EEG data size using a CAE while 

preserving its important temporal and spatial features, and it 

can also rebuild the original signals. The reduced data is 

passed to GCN, which considers EEG channels as points in a 
graph to learn spatial relationships between each other. Then, 
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an attention-based bidirectional GRU analyzes the sequence 

data in a backward and forward manner and uses attention to 

select the most relevant time steps. DL methods such as CAE, 

GCN, and Attention-BiGRU facilitate the automatic learning 

of complicated spatial and temporal patterns in EEG signals 
needed in BCI applications. Data normalization is performed 

before applying the method to both DEAP and SEED datasets 

so that all samples are on a consistent scale. The aims of the 

study are as follows: 

 To develop an effective DL-based framework for 

classifying EEG signals in BCI applications. 

 To use CAE for extracting and compressing relevant 

temporal and spatial EEG features. 

 To apply a GCN to learn spatial interactions between 

EEG channels. 

 To use an Attention-Based Bidirectional GRU to capture 
meaningful physiological temporal dependencies and 

emphasize crucial time-steps. 

 To evaluate the proposed method using standard EEG 

datasets such as DEAP and SEED, with consistent data 

normalization. 

 To validate the model’s accuracy and reliability using 

several performance indicators. 

Section II reviews the related work and previous DL 

research, referencing some important concepts and 

advancements. Section III briefly covers data sets used in the 

study and the implementation of the research methodology. 
Section IV covers related evaluation criteria for assessing 

model accuracy. Section V summarizes the findings and 

concludes the study. 

2. Literature Survey 
In this section, a comprehensive study and evaluation of 

previously developed approaches and algorithms for EEG-

based identification systems is presented. Emotion 
identification has recently attracted considerable interest, and 

Machine Learning (ML) and DL have become essential tools 

across various fields. Table 1 shows the disadvantages and 

advantages of existing models. 

Although recent DL approaches have markedly improved 

EEG-based emotion recognition, several recurring limitations 

remain. Many CNN- or LSTM-centric models excel at 

capturing either spatial or temporal patterns but rarely both 

with equal effectiveness, producing suboptimal spatio-

temporal representations. Transformer- and capsule-based 

hybrids boost representational power but typically incur high 

computational cost, larger memory, and greater training 
instability on small, subject-dependent EEG datasets. Graph-

based approaches capture inter-electrode relationships 

effectively but are often applied directly on high-dimensional 

raw features, allowing noise and redundant information to 

propagate into the graph representation. Furthermore, a 

number of studies report strong single-dataset performance 

without rigorous cross-validation, limited ablation analyses, 

or explicit reporting of inference latency and model size — all 

of which are critical if the system is intended for real-time BCI 

deployment. These gaps motivate a design that (i) reduces 
input noise and dimensionality before graph construction, (ii) 

separates compact spatial encoding from efficient temporal 

modeling, and (iii) reports computational efficiency and 

robustness measures alongside accuracy. The CAE–GCN–

ABiGRU pipeline proposed here is designed to meet these 

needs by combining early-stage compression, topology-aware 

graph learning, and attention-guided BiGRU temporal 

modeling to balance accuracy, robustness, and runtime 

constraints. 

The research in [13] presented a state-of-the-art ML 

model that extensively utilized the temporal and spatial 

properties of EEG channels to enhance emotion EEG-based 
classification. To enhance the learning of features and the 

generalization of models across different datasets, the model 

integrated attention mechanisms with GRU. On the EEG 

Brainwave Dataset, the model achieved a high classification 

accuracy. 

An ML-based real-time emotion detection model [14] 

was developed in the study, which estimated VAD (valence, 

dominance, and arousal) every 5 seconds. The DEAP and 

SEED datasets were used. Optimal band powers for the top 

eight channels were determined by applying Random Forest 

(RF), Extra-Trees, Principal Component Analysis (PCA), and 
Power Spectral Density (PSD). Different models were also 

tested with cross-validation and shift-based data division. 

Extra-Trees performed better than average after evaluation. 

The paper [15] developed the Dual Attention Mechanism 

Graph Convolutional Neural Network (DAMGCN method). 

To extract representative spatial information, the brain 

network was modeled by GCNs. Further, while assigning 

weights to electrode networks and signal frequency bands, the 

Transformer model's self-attention mechanism prioritized 

certain brain locations and band frequencies. The process of 

attention mechanism effectively demonstrated the weight 

assignment obtained using DAMGCN. It was implemented 
and tested on three datasets, DEAP, SEED-IV, and SEED, 

with the best result obtained on the SEED dataset. The 

research in [16] was carried out with the aim of exploring 

another approach to DL-based emotion recognition from EEG 

input. The approach employed an autoencoder so that LSTM 

networks are integrated with 2D CNNs. The autoencoder 

layers best encoded the input signals into a lower dimension; 

the 2D CNN/LSTM layers then captured the emotion classes 

in the data efficiently, both temporally and spatially. 

Experimental results showed higher performance in four-

category emotion classification, with an accuracy of 90.04%, 

conducted using the publicly available DEAP dataset. 
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Based on multi-domain features, the model in [17] called 

the Multi-domain Emotion-aware Spatiotemporal Capsule 

Transformer Network (MES-CTNet) was designed for EEG-

based emotion recognition. The model's main components 

consist of an Squeeze-and-Excitation (SE) block and an 
Efficient Channel Attention (ECA) block. There was also a 

temporal coding layer based on Transformers incorporated 

into a multichannel Capsule neural Network (CapsNet). In the 

first instance, the multi-domain feature's space-feature-time 

properties were fused and employed as model inputs. The 

enhanced CapsNet accommodated these feature maps and 

performed the extraction of local emotion features. The last 

emotional state was determined by a time-oriented coding 

layer based on transformers, which kept regularly catching 

and recording emotional characteristic data on a global scale. 

Experimental investigations were carried out on the DEAP 

and SEED datasets, two extensively used benchmarks with 
varied emotion labels. MES-CTNet reached amazing accuracy 

on the DEAP dataset. 

In [18], the study minimized individual differences and 

captured emotion-relevant information using a combination of 

a Four-Dimensional Convolutional Recurrent Neural Network 

(4DCRNN) and Random Forest Weights (RFWs). The model 

was to enhance the accuracy and generalizability of emotion 

identification through integration. Identification accuracy was 

then assessed using DEAP and SEED in experimental 

evaluations. RFW-4DCRNN exhibited excellent emotion 

recognition performance with respective high accuracies. The 
study in [19] presented an architecture for emotion 

identification using EEG signals, combining CNNs and 

Transformers. To learn well from global patterns, the 

architecture made the best of both the self-attention 

mechanism of Transformers and the spatial pattern detection 

capabilities of CNNs. Performance tests on the architecture 

employed the DEAP dataset, which contained EEG recordings 

from 42 subjects. The findings indicated that the design 

attained an accuracy of 87% for the DEAP dataset.  

The approach in [20] used a hybrid model, a Bidirectional 

Long Short-Term Memory for temporal dependency and a 1D-

CNN for extracting features, to improve emotion 
classification through learning. The method was evaluated 

using the DEAP dataset. Additionally, a channel selection 

method was also presented to determine the EEG channels 

most relevant to emotion recognition, thereby lowering 

computational complexity and maintaining accuracy. By 

selecting the best eight-channel model, the method reached an 

accuracy of 85.16%. 

The research work presented in [21] attempted to 

contribute to the theory of multimodal emotion detection by 

analyzing the potential of combining EEG signals with 

generating state-of-the-art models of facial emotion analysis, 
GRU, LSTM, and Transformer. The GRU model proved 

efficient on average with 91.8% accuracy. The method 

described in [22] involved EEG data classification into five 

different emotional states using a combination of ResNet18 

and differential entropy. The various and deep nature of these 

states of emotion, the method first calculates the differential 

entropy of the EEG signal. It was followed by the ResNet18 
network learning feature representations from the differential 

entropy values using residual connections that can effectively 

capture the spatiotemporal dynamic characteristic of complex 

emotional EEG signals. The method was verified on a dataset 

SEED-V, through experimentation with a satisfactory level of 

accuracy. 

The work of [23] considered an innovative DL approach 

called TSF-MDD (Major Depressive Disorder), merging data 

from the time, frequency, and spatial domains. The first stage 

of the data reconstruction scheme involved creating four-

dimensional EEG signals with reference to time, space, and 

frequency. The data were then fed to a 3D-CNN and CapsNet-
based model and processed for feature extraction across 

domains. To avoid data leakage, subject-independent data 

partitioning was employed during training and testing. The 

method showed an accuracy of 92.1%. A novel method for 

emotion recognition using exclusive datasets and DL concepts 

in [24]. The method combined attention layers with LSTM 

algorithms, and the main feature of the methodology was its 

use of cost, compact biometric sensors, and complex sensor 

systems. EEG and its developmental phases have become 

standard. Even with the inexpensive sensor setup, the 

classifier attained a remarkable accuracy of 93.75%. 

The research in [25] intended to improve accuracy for 

four- and three-class emotion classification. The model 

contained N emotion classes, with each classifier functioning 

as an Adaptive Neuro-Fuzzy Inference System (ANFIS). The 

features that were best distributed were selected to be the input 

vectors for the respective ANFIS architectures; they were then 

trained. Outputs of the trained ANFIS models were pooled 

further to construct a feature vector for input to adaptive 

networks, allowing the system to perform emotion 

recognition. Results showed 73.49% and 95.97% on the 

DEAP and Feeling Emotions datasets, respectively. In the 

study [26], Domain Adversarial Neural Network with 
Multiple Adversarial Tasks (DANN-MAT) was used. An 

emotion classifier was designed to be adversarially challenged 

by multiple emotion-unrelated classification tasks, and the 

results removed irrelevant data while preserving emotion-

related characteristics. The results showed that subjects' 

emotion categorization accuracy improved with fewer tasks 

used and that the model's generalizability was enhanced with 

more adversarial challenges. Applying the model method to 

the SEED-IV and SEED sets provided state-of-the-art results. 

The study in [27] used a DL-based model that initially 

faced difficulties in concurrently recording the spatial 
topological and spatial activity components of EEG data. To 

address the Spatial Activity Topological Feature Extractor 
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Module (SATFEM), an extractor module for topological 

features and spatial activity in EEG signals was developed. 

Subsequently, Domain-adaptation Spatial-feature Perception 

(DSP)-EmotionNet was constructed with SATFEM as its 

feature extractor, which significantly enhanced the model 
used with cross-subject emotional EEG identification tasks. 

With highly accurate cross-subject EEG identification of 

emotions, the model surpassed state-of-the-art methods on the 

datasets SEED and SEED-IV. Recent hybrid architectures for 

EEG emotion recognition commonly combine transformers, 

capsule networks, GCNs, and CNN/LSTM blocks to capture 

spatial–temporal patterns (e.g., DAMGCN, MES-CTNet, 

DANN-MAT, and related GCN/Transformer hybrids). While 

these works achieve high accuracy, they typically (i) rely on 

heavy transformer/capsule modules that increase FLOPs and 

memory footprint, (ii) tightly couple spatial learning and 

global self-attention, which raises training instability for small 
subject-dependent EEG sets, and (iii) often omit early-stage 

compression that reduces noise while preserving temporal 

structure. For example, DAMGCN emphasizes dual attention 

on graph nodes and frequency bands but remains 

computationally heavy for real-time deployment. MES-

CTNet fuses capsule and transformer blocks to exploit multi-

domain features, yet its capsule-transformer pipeline increases 

inference latency. Domain adversarial approaches such as 

DANN-MAT improve cross-subject generalization but do not 
directly address lightweight temporal–spatial encoding for 

low-latency BCI. The proposed CAE–GCN–ABiGRU differs 

in three critical ways. First, insert a CAE compression stage 

prior to graph construction to denoise and reduce 

dimensionality while retaining temporal continuity. This 

reduces downstream GCN/GRU compute and improves 

robustness to low-SNR EEG segments. Second, graph 

construction uses a lightweight adjacency design tuned to 

electrode topology and CAE-latent features (N × 32 node 

features), allowing effective spatial modeling with low 

GFLOPs compared to transformer/capsule hybrids. Third, the 

ABiGRU with attention focuses on salient time steps while 
avoiding the training instability and data of transformer layers. 

These combined choices yield a practical tradeoff: accuracy 

comparable to heavy hybrids but with substantially lower 

model size, FLOPs, and CPU inference time.

Table 1. Advantages and disadvantages of existing models 

Ref Methods Dataset Advantages Disadvantages 

[13] GRU 
EEG Brainwave 

Dataset 

Utilizes spatial and temporal EEG 

features with high accuracy 
The model overfits on small datasets 

[14] 
PCA, PSD, RF, 

Extra-Trees 
DEAP, SEED 

Enables accurate real-time emotion 

detection with minimal EEG 

channels and low complexity. 

Model performance can degrade 

with noisy channels. 

[15] DAMGCN 
DEAP, SEED, 

SEED-IV 

Utilizes graph and attention 

mechanisms to prioritize critical 

brain regions and frequencies. 

Graph construction and attention 

layers significantly increase model 

complexity and training time. 

[16] 2D CNN, LSTM DEAP 

Combines spatial and temporal 

learning for efficient four-class 

emotion recognition. 

Needs careful tuning of encoding 

dimensions 

[17] 

MES-CTNet 

(CapsNet, 

Transformer) 

DEAP, SEED 

Fuses multi-domain features for 

superior temporal and local 

emotion feature extraction. 

High model complexity 

[18] RFW-4DCRNN DEAP, SEED 

Integrates 4D data modeling with 

weighted voting to reduce inter-

subject variability. 

4D data modeling increases the 

model’s complexity and demands 

large training datasets. 

[19] CNN DEAP 
Improves global emotion pattern 

interpretation by contextual 

learning. 

Limited interpretability of attention 
outputs and higher computational 

overhead. 

[20] 
1D-CNN, Bi-

LSTM 
DEAP 

Reduces computational complexity 

while maintaining strong 

classification performance. 

Channel selection reduces 

performance. 

[21] 

Multimodal (GRU, 

LSTM, 

Transformer) 

EEG + Facial 

Emotion Data 

Multimodal fusion enhances 

emotion classification accuracy. 

Requires synchronized multimodal 

data, which complicates data 

collection and processing. 

[22] ResNet18 SEED-V 

Learns deep spatiotemporal 

features using entropy-based EEG 

representations. 

Relies heavily on entropy features 

that do not capture all emotion-

relevant variations. 

[23] 
TSF-MDD (3D-

CNN, CapsNet) 
Mumtaz2016 

Extracts cross-domain features 

with high generalization using 

subject-independent data. 

Subject-independent partitioning 

requires large and diverse datasets to 

avoid overfitting. 
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[24] LSTM Private Dataset 
Achieves high accuracy using 

minimal sensor configurations. 

Lower-cost sensors introduce more 

noise. 

[25] ANFIS 
DEAP, Feeling 

Emotions 

Handles nonlinear, uncertain EEG 

features with interpretable neuro-

fuzzy logic. 

Scalability is limited due to fuzzy 

rule explosion in multi-class 

scenarios. 

[26] 

DANN-MAT 

(Multi-adversarial 

tasks) 

SEED, SEED-

IV 

Enhances the model using 

adversarial learning on emotion-

irrelevant tasks. 

Adversarial training is sensitive to 

hyperparameters and causes 

instability during learning. 

[27] SATFEM 
SEED, SEED-

IV 

Boosts cross-subject accuracy by 
extracting spatial activity and 

topological EEG features. 

Cross-subject generalization remains 
suboptimal, especially in highly 

variable real-world data. 

Compared to existing models, the proposed GRU-GCN 

framework offers a balanced trade-off between accuracy and 

efficiency. While prior methods like DAMGCN and MES-

CTNet achieve strong performance, they suffer from high 

model complexity and longer training times. Simpler models, 

such as 1D-CNN or basic GRU, show efficiency but often lack 

deeper spatial or temporal insights. By combining GCN for 

spatial feature extraction and Attention-Based Bidirectional 

GRU for temporal classification, the proposed model 
effectively captures inter-channel relationships and critical 

time steps. It avoids the over-complexity of multimodal or 4D 

approaches, making it more practical for real-time 

applications. Moreover, it performs competitively better than 

many models on the SEED and DEAP datasets in terms of 

classification metrics. The GRU-GCN architecture for EEG-

based emotion recognition offers significant potential with 

regard to scalability and accuracy. 

3. Proposed Methodology 
As illustrated in Figure 2, the proposed model provides a 

framework for EEG-based BCI classification with the DL 

methods. Using a CAE, the quantity of EEG data can be 

reduced without losing its real spatial and temporal features.  

The CAE will take the data by compressing and 

reconstructing it. These compressed features are then passed 

to the GCN, which learns the relationship between EEG 

channels by considering them to be points connected in a 

graph. The GCN output is then fed to an attention-based 

bidirectional GRU that passes over the data backward and 

forward and uses the attention mechanism to give more 

importance to critical time steps.  

It starts with EEG activity, the recording, while brain 
activity is measured through electrodes positioned on the 

head. These raw signals are cleaned with procedures including 

normalization into smaller epochs to maintain uniform and 

dependable input. Afterward, the clean EEG data are 

compressed with the CAE, preserving key spatial and 

temporal features.  

The reduced features are passed to a GCN to learn spatial 

relationships between EEG channels. Following this, an 

attention-based bidirectional GRU captures time-based 

patterns and concentrates on those moments crucial for the 

accurate result. Finally, standards are used to assess the 

efficiency of the models in detecting and identifying the 

emotional states derived from the EEG data. 

Fig. 2 Proposed model flow diagram 
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3.1. Datasets 

Open-source EEG datasets are used in this segment for 

emotion recognition. These datasets advance the research 

space into EEG signal emotion recognition. 

3.1.1. DEAP 
The dataset for DEAP is a frequently used benchmark in 

the domain of emotion recognition with EEG and 

physiological data. It contains records of 32 participants from 

ages 19 to 37 years, each of whom had watched forty-one-

minute music video clips that were selected to induce a broad 

spectrum of emotional reactions. The group was evenly mixed 

in terms of gender. Once after viewing a video, the participants 

rated their emotional state along the arousal and valence 

dimensions on a scale of 1 to 9. EEG was obtained with 32 

electrodes placed according to the worldwide 10–20 method 

and sampled at a frequency of 512 Hz. They were also 

obtained along with the EEG. Preprocessing involved down-
sampling to 128 Hz, bandpass filtering, and removal of 

artifacts through Independent Component Analysis (ICA). 

The raw data is included in the dataset as well. They are also 

compatible with valence-arousal models. For research 

purposes, the dataset is a landmark in EEG-based emotion 

recognition work. 

3.1.2. SEED 

The dataset is generally used for emotion recognition 

through EEG. It consists of EEG recordings collected from 

fifteen individuals while they were shown fifteen handpicked 

short Chinese films, four minutes each, to evoke positive, 
neutral, or negative emotions. The EEG signals were gathered 

by an ESI NeuroScan system comprising 62 channels at a 

1000 Hz sample rate. They essentially guaranteed that precise 

brainwave data would be collected. Each participant was 

engaged in three sessions, held on three separate days to 

accommodate variability across time. The data are labeled on 

the basis of emotional states as recorded by individuals 

themselves, to offer a reliable ground truth for the supervised 

learning tasks. To be clear with the signals, some 

preprocessing steps were taken, such as bandpass filtering and 

artifact removal. Thus, SEED allows three-emotion 

classification, while SEED-IV has been extended to allow for 
the classification of four emotions, including fear. When it 

comes to the evaluation of ML and DL models for emotion 

recognition, it has gained wide acceptance. The dataset is 

available to the general public for academic research use. 

Because of its consistency, enriched EEG properties, and 

emotional variance, it serves as a resource of importance in 

affective computing and EEG-BCI research [28]. 

3.2. Data Preprocessing 

Preprocessing should be done to translate the raw EEG 

signals into analysis-ready data in EEG-based BCI systems. 

The next step involves the application of artifact removal 
techniques, using ICA to mitigate interferences. The signal is 

afterwards segmented into epochs corresponding to stimuli or 

events and normalized to get them all on the same scale. These 

steps will immensely help in accuracy and fast feature 

extraction for EEG-BCIs and in classification. 

3.3. Data Normalization 

EEG-BCI data normalization brings about the scaling of 
the EEG features into a uniform range so that ML models have 

better stability during performance. The more common 

methods are min-max normalization, which normalizes values 

into a uniform distribution. It would eliminate the feature with 

a bigger magnitude from dominating the model training 

procedure and would lessen the effect of variability from 

individuals. For EEG-based emotion detection algorithms to 

obtain balanced and accurate classification, data 

normalization must be taken into consideration [29]. 

3.4. Graph Convolutional Network for Feature Extraction 

In the construction of a GCN, the two primary functions 

are convolution and pooling. Graph convolution and feature 
transformation are the two primary components of the graph 

convolution layer's processing of graph signals. Figure 3 

illustrates the architectural structure of the GCN model. 

 
Fig. 3 Architecture of GCN 

3.4.1. Graph Convolution 

Equation (1), which is based on a generalized convolution 

method, uses the graph Laplacian, since the traditional 

convolution operation is not directly applicable to graphs. It is 

possible to express graph convolution as Equation (2). 

𝑌 = 𝑔𝜃(𝐿𝑠)𝑋, (1) 

𝑌 = 𝑈𝑠𝑔𝜃(Λ𝑠)𝑈𝑆
𝑇𝑋 (2) 

A Fourier domain filter with parameters 𝜃 ∈ 𝑅𝑛, where 

𝑋 ∈ 𝑅𝑚×𝑠 is the input matrix, 𝑔𝜃(. ) = 𝑑𝑖𝑎𝑔(. ) and 𝑔𝜃(Λ𝑠) is 

a function of the eigenvalues. Both 𝑌 ∈ 𝑅𝑚×𝑠 and 𝑈𝑠 ∈ 𝑅𝑚×𝑚 

are eigenvector matrices; the latter is the result of graph 

convolution. In the conventional graph convolution, however, 

calculating 𝑔𝜃(Λ𝑠)  is a challenging and computationally 

costly process. The issue was addressed by introducing a 

Chebyshev polynomial expansion. Up to 𝐾𝑡ℎ order, it implies 

that 𝑔𝜃(Λ𝑠) can be accurately given by a formulation using 
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Chebyshev polynomials 𝑇𝑘(𝑥) as an expansion. As shown in 

Equation (3). 

𝑔𝜃
′ (Λ𝑠) = ∑ 𝜃𝑘𝑇𝑘(Λ̃𝑠)𝐾−1

𝑘=0  (3) 

Equation (4) shows that a recursive calculation, 𝑇𝐾 (𝑥), is 

performed when 𝜃𝑘 is a vector of Chebyshev coefficients. 

Equation (5) can be used to obtain Λ̃, which is a normalized 

version of Λ.  

{
𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥,                            

𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥), 𝑘 ≥ 2,
 (4) 

Λ̃ =
2Λ𝑠

λ 𝑚𝑎𝑥
− 𝐼𝑛 , (5) 

where Λ̃ components range from -1 to 1 and λ 𝑚𝑎𝑥  are the 

greatest elements of Λ𝑠. The meaning of a signal 𝑥 convolution 

with a filter 𝑔𝜃
′  is used to calculate the graph convolution. As 

shown in Equation (6). 

𝑌 = ∑ 𝜃𝑘𝑈𝑠𝑇𝑘(𝐾−1
𝑘=0 Λ̃)𝑈𝑆

𝑇𝑋, (6) 

3.4.2. Feature Transformation 

To filter the signal without affecting the feature's 

dimension, it can use the graph convolution technique. As 

demonstrated by Equation (7), once an adjustable weight 

matrix has been applied to the graph signal, the feature's 

dimension can be changed. 

𝑋′ = 𝐶ℎ𝑒𝑏(𝑋, 𝑊(𝑖)) = 𝑌𝑊(𝑖) (7) 

𝑋′ ∈ 𝑅𝑚×𝑗 is the final output of the graph convolution of 

𝑖𝑡ℎ layer, the function of 𝐶ℎ𝑒𝑏(∙) Chebyshev convolution, and 

𝑊(𝑖) ∈ 𝑅𝑚×𝑗 is a trainable weight matrix of that layer 𝑖𝑡ℎ [30]. 

In BCI-EEG, a GCN represents the physical or functional 

interactions between the electrodes by modeling their spatial 

relationships as a graph. Because EEG signals are not 

geometric, GCNs can detect inter-channel relationships that 

regular CNNs miss. Graph convolutions synthesize data from 

nearby nodes to process the input features (raw signals, 

frequency power, etc.) from each electrode. In the brain, the 

operation aids in the learning of spatial patterns. If two 

electrodes are close enough in proximity or have similar 

signals, their effects on one another can be described by the 
adjacency matrix. To make it more discriminative, these 

learned properties are fed through a number of layers. The 

collected features are then interpreted by a classifier for 

applications such as emotion recognition. 

3.5. Convolutional AUTOENCODER 

AE is a typical DL technique that can learn effective 

representations of unlabeled data and perform feature 

extraction and dimensionality reduction. It works by building 

an encoder and decoder, then recreates the output after 

mapping raw data to any hidden areas. In terms of reducing 

data dimensions, AE is similar to PCA (Principal Component 

Analysis). AE basically uses dimensionality reduction 

algorithms of high-dimensional raw data to obtain 
representative features. The computational complexity and 

robustness of AE are great, despite the fact that it is usually 

built on fully connected networks. However, convolutional 

layers' local connections and weight-sharing properties allow 

them to require fewer parameters to acquire richer 

information. 

As a result, CAE employs convolutional layers rather than 

fully connected ones. To help the encoder identify the hidden 

space model, the input data is down-sampled, and a latent 

representation with fewer dimensions is produced. The hidden 

layer in the work uses input features that are typical of the 

whole dataset, and the feature extraction method is 
unsupervised. The goal of CAE is to make the decoder's 

reconstruction more similar to the encoder's input. Rather than 

determining the optimal replacement of input data, CAE is 

used in the study to learn representations in latent vectors. 

Various tasks, including dimension reduction and 

classification, are performed by the well-trained encoder 

following CAE training. The decoder is used for information 

reconstruction, whereas the encoder converts temporal data 

into potential space data. As illustrated in Equation (8), the 

encoding process is explained below. 

ℎ𝑘 =  𝜎 (𝑥 ∗ 𝑊𝑘 +  𝑏𝑘) (8) 

Among these, it finds 𝜎, the activation function of the 

method CAE, 𝑏𝑘 the offset of the entire mapping (∗ indicating 

a convolution operation) 𝑤 is the shared weight matrix, 𝑥 the 

input feature, and ℎ𝑘 the possible representation of the 𝑘𝑡ℎ 

mapping. As shown in Equation (9), the construction process 

is described below. 

𝑦 = 𝜎(∑ ℎ𝑘 ∗ 𝑊̂𝑘 + 𝐶𝑘∈𝐻 ) (9) 

𝐻 stands for the potential mapping group, 𝑦 is the 

reconstruction features used for output, and the flipping of 

weights is 𝑤 ,̂ the bias of each input channel is 𝑐. Decrease 

reconstruction errors by optimizing weight and bias through 

backpropagation. MSE (Mean Squared Error) is the activation 

function that has been selected, and it is represented by the 

following Equation (10). 

MSE = 
1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑁
𝑖=1  (10) 

where 𝑥𝑖 and 𝑦𝑖 are the original features and the 

reconstructed features after 𝑖th iteration, respectively, and the 

dimensionality of an input vector is 𝑁. In the study, a CAE 

structure for the encoder that primarily uses activation and 

normalization layers, max pooling, and convolutional layers. 
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A feature extractor is a convolutional layer. Using convolution 

kernels, it applies convolutional calculations to the input 

signal while preserving its primary characteristics. The 

amount and dimensionality of features are reduced using 

iterative multiple convolution and pooling methods. The 

decoder is made up of the same components as the encoder, 

but it operates in the opposite way. For signal recovery in the 

decoder, the recovered features are utilized for deconvolution 

and up-sampling reconstruction on the latent space. The 

intricate architecture of CAE is seen in Figure 4. 

Fig. 4 Structure of CAE 

The encoder and decoder are making use of an 

unsupervised learning method. The training features are used 
to obtain all the parameters, and no label information from the 

data is used. The most effective parameters learned by CAE 

are memorialized throughout its training phase. A new layer, 

a dense layer, and a softmax classifier have been added in 

place of the decoder. Once the final classification task is 

finished, EEG signal features are extracted using the encoder 

and then applied to the model. The Rectified Linear Unit 

(ReLU) is the activation function of the paradigm. All the 

convolutional layers have a 3×3 convolution kernel size [31]. 

In BCI-EEG, a CAE is employed to generate compact and 

meaningful representations from EEG data automatically. The 
encoder part uses convolutional layers to 

subtract geographical and temporal information from the raw 

EEG data, hence decreasing its dimensionality. It helps in 

removing background noise while collecting important 

patterns associated with brain activity. Decoders employ 

transposed convolutions to recover the original input from the 

compressed feature map. To keep important data while 

reducing the reconstruction error. CAEs are effective in 

feature learning and EEG data denoising. Then, these acquired 

characteristics can be applied to classification tasks like 

emotion identification. 

3.6. Bidirectional Gated Recurrent Unit 

The BiGRU is used in the study to reproduce the first 

scenario. The most well-known DL models for processing 

sequential data are Residual Neural Networks (RNNs). Yet, 

issues including disappearing gradient and growing gradient 

have been noted to impact RNNs. As a result, RNNs are 

unable to detect long-term dependencies. These problems 

have inspired the development of several specific RNN 

architectures, such as GRU and LSTM. The latest feature of 
the LSTM model has the capability to preserve long-term 

dependency utilizing Input, Forget, and Output (IFO) gates. 

LSTM requires more inputs than GRU. It can be acquired 

faster than what LSTM provides. In addition, while LSTM 

necessitates four gates, GRU requires only two: the update and 

reset gates". Identifying the best way to combine the current 

input with the data that has already been saved is the main 

function of the reset gate. The amount of required historical 

memory can be controlled via the update gate. Figure 5 

illustrates the GRU architecture, with the Equations detailed 

in (11) to (14). 

Update gate: (𝑍𝑡) = 𝜎(𝑊𝑧ℎ𝑡−1 + 𝑈𝑧𝑋𝑡) (11) 

Reset gate: (𝑟𝑡) =  𝜎 (𝑊𝑟ℎ𝑡−1 + 𝑈𝑟𝑋𝑡) (12) 

New state: (ℎ𝑡) = (𝑍𝑡 ∘  𝐶𝑡) + ((1 − 𝑍𝑡) ∘  ℎ𝑡−1) (13) 

Cell state: (𝐶𝑡) = tanh (𝑊𝑐(𝑟𝑡  ∘  ℎ𝑡−1) +  𝑈𝑐𝑋𝑡) (14) 

The sigmoid function is represented by 𝑟, and 𝑋𝑡 is the 

input vector at time 𝑡. Both the ℎ𝑡 and ℎ𝑡−1 state vectors are 

thought to be confidential. 𝑊𝑟 stands for the reset of the gate, 

update the gate is 𝑊𝑧, and current cell state 𝑊𝑟 in the parameter 

matrices. The hidden state of the vector ℎ𝑡−1  is connected to 

all these matrices. 𝑈𝑟 stands for the reset gate, 𝑈𝑧 for the 

update gate, and 𝑈𝑐  for the current cell state in a parameter 

matrix. The vector of input 𝑋𝑡 is connected to each of these 

matrices. Fundamental matrix multiplication is needed in the 

framework of the circ, which transforms the state ℎ𝑡 to 

represent the vector output. 
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Fig. 5 Gated Recurrent Unit (GRU) architecture 

The classic GRU approach of forecasting a time series 

evaluates the values recorded at previous time points. BiGRU 

proves its worth in problems like speech recognition, proper 

text representation, and missing data prediction, primarily 

when the prior and subsequent values are accessible. The 

BiGRU generic architecture is illustrated in detail in Figure 6. 

Two new GRU layers, operating in opposite directions, are 

integrated in the BiGRU, an innovative design. Each hidden 
state is stored in its own layer; Separate layers are used to store 

the forward and reverse states, respectively. For each time 

step, BiGRU executes forward pass computation on a given 

input sequence constructed as … , 𝑋𝑡−𝑛 , … , 𝑋𝑡−2, 𝑋𝑡−1. 𝑋𝑡 for 

the step time … , 𝑡, 𝑡 − 𝑛, … , 𝑡 − 2, 𝑡 − 1, 𝑡, and the input 

sequence is subsequently subjected to reverse pass processing 

for each of the subsequent time steps 𝑡, 𝑡 − 1, 𝑡 − 2, … , 𝑡 −
3, …Consolidation of the hidden states occurs after both 

backward and forward passes have been completed. The 

observed sequence … , 𝑦𝑡−𝑛 , … , 𝑦𝑡−2, 𝑦𝑡−1, 𝑦𝑡 yt is generated, 

when the highly connected layer analyzes its final hidden 

states. 

 
Fig. 6 Bidirectional Gated Recurrent Unit architecture 

3.6.1. Attention Layer 

The development of efficient vectors should be prioritized 

because several factors impact the reliability of NDVI 

predictions, not only a small number of them. Each state that 

is hidden (ℎ𝑡) at each time step (𝑡) is given weight in the 

bidirectional GRU second layer using an attention layer. 18-
time steps allow the variable (t) to contain a positive integer 

that ranges from 1 to 18. A weighting vector (𝛼 =
 𝛼1, 𝛼2, … , 𝛼18) is produced in relation to the sequence output 

(ℎ1, ℎ2, … , ℎ18). The expansion of the vector attention (𝑠) is 

then performed by adding the weights of the eighteen states.  

𝑆 = ∑ ∝𝑡 ℎ𝑡
𝑁
𝑡=1  (15) 

As shown in Equation (15), the weighting factors that 

were represented by 𝛼𝑡. Figure 7 shows how the attention 

layer sends its outputs to the fully connected layer, which then 

uses them to build the final MDVI predictor result [32]. 
 

Fig. 7 Structure of the attention layer 



Ramkumar Sivasakthivel  et al. / IJETT, 74(1), 65-84, 2026 
 

75 

Both temporal dynamics and the significance of relevant 

characteristics are captured from EEG data by an attention-

based bidirectional GRU in BCI-EEG. Because it can process 

data in both ways, the bidirectional GRU is better able to 

understand dependencies over time. Because EEG patterns 
can be influenced by both past and future situations, it is very 

important.  

At the next stage, the attention mechanism highlights the 

most task-relevant features by giving each time step a weight. 

It enables the model to focus on the critical aspects of the 

EEG. When combined, it improves the model's 

comprehension of detailed brain signal patterns. Applications 
such as emotion identification benefit from these types of 

designs. 

 
Fig. 8 Flow diagram of CAE, GCN, and GRU 

A complete architecture diagram with data dimensions at 

each stage is provided in Figure 8. The detailed block structure 
clarifies the flow of spatial and temporal features throughout 

the model. 

Table 2. Hyperparameters of the proposed CAE–GCN–ABiGRU model 

Parameter Value 

Optimizer Adam 

Initial Learning Rate 0.001 

Batch Size 64 

Dropout (GRU layers) 0.3 

Epochs 100 

Early Stopping Patience = 15 

Regularization L2 weight decay = 1e-4 

Loss Function Categorical Cross-Entropy 

Data Augmentation Sliding window segmentation 

Noise Injection Gaussian noise (σ = 0.01) 

Table 2 optimizer Adam with a learning rate of 0.001 was 

used, which ensures a rapid and stable convergence of the 
spatiotemporal learning components. The A batch with a size 

of 64 was selected to provide the required balance between 

good performance and stable gradient updates. In the case of 

dropout, a rate of 0.3 was used during training of the GRU 

layers to reduce the chances of overfitting. The model was not 

trained for more than 100 epochs, but an early removal 

criterion with a patience of 15 was used, whereby the training 

was automatically stopped when there were no further 

improvements observed in the validation set. Moreover, the 

use of L2 weight decay of 1e-4 was added to the model 

training to further enhance generalization by preventing 

weights from becoming too large. The workforce loss function 
is categorical cross-entropy, which is well-suited for multi-

class emotion classification tasks. As part of data 

augmentation, the sliding-window segmentation was applied, 

producing additional samples that have the same temporal 

coherence as the original ones. The method of injecting 
Gaussian noise with σ = 0.01 was also applied, simulating the 

natural variability of EEG signals and thus increasing the 

robustness of the model. To sum up, the use of the above-

mentioned hyperparameters has triumphantly achieved a 

situation where there is an even distribution among learning 

capability, normalization, and noise immunity, thus 

guaranteeing no model performance disparity across all 

training trials. 

Algorithm for GRU-GCN 
Input: Raw EEG signals S, Labels Y 

Output: Trained model parameters θ 

 
Preprocessing 

For each EEG trial, Si in S: 

Apply bandpass filtering (4–45 Hz) 

Normalize channel amplitudes 

Segment signals into fixed-length windows 

EndFor 
CAE Pretraining 

Initialize CAE parameters θ_CAE 

Train CAE on preprocessed windows using 

reconstruction loss 

Extract latent feature matrices F_CAE for each window 

Graph Construction for GCN 

Define adjacency matrix A based on electrode topology 

Normalize A to obtain Â 

Generate graph-structured features F_GCN = GCN( 

F_CAE, Â ) 

Temporal Learning with ABiGRU 

Initialize ABiGRU parameters θ_ABiGRU 
For each sequence of graph features: 

Compute forward GRU outputs 
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Compute backward GRU outputs 

Apply attention weighting to combined representations 

EndFor 

Classification 

Pass the final feature vector through a fully connected 
layer 

Compute cross-entropy loss with labels Y 

Model Training Loop 

Optimize θ = {θ_CAE, θ_GCN, θ_ABiGRU} using 

Adam optimizer 

Repeat until convergence or early stopping criteria are 

met 

Return trained parameters θ 

4. Results and Discussions 
All experiments were conducted in a machine that has a 

Ryzen 9 5950X CPU from AMD running at 3.4 GHz, 

featuring 16 cores and 64 GB of RAM. 

4.1. Evaluation Metrics 

As evaluation measures, the following Equations (16) to 

(19) determine the model's classification performance:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (16) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (17) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (18) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃×𝑅

𝑃+𝑅
 (19) 

The positive class's predictions are represented by TP, the 

negative class's predictions by TN, the negative class's 

predictions by FP, and the positive class's predictions by FN 

[33]. 

4.2. Performance Analysis 

For the DEAP dataset, Tables 2 and 3 present the results 

of the multi-class and binary classification. Both the binary 

classification performance graph (Figure 9) and the multi-

class classification results graph (Figure 10) are presented. 

Both the DEAP and SEED datasets perform well on tasks 

requiring binary and multi-class classifications. The EEG-BCI 

system's effectiveness in emotional recognition using the 
dataset DEAP is shown in Table 3. It focuses on the binary 

classification of two different emotional variables, namely 

valence and arousal. 

Table 3. Binary classification on DEAP dataset 

Metric Valence (%) Arousal (%) 

Accuracy 94.86 98.12 

Precision 93.94 97.61 

Recall 94.59 97.85 

F1-Score 94.41 97.50 

 
Fig. 9 Graph of binary classification on DEAP dataset 

The model achieved an excellent level of accuracy, with 

valence (94.86%) and arousal (98.12%), respectively. The 

precision scores for valence were 93.94%, while the scores for 

arousal were 97.61%, which indicates that there were not 

many false positives. Recall was 97.85% for arousal and 

94.59% for valence, showing that the model recognized the 

most important events. Depends on the F1-score, which takes 

precision and recall into account, the valence score was 

94.41%, while the arousal score was 97.50%. Performance 
that is balanced and constant across all parameters is 

demonstrated by these findings. Compared to valence 

classification, the model is better in arousal categorization. 

The EEG-based BCI system's efficiency is shown by its 

efficient performance. The DEAP dataset is well-suited for 

emotion classification.  

Table 4. Multiclass classification on SEED dataset 

Metric Macro Avg Weighted Avg 

Accuracy 97.58 97.58 

Precision 97.04 97.49 

Recall 97.32 97.43 

F1-Score 97.17 97.24 

 

 
Fig. 10 Graph of Multiclass Classification on SEED dataset 
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The results of a multiclass classification test using 

emotion detection, EEG-based on the SEED dataset, are 

displayed in Table 4. Metrics for macro average (across all 

classes) and weighted average (which considers class 

imbalance) are both provided. The model performed well in 
classification overall, as it attained an accuracy of 97.58%. A 

moderate rate of incorrect positives was indicated by the high 

precision levels of 97.49% (weighted) and 97.04% (macro).  

Accurate identification of most emotions was 

demonstrated by a recall of 97.32% (macro) and 97.43% 

(weighted). As a measure of accuracy and recall, the F1-score 

was 97.17% for the macro and 97.24% for the weighted. When 

the macro and weighted averages are close, it means that there 
is little class imbalance in the predictions. Using EEG data 

from a range of emotional states, the model maintains good 

performance. The SEED dataset is useful for training strong 

EEG-based emotion recognition systems. 

Table 5. Comparison with existing models 

Models Accuracy Precision Recall F1score 

GRU [13] 94.00 94.00 88.00 91.00 

MES-CTNet [17] 94.91 94.26 95.16 94.69 

CNN [19] 87.00 89.00 86.00 87.00 

1-CNN-Bi-LSTM [20] 85.00 85.33 85.08 84.96 

GRU [21] 91.80 92.00 92.00 92.00 

TSF-MDD [23] 92.10 90.00 94.90 92.40 

LSTM [24] 93.75 95.00 76.00 84.80 

ANFIS [25] 95.97 92.93 94.68 NA 

DANN-MAT [26] 95.74 96.05 96.05 96.05 

DSP-EmotionNet [27] 82.50 NA NA 82.40 

Proposed model 

(Binary class) 
98.12 97.61 97.85 97.50 

Proposed model (Multiclass) 97.58 97.49 97.43 97.24 

 
Fig. 11 Graph of Results Comparison with Current Models 

Table 5 provides a comparative evaluation of various 

models used for EEG-based emotion recognition, including 

traditional models like GRU, CNN, and LSTM, and advanced 

approaches such as MES-CTNet, DANN-MAT, and DSP-

EmotionNet. Figure 11 depicts the graphical chart of the 

results comparison. Each model is assessed using standard 

classification metrics. Among all listed models, the proposed 

GCN-GRU models, designed for both multiclass and binary 
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classification, demonstrate the highest overall performance. 

The binary system GCN-GRU model attained an accuracy 

level of 98.12%, using precision, recall, and F1-score metrics 

of 97.61%, 97.85%, and 97.50%, respectively, respectively. 

Similarly, the multiclass version showed consistently high 
performance with 97.58% accuracy and strong supporting 

metrics. In contrast, other high-performing models like 

DANN-MAT and MES-CTNet, although competitive, fall 

slightly behind in one or more evaluation parameters. 

Additionally, some models, like CNN and DSP-EmotionNet, 

report significantly lower scores or lack complete metric data. 

The superior and balanced results across all metrics for both 

binary and multiclass classification indicate that the proposed 
GCN-GRU framework is highly effective, outperforming 

existing approaches for emotion recognition using EEG 

signals. 

Table 6. Statistical significance analysis of the proposed model 

Dataset DEAP SEED 

Test Used Paired t-test (10 folds) Paired t-test (10 folds) 

Comparison Proposed vs. Competing Models Proposed vs. Competing Models 

p-value p < 0.01 p < 0.05 

Significance (95% CI) Statistically significant Statistically significant 

Accuracy (Mean ± CI) 98.12% ± 0.42 97.58% ± 0.36 

 
Fig. 12 Graph of statistical significance analysis 

Table 6 statistical significance testing was performed in 

order to confirm that the performance improvements obtained 

by the suggested model were not due to random variation 

among the ten-fold experiments. A paired t-test was used to 

determine the model's accuracy compared to the competing 

baseline methods on the SEED and DEAP datasets. The 

outcomes indicate that the suggested model reached an 

accuracy that was significantly higher than the others, with p-

values less than 0.01 for DEAP and less than 0.05 for SEED, 

thus showing superiority at the 95% confidence level.  

The 98.12% ± 0.42 confidence interval for DEAP denotes 

very stable performance with almost no variation across folds. 

Similarly, the 97.58% ± 0.36 interval for SEED signifies 

strong consistency and dependability. Figure 12 depicts a 

graph analysis of the statistical significance of the proposed 

model. 

Table 7. DEAP dataset - binary classification (Valence/Arousal) 

Fold 
Valence Accuracy 

(%) 

Arousal Accuracy 

(%) 

Fold 1 94.72 98.05 

Fold 2 94.90 98.18 

Fold 3 94.81 98.09 

Fold 4 94.95 98.14 

Fold 5 94.86 98.12 

Fold 6 94.79 97.98 

Fold 7 94.93 98.19 

Fold 8 94.84 98.10 

Fold 9 94.78 98.06 

Fold 10 94.91 98.20 

The results Table 7 obtained through cross-validation 

reveal that the model proposed performs very stably for the 
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classification of both valence and arousal throughout the 

whole ten folds. Valence accuracy is almost the same for all 

ten folds, being between 94.72% and 94.95%. This indicates 

that the model can identify emotions very consistently with 

just a negligible variation. The small range of accuracy proves 
that the model is capable of generalizing and is not overfitting 

to any of the folds. As for the reliability of arousal, it is even 

better than that of valence and varies between 97.98% and 

98.20%, which indicates that the model is highly skilled in 

telling apart the high and low arousal states. The very high 

accuracy scores across all the folds show the model's 

robustness against the variations in the data distribution. The 

tiny accuracy fluctuations could be interpreted as the model 

being capable of learning stably and extracting reliable 

temporal-spatial features from EEG signals. These findings 

indicate that the proposed model performs consistently, with 
no significant drop in performance in any of the folds. The 

joint stability in both valence and arousal tasks points to the 

CAE–GCN–ABiGRU architecture’s success for the binary 

emotion classification on the DEAP dataset. Figure 13 

illustrates the binary emotion classification results for Valence 

and Arousal using the DEAP dataset. 

 
Fig. 13 Graph performance of binary valence/arousal classification on the DEAP dataset 

Table 8. Ten-fold cross-validation of SEED dataset (multiclass 

classification) 

Fold Accuracy Precision recall Flscore 

Fold 1 97.52 97.41 97.31 97.28 

Fold 2 97.63 97.52 97.43 97.37 

Fold 3 97.56 97.44 97.33 97.24 

Fold 4 97.60 97.49 97.38 97.30 

Fold 5 97.58 97.49 97.43 97.24 

Fold 6 97.50 97.37 97.26 97.16 

Fold 7 97.68 97.56 97.47 97.40 

Fold 8 97.55 97.46 97.35 97.27 

Fold 9 97.49 97.36 97.25 97.17 

Fold 10 97.65 97.54 97.45 97.38 

Table 8 presents the SEED dataset's ten-fold cross-

validation results, which reveal that the multiclass emotion 

classification reached the highest point in terms of reliability 

and stability. In a very limited range of 97.49% to 97.68%, the 

model's accuracy was very consistent throughout all the folds 

without much change. The precision also did not differ much 

and was between 97.36% and 97.56%, which means that the 

model has very few false positives. The recall was quite stable 

as well, with a range of 97.25% to 97.47%. This shows that 

the model can detect the true emotional states consistently 
with very few false negatives. The F1 scores showed stable 

behavior as well; they were between 97.16% and 97.40%. This 

reflects that there was a strong balance between precision and 

recall. The differences among the folds were very small, often 

within ±0.2%, indicating that there was difficult expansion 

even with changes in training-testing splits. Fold 7 got the best 

overall performance across all metrics, whereas Fold 9 had the 

lowest values, albeit the drop being slight and not degrading 

the performance. This stability is proof that the CAE-GCN-

ABiGRU model has acquired spatiotemporal EEG features 

that are very robust and can be applied to unseen samples. The 
low differences between the folds support the notion of the 

model not being sensitive to data partitioning and thus its 

reliability for real-world emotion classification being 

reinforced. Such uniformity in metrics further signifies the 

model's capability of dealing with the complexity of the SEED 

dataset multiclass scenarios. Figure 14 displays the ten-fold 

cross-validation results for multiclass emotion classification 
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using the SEED dataset. The ablation results Table 9 provides 

a detailed understanding of the contribution of each module to 

the effectiveness of the proposal CAE–GCN–ABiGRU 

model.  

The full architecture achieves the highest accuracy of 
98.12%, confirming the effectiveness of integrating spatial, 

structural, and temporal learning mechanisms. When the CAE 

is removed, performance drops sharply to 94.72%, showing 

that early-stage spatial feature extraction is essential for 

improving signal quality. Eliminating the GCN causes the 

largest degradation, reducing accuracy to 94.02%, which 

highlights the importance of modeling inter-channel EEG 

connectivity. Removing the attention mechanism also 

decreases performance to 95.42%, indicating that the attention 

mechanism has an impact on the efficacy of the proposal's 

temporal segments. Similarly, removing bidirectionality 

reduces accuracy to 96.22%, demonstrating that capturing 
both forward and backward dependencies strengthens 

temporal modeling. Precision, recall, and F1-score follow the 

same trends, confirming consistency across all evaluation 

metrics. These findings collectively show that each module 

contributes meaningfully and that the complete model 

provides the most balanced and robust representation of EEG 

signals for emotion classification. Figure 15 presents the 

ablation study results of the proposed CAE–GCN–ABiGRU 

model (binary classification using the DEAP dataset). 

 
Fig. 14 Graph of the ten-fold cross-validation results for the SEED dataset (multiclass classification) 

Table 9. Ablation study of the proposed CAE–GCN–ABiGRU model (binary classification – DEAP dataset) 

Model Variant Acc Prec Rec F1 

Proposed Model (Full Architecture) 98.12 97.61 97.85 97.50 

Without CAE 94.72 93.40 93.95 93.67 

Without GCN 94.02 92.88 93.41 93.15 

Without Attention 95.42 94.21 94.78 94.46 

Without Bidirectionality 96.22 95.40 95.70 95.53 

Table 10. Error analysis and misclassification contribution 

Misclassification Type Description Contribution to Total Errors (%) 

Neutral ↔ Negative 

(SEED) 

Confusion between neighbouring emotional states due 

to similar spectral–temporal patterns 
34.8% 

Low-Amplitude EEG 

Segments 
Weak or noisy signals reduce emotional separability 22.6% 

Subject-Dependent 

Variability 
Differences in individual brain responses 18.9% 

Overlapping Frequency 

Bands 
Similar alpha/theta rhythms across emotions 12.3% 

Electrode Noise / Artifacts Blink, muscle, or movement-related distortions 7.4% 

Transient Emotional Shifts Rapid within-trial emotional fluctuations 4.0% 
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Fig. 15 graphical representation of the ablation study for the proposed CAE–GCN–ABiGRU 

The error distribution Table 10 indicates that most of the 

misclassifications result from closely-related emotional 

categories (34.8%) and EEG segments with low amplitude 

(22.6%), hence confirming that even advanced DL methods 

have difficulties in detecting. The subject variability factor 

(18.9%) has a significant impact as well, as it points to the 
differences in people's emotional responses. Overlapping EEG 

frequency characteristics (12.3%) and electrode noise (7.4%) 

are mentioned as additional sources of confusion in 

predictions. However, the case of quick emotional transitions 

accounts for only a small share of errors (4.0%). Such findings 

are in agreement with the confusion matrix patterns and 

indicate the most important challenges to be overcome in the 

quest for better models through improvement. Figure 16 
presents the error analysis and misclassification contribution 

graph. 

 
Fig. 16 Graphical representation of the error analysis and misclassification contribution 

Table 11. Computational efficiency comparison with existing models 

Model 
Model Size 

(MB) 

FLOPs 

(GFLOPs) 

Inference Time 

(ms, CPU) 
Remarks 

Proposed CAE–GCN–

ABiGRU 
8.9 MB 1.8 11.4 ms 

Lightweight, near real-time 

performance 

Transformer-Based EEG 

Model 
42–65 MB 6.5–12.4 28–45 ms 

High accuracy but 

computationally heavy 
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CapsuleNet-Based EEG 

Model 
30–40 MB 4.8–7.3 25–33 ms 

Complex routing increases 

latency 

Deep CNN (e.g., 1D/2D 

CNN) 
12–20 MB 2.5–4.0 15–22 ms 

Moderate speed but lower 

temporal awareness 

EEGNet (Baseline 

Lightweight Model) 
1.2 MB 0.3 6–8 ms 

Very fast but lower classification 

accuracy 

 

 
Fig. 17 Graph of computational efficiency against existing approaches

The comparison of computational efficiency in Table 11 

clearly shows that the new CAE–GCN–ABiGRU model has 
reached a great point in balancing between performance and 

resource usage. The model, which is compactly sized at 8.9 

MB and has a low computational cost of 1.8 GFLOPs, 

processes every trial within only 11.4 ms on a regular CPU, 

thereby being appropriate for near real-time BCI applications. 

The Transformer-based and CapsuleNet-based models 

consume a lot more FLOPs and memory, which results in their 

inference being so much slower and, thereby, not suitable for 

real-time environments. Deep CNN models have low 

efficiency, but they still come behind the proposed 

architecture in both speed and temporal representation 
capability. EEGNet is still the fastest and the lightest, although 

its lower complexity results in relatively lower accuracy. The 

model shows a great trade-off, offering high accuracy while 

still being computationally low. Thus, it is a very applicable 

option for the resource-limited and real-time EEG emotion 

recognition systems. Figure 17 presents the computational 

efficiency comparison with existing models. 

4.3. Advantages and Limitations 

EEG-BCI systems enable non-invasive brain signal 

acquisition and direct communication with external devices. 

Attention-based bidirectional GRU enhances classification by 

capturing temporal dependencies in both directions. Attention 
weights were analyzed to understand which temporal 

segments influenced the final prediction. Consistently, peaks 

in β-band-dominant segments contributed most strongly to 
emotional state classification. This interpretability is essential 

in BCI applications where transparency in model decisions is 

required. CAEs effectively reduce data dimensionality while 

preserving important features, yet they can lose subtle signal 

details during compression. GCN is powerful in extracting 

spatial features by modeling EEG channels as graph nodes, yet 

its efficacy is significantly dependent upon the quality of the 

graph structure. DL models overall provide robust feature 

learning and high accuracy, but require large datasets and 

substantial computational resources. The DEAP and SEED 

datasets are standard benchmarks that support both binary and 
multiclass classification, used as good evaluation platforms; 

however, they are collected in controlled settings and do not 

always generalize well to real-world scenarios. Inter-subject 

variability affects generalization despite strong performance.  

The model has not yet been deployed on wearable EEG 

devices. Together, these components contribute to strong 

performance in emotion recognition, but challenges remain in 

real-time deployment, generalization across users, and 

interpretability. In the future, to improve cross-subject 

generalization using domain adaptation. Integrate multimodal 

inputs such as ECG or facial expressions. Develop a low-

power embedded version of the model for real-time BCI 

systems. 
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4.4. Ethical Considerations 

All EEG data used in this study were sourced from 

publicly available datasets collected under ethical approval. 

No personal identifiers were used. The application of emotion-

recognition systems must consider user consent, secure data 
handling, and potential privacy implications, particularly 

when deployed in real-time BCI systems. 

5. Conclusion 
This study presented a DL-based framework for EEG-

based BCI systems to enhance the efficacy and precision of 

emotion detection. The approach successfully leveraged EEG 

signals, which can record brain activity in real time using scalp 
electrodes and are non-invasive. The proposed model 

combined a GCN to extract spatial relationships between EEG 

channels, a CAE to compress and reconstruct the signals while 

preserving essential information, and an attention-based 

bidirectional GRU to capture temporal connections and focus 

on the highly informative time steps. Using the datasets DEAP 

and SEED, the method was tested. On the DEAP dataset, used 

for binary classification, the model achieved 98.12% 

accuracy, a precision of 97.61%, a recall of 97.85%, and an 

F1-score of 97.50%.  

For multiclass classification on the SEED dataset, it 

attained an accuracy of 97.58%, a precision of 97.49%, a recall 

of 97.43%, and an F1-score of 97.24%. These findings proved 

that the suggested model is efficient and has great potential for 

use in emotional computing and BCI contexts requiring real-

time emotion recognition.  

In the future, the model can be improved by incorporating 

cross-subject generalization to handle individual differences 

in EEG patterns. Real-time implementation and testing on 

wearable EEG devices can enhance practical usability. 

Additionally, integrating multimodal data, such as facial 

expressions, could further boost emotion recognition 

accuracy. 
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