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Abstract - Electroencephalography-based Brain-Computer Interfacing (EEG-BCI) technologies allow for effortless interaction
between external hardware and the human brain through monitoring its electric signals. These systems rely on EEG recordings,
which provide non-invasive and real-time neural information through electrodes placed on the scalp. To advance emotion-
recognizing efficiency and accuracy, this study proposes a deep learning-based method that can extract valuable temporal and
spatial information from EEG signals. The proposed model includes the use of a Graph Convolution Network (GCN) for learning
spatial relationships between different EEG channels to model the data in graph form and gain features through that modelling.
A Convolutional Autoencoder (CAE) is then used to compress data to low dimensions and to reconstruct it so that major features
are not ignored. Furthermore, the model uses an Attention-based Bidirectional Gated Recurrent Unit (ABiGRU) for temporal
classification, which can emphasize the most important time steps in both backwards and forward directions. Two standard
datasets are employed to test the developed approach. The DEAP dataset is used for emotion recognition with a binary response,
and SEED is used with multi-class classification. The model attains great results of 98.12% accuracy on DEAP and 97.58% on
SEED datasets. The very high performances show the efficacy of the model for decoding emotional states from EEG signals and

very strong potential for real-time emotion recognition in affective computing and BCI.

Keywords - Graph Convolutional Network, Convolutional Autoencoder, Attention-Based Bidirectional Gated Recurrent Unit,

DEAP, SEED.

1. Introduction

EEG-BClIs are high-tech systems equipped to facilitate a
direct, immediate interface between the brain and an external
device. EEG technology records brain signals and decodes
them into application commands [1]. They have attracted
massive attention in the fields of neuroscience, biomedical
engineering, and human-computer interaction due to their
non-invasive nature and versatility in applications [2].
Electrodes are set on the scalp in a non-invasive neuroimaging
method used to detect the brain's electrical activity [3]. BCls
are considered safe and utilize EEG signals that reflect
dynamic brain activity generated by the collective functioning
of numerous neurons [4].

1.1. Challenges in EEG Signal Processing

However, the signals are nonlinear and non-stationary
most of the time, susceptible to interferences from muscle
artifacts, environmental noise, and hardware imperfections. In
addition, EEG data are high-dimensional and largely differ
from person to person; hence, it becomes difficult to gain good
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and consistent interpretation and for the model to be
generalized [5].

1.2. Role of DL in EEG Emotion Recognition

To address these limitations, DL has become more
popular because it can separately acquire complex structures
from unprocessed EEG signals. Although DL models
typically demand more computational resources and larger
labeled datasets, they provide superior generalization and
reduce the necessity for manually engineering features [9]. DL
also contributes to signal enhancement, noise reduction, and
temporal feature discovery in EEG analysis. BCls are
generally classified as invasive or non-invasive.

Non-invasive BCls, such as EEG-based systems, are
widely used due to their lower risk, ease of deployment, and
user-friendliness. They support real-world applications. To
get high-resolution recordings with low interference, invasive
BCls place electrodes directly into the brain [10]. While they
share superior signal unity, their clinical use is limited due to
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surgical risks and ethical considerations. These systems are
mainly used in emotional expression in patients with severe
neurological impairments.
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Fig. 1 EEG Signal processing flow for emotion detection

1.3. Advancements in EEG-BCI Applications

Recent advancements in signal processing and wearable
hardware are rapidly moving EEG-BCIs from research labs to
real-world use. They are making substantial progress in areas
like healthcare (e.g., emotion monitoring) [11]. Given the
potential of EEG-BCls, it is essential to improve signal
quality. With continued innovation and responsible
development, EEG-BCIs can enhance human abilities and
improve quality of life across medical, social, and interactive
domains [12].

1.4. Limitations of Existing Methods

DL methods have made major and impressive
advancements in emotion recognition. At the same time, there
are still several common restrictions that have not been
overcome. The models based on CNN concentrate largely on
the extraction of spatial features. However, their main
drawback is the inability to model the temporal dimension.
The case is different for LSTMs and GRUSs, which, to a great
extent, capture temporal dependencies but fail to consider the
spatial relationships between EEG channels. Methods based
on GCNet are similar in that they incorporate the spatial
structure but still use shallow temporal encoders that are not
able to capture the long periods and perform the gradual
transitions in the emotional state. The combination of the
Transformer with CNN or RNN achieves high accuracy, but
at the same time, incurs high computational costs and training
instability, which is one of the reasons they are not suitable for
real-time BCI databases.

1.5. Research Gap

Although using DL techniques to recognize emotions on
EEG signals has brought about significant improvements,
there are still many limitations in the architectures. The CNN
and LSTM maodels do not have the capacity to discover the
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spatial organization of the EEG electrodes, and the opposite
applies to GCN methods, which do not have strong temporal
modeling. However, the transformer-based hybrids give the
highest accuracy, but at the same time, they bring about high
computational cost and instability during the training process.
Moreover, there are various studies that depend on single-
stage feature extraction, and this solely limits the richness of
the spatiotemporal patterns that are being learned.

Most recent research has pointed out even more
limitations. A majority of current CNN/LSTM models assess
EEG channels as separate and do not define connectivity
according to their own criteria, ultimately resulting in a partial
representation of the functional brain relations. However,
views based on GCN have a strong understanding of the
spatial structure but struggle with limited usage of deep
recurrent units in their ability to track dynamic emotional
shifts. Moreover, the approach based on the transformer
requires massive labeled datasets and suffers from unstable
convergence, which is a limitation for subject-dependent EEG
data. Also, the prior works predominantly test their models on
one data set, which restricts their generalization claims. Not
many studies have successfully united feature compression,
graph-based spatial learning, attention-based temporal
modeling, and computational efficiency into a single
architecture. The existence of these gaps also drives the
researchers to come up with a more integrated and robust
framework.

1.6. Research Problem and Hypothesis

A wide range of DL methodologies have been presented
for recognizing emotions from EEG signals; however, the
current techniques do not combine feature compression,
learning of spatial dependency, and attention-driven temporal
modeling within the same framework. It is a major drawback,
since it does not allow the models to go deep in detecting the
complex spatiotemporal dynamics that are associated with
EEG signals. Furthermore, the need for such architectures has
grown, which would be capable of providing high accuracy
without accompanying huge computational costs, especially
in the framework of real-time BCI applications.

By combining CAE to reduce the dimensionality of
features, GCN to represent the spatial relationships among
EEG channels, and an Attention-Based BiGRU to capture
temporal dependencies in both forward and backward
directions, more distinct spatiotemporal representations will
be produced, leading to a considerable gain in classification
performance over current DL models.

1.7. Problem Statement

The technique reduces EEG data size using a CAE while
preserving its important temporal and spatial features, and it
can also rebuild the original signals. The reduced data is
passed to GCN, which considers EEG channels as points in a
graph to learn spatial relationships between each other. Then,
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an attention-based bidirectional GRU analyzes the sequence
data in a backward and forward manner and uses attention to
select the most relevant time steps. DL methods such as CAE,
GCN, and Attention-BiGRU facilitate the automatic learning
of complicated spatial and temporal patterns in EEG signals
needed in BCI applications. Data normalization is performed
before applying the method to both DEAP and SEED datasets
so that all samples are on a consistent scale. The aims of the
study are as follows:

e To develop an effective DL-based framework for
classifying EEG signals in BCI applications.

e To use CAE for extracting and compressing relevant
temporal and spatial EEG features.

e To apply a GCN to learn spatial interactions between
EEG channels.

e To use an Attention-Based Bidirectional GRU to capture
meaningful physiological temporal dependencies and
emphasize crucial time-steps.

e To evaluate the proposed method using standard EEG
datasets such as DEAP and SEED, with consistent data
normalization.

e To validate the model’s accuracy and reliability using
several performance indicators.

Section 1l reviews the related work and previous DL
research, referencing some important concepts and
advancements. Section |11 briefly covers data sets used in the
study and the implementation of the research methodology.
Section IV covers related evaluation criteria for assessing
model accuracy. Section V summarizes the findings and
concludes the study.

2. Literature Survey

In this section, a comprehensive study and evaluation of
previously developed approaches and algorithms for EEG-
based identification systems is presented. Emotion
identification has recently attracted considerable interest, and
Machine Learning (ML) and DL have become essential tools
across various fields. Table 1 shows the disadvantages and
advantages of existing models.

Although recent DL approaches have markedly improved
EEG-based emotion recognition, several recurring limitations
remain. Many CNN- or LSTM-centric models excel at
capturing either spatial or temporal patterns but rarely both
with equal effectiveness, producing suboptimal spatio-
temporal representations. Transformer- and capsule-based
hybrids boost representational power but typically incur high
computational cost, larger memory, and greater training
instability on small, subject-dependent EEG datasets. Graph-
based approaches capture inter-electrode relationships
effectively but are often applied directly on high-dimensional
raw features, allowing noise and redundant information to
propagate into the graph representation. Furthermore, a
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number of studies report strong single-dataset performance
without rigorous cross-validation, limited ablation analyses,
or explicit reporting of inference latency and model size — all
of which are critical if the system is intended for real-time BCI
deployment. These gaps motivate a design that (i) reduces
input noise and dimensionality before graph construction, (ii)
separates compact spatial encoding from efficient temporal
modeling, and (iii) reports computational efficiency and
robustness measures alongside accuracy. The CAE-GCN-
ABIGRU pipeline proposed here is designed to meet these
needs by combining early-stage compression, topology-aware
graph learning, and attention-guided BiGRU temporal
modeling to balance accuracy, robustness, and runtime
constraints.

The research in [13] presented a state-of-the-art ML
model that extensively utilized the temporal and spatial
properties of EEG channels to enhance emotion EEG-based
classification. To enhance the learning of features and the
generalization of models across different datasets, the model
integrated attention mechanisms with GRU. On the EEG
Brainwave Dataset, the model achieved a high classification
accuracy.

An ML-based real-time emotion detection model [14]
was developed in the study, which estimated VAD (valence,
dominance, and arousal) every 5 seconds. The DEAP and
SEED datasets were used. Optimal band powers for the top
eight channels were determined by applying Random Forest
(RF), Extra-Trees, Principal Component Analysis (PCA), and
Power Spectral Density (PSD). Different models were also
tested with cross-validation and shift-based data division.
Extra-Trees performed better than average after evaluation.

The paper [15] developed the Dual Attention Mechanism
Graph Convolutional Neural Network (DAMGCN method).
To extract representative spatial information, the brain
network was modeled by GCNs. Further, while assigning
weights to electrode networks and signal frequency bands, the
Transformer model's self-attention mechanism prioritized
certain brain locations and band frequencies. The process of
attention mechanism effectively demonstrated the weight
assignment obtained using DAMGCN. It was implemented
and tested on three datasets, DEAP, SEED-IV, and SEED,
with the best result obtained on the SEED dataset. The
research in [16] was carried out with the aim of exploring
another approach to DL-based emotion recognition from EEG
input. The approach employed an autoencoder so that LSTM
networks are integrated with 2D CNNs. The autoencoder
layers best encoded the input signals into a lower dimension;
the 2D CNN/LSTM layers then captured the emotion classes
in the data efficiently, both temporally and spatially.
Experimental results showed higher performance in four-
category emotion classification, with an accuracy of 90.04%,
conducted using the publicly available DEAP dataset.
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Based on multi-domain features, the model in [17] called
the Multi-domain Emotion-aware Spatiotemporal Capsule
Transformer Network (MES-CTNet) was designed for EEG-
based emotion recognition. The model's main components
consist of an Squeeze-and-Excitation (SE) block and an
Efficient Channel Attention (ECA) block. There was also a
temporal coding layer based on Transformers incorporated
into a multichannel Capsule neural Network (CapsNet). In the
first instance, the multi-domain feature's space-feature-time
properties were fused and employed as model inputs. The
enhanced CapsNet accommodated these feature maps and
performed the extraction of local emotion features. The last
emotional state was determined by a time-oriented coding
layer based on transformers, which kept regularly catching
and recording emotional characteristic data on a global scale.
Experimental investigations were carried out on the DEAP
and SEED datasets, two extensively used benchmarks with
varied emotion labels. MES-CTNet reached amazing accuracy
on the DEAP dataset.

In [18], the study minimized individual differences and
captured emotion-relevant information using a combination of
a Four-Dimensional Convolutional Recurrent Neural Network
(4DCRNN) and Random Forest Weights (RFWSs). The model
was to enhance the accuracy and generalizability of emotion
identification through integration. ldentification accuracy was
then assessed using DEAP and SEED in experimental
evaluations. RFW-4DCRNN exhibited excellent emotion
recognition performance with respective high accuracies. The
study in [19] presented an architecture for emotion
identification using EEG signals, combining CNNs and
Transformers. To learn well from global patterns, the
architecture made the best of both the self-attention
mechanism of Transformers and the spatial pattern detection
capabilities of CNNs. Performance tests on the architecture
employed the DEAP dataset, which contained EEG recordings
from 42 subjects. The findings indicated that the design
attained an accuracy of 87% for the DEAP dataset.

The approach in [20] used a hybrid model, a Bidirectional
Long Short-Term Memory for temporal dependency and a 1D-
CNN for extracting features, to improve emotion
classification through learning. The method was evaluated
using the DEAP dataset. Additionally, a channel selection
method was also presented to determine the EEG channels
most relevant to emotion recognition, thereby lowering
computational complexity and maintaining accuracy. By
selecting the best eight-channel model, the method reached an
accuracy of 85.16%.

The research work presented in [21] attempted to
contribute to the theory of multimodal emotion detection by
analyzing the potential of combining EEG signals with
generating state-of-the-art models of facial emotion analysis,
GRU, LSTM, and Transformer. The GRU model proved
efficient on average with 91.8% accuracy. The method
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described in [22] involved EEG data classification into five
different emotional states using a combination of ResNet18
and differential entropy. The various and deep nature of these
states of emotion, the method first calculates the differential
entropy of the EEG signal. It was followed by the ResNet18
network learning feature representations from the differential
entropy values using residual connections that can effectively
capture the spatiotemporal dynamic characteristic of complex
emotional EEG signals. The method was verified on a dataset
SEED-V, through experimentation with a satisfactory level of
accuracy.

The work of [23] considered an innovative DL approach
called TSF-MDD (Major Depressive Disorder), merging data
from the time, frequency, and spatial domains. The first stage
of the data reconstruction scheme involved creating four-
dimensional EEG signals with reference to time, space, and
frequency. The data were then fed to a 3D-CNN and CapsNet-
based model and processed for feature extraction across
domains. To avoid data leakage, subject-independent data
partitioning was employed during training and testing. The
method showed an accuracy of 92.1%. A novel method for
emotion recognition using exclusive datasets and DL concepts
in [24]. The method combined attention layers with LSTM
algorithms, and the main feature of the methodology was its
use of cost, compact biometric sensors, and complex sensor
systems. EEG and its developmental phases have become
standard. Even with the inexpensive sensor setup, the
classifier attained a remarkable accuracy of 93.75%.

The research in [25] intended to improve accuracy for
four- and three-class emotion classification. The model
contained N emotion classes, with each classifier functioning
as an Adaptive Neuro-Fuzzy Inference System (ANFIS). The
features that were best distributed were selected to be the input
vectors for the respective ANFIS architectures; they were then
trained. Outputs of the trained ANFIS models were pooled
further to construct a feature vector for input to adaptive
networks, allowing the system to perform emotion
recognition. Results showed 73.49% and 95.97% on the
DEAP and Feeling Emotions datasets, respectively. In the
study [26], Domain Adversarial Neural Network with
Multiple Adversarial Tasks (DANN-MAT) was used. An
emotion classifier was designed to be adversarially challenged
by multiple emotion-unrelated classification tasks, and the
results removed irrelevant data while preserving emotion-
related characteristics. The results showed that subjects'
emotion categorization accuracy improved with fewer tasks
used and that the model's generalizability was enhanced with
more adversarial challenges. Applying the model method to
the SEED-IV and SEED sets provided state-of-the-art results.

The study in [27] used a DL-based model that initially
faced difficulties in concurrently recording the spatial
topological and spatial activity components of EEG data. To
address the Spatial Activity Topological Feature Extractor
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Module (SATFEM), an extractor module for topological
features and spatial activity in EEG signals was developed.
Subsequently, Domain-adaptation Spatial-feature Perception
(DSP)-EmotionNet was constructed with SATFEM as its
feature extractor, which significantly enhanced the model
used with cross-subject emotional EEG identification tasks.
With highly accurate cross-subject EEG identification of
emotions, the model surpassed state-of-the-art methods on the
datasets SEED and SEED-1V. Recent hybrid architectures for
EEG emotion recognition commonly combine transformers,
capsule networks, GCNs, and CNN/LSTM blocks to capture
spatial-temporal patterns (e.g., DAMGCN, MES-CTNet,
DANN-MAT, and related GCN/Transformer hybrids). While
these works achieve high accuracy, they typically (i) rely on
heavy transformer/capsule modules that increase FLOPs and
memory footprint, (ii) tightly couple spatial learning and
global self-attention, which raises training instability for small
subject-dependent EEG sets, and (iii) often omit early-stage
compression that reduces noise while preserving temporal
structure. For example, DAMGCN emphasizes dual attention
on graph nodes and frequency bands but remains

computationally heavy for real-time deployment. MES-
CTNet fuses capsule and transformer blocks to exploit multi-
domain features, yet its capsule-transformer pipeline increases
inference latency. Domain adversarial approaches such as
DANN-MAT improve cross-subject generalization but do not
directly address lightweight temporal-spatial encoding for
low-latency BCI. The proposed CAE-GCN-ABIGRU differs
in three critical ways. First, insert a CAE compression stage
prior to graph construction to denoise and reduce
dimensionality while retaining temporal continuity. This
reduces downstream GCN/GRU compute and improves
robustness to low-SNR EEG segments. Second, graph
construction uses a lightweight adjacency design tuned to
electrode topology and CAE-latent features (N x 32 node
features), allowing effective spatial modeling with low
GFLOPs compared to transformer/capsule hybrids. Third, the
ABIGRU with attention focuses on salient time steps while
avoiding the training instability and data of transformer layers.
These combined choices yield a practical tradeoff: accuracy
comparable to heavy hybrids but with substantially lower
model size, FLOPs, and CPU inference time.

Table 1. Advantages and disadvantages of existing models

Ref Methods Dataset Advantages Disadvantages
[13] GRU EEG Brainwave | Utilizes spatla}l an(_j temporal EEG The model overfits on small datasets
Dataset features with high accuracy
Enables accurate real-time emotion
[14] PCA, PSD, RF, DEAP, SEED detection with minimal EEG Model perforr_nance can degrade
Extra-Trees . with noisy channels.
channels and low complexity.
DEAP. SEED Utilizes graph and attention Graph construction and attention
[15] DAMGCN ! ’ mechanisms to prioritize critical layers significantly increase model
SEED-IV . . . . TR
brain regions and frequencies. complexity and training time.
Combines spatial and temporal Needs careful tuning of encodin
[16] | 2D CNN, LSTM DEAP learning for efficient four-class di ng g
. o imensions
emotion recognition.
MES-CTNet Fuses multi-domain features for
[17] (CapsNet, DEAP, SEED superior temporal and local High model complexity
Transformer) emotion feature extraction.
Integrates 4D data modeling with 4D data modeling increases the
[18] RFW-4DCRNN DEAP, SEED weighted voting to reduce inter- model’s complexity and demands
subject variability. large training datasets.
Improves global emotion pattern Limited interpretability of attention
[19] CNN DEAP interpretation by contextual outputs and higher computational
learning. overhead.
i . Reduces computational complexity .
[20] 1D-CNN, Bi DEAP while maintaining strong Channel selection reduces
LSTM o performance.
classification performance.
Multimodal (GRU, . . . Requires synchronized multimodal
[21] LSTM, EEG.+ Facial Muiltlmodal_fl_Jspn enhances data, which complicates data
Emotion Data emotion classification accuracy. . .
Transformer) collection and processing.
Learns deep spatiotemporal Relies heavily on entropy features
[22] ResNet18 SEED-V features using entropy-based EEG that do not capture all emotion-
representations. relevant variations.
TSF-MDD (3D- Extracts cross-domain features Subject-independent partitioning
[23] Mumtaz2016 with high generalization using requires large and diverse datasets to
CNN, CapsNet) LY . L
subject-independent data. avoid overfitting.
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[24] LSTM Private Dataset A_chleves high accuracy using Lower-cost sensors introduce more
minimal sensor configurations. noise.

DEAP. Feelin Handles nonlinear, uncertain EEG Scalability is limited due to fuzzy

[25] ANFIS Em(’)tions g features with interpretable neuro- rule explosion in multi-class
fuzzy logic. scenarios.
DANN-MAT SEED. SEED- Enhances the model using Adversarial training is sensitive to
[26] | (Multi-adversarial I’V adversarial learning on emotion- hyperparameters and causes
tasks) irrelevant tasks. instability during learning.

SEED. SEED- Boosts cross-subject accuracy by | Cross-subject generalization remains

[27] SATFEM ; extracting spatial activity and suboptimal, especially in highly
v ) .
topological EEG features. variable real-world data.

Compared to existing models, the proposed GRU-GCN
framework offers a balanced trade-off between accuracy and
efficiency. While prior methods like DAMGCN and MES-
CTNet achieve strong performance, they suffer from high
model complexity and longer training times. Simpler models,
such as 1D-CNN or basic GRU, show efficiency but often lack
deeper spatial or temporal insights. By combining GCN for
spatial feature extraction and Attention-Based Bidirectional
GRU for temporal classification, the proposed model
effectively captures inter-channel relationships and critical
time steps. It avoids the over-complexity of multimodal or 4D
approaches, making it more practical for real-time
applications. Moreover, it performs competitively better than
many models on the SEED and DEAP datasets in terms of
classification metrics. The GRU-GCN architecture for EEG-
based emotion recognition offers significant potential with
regard to scalability and accuracy.

3. Proposed Methodology

As illustrated in Figure 2, the proposed model provides a
framework for EEG-based BCI classification with the DL
methods. Using a CAE, the quantity of EEG data can be
reduced without losing its real spatial and temporal features.
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Acquisition

Attention-Based

Performance : Bidirectional GRU <«— Network for Feature

Evaluation
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for Classification

Preprocessing

The CAE will take the data by compressing and
reconstructing it. These compressed features are then passed
to the GCN, which learns the relationship between EEG
channels by considering them to be points connected in a
graph. The GCN output is then fed to an attention-based
bidirectional GRU that passes over the data backward and
forward and uses the attention mechanism to give more
importance to critical time steps.

It starts with EEG activity, the recording, while brain
activity is measured through electrodes positioned on the
head. These raw signals are cleaned with procedures including
normalization into smaller epochs to maintain uniform and
dependable input. Afterward, the clean EEG data are
compressed with the CAE, preserving key spatial and
temporal features.

The reduced features are passed to a GCN to learn spatial
relationships between EEG channels. Following this, an
attention-based bidirectional GRU captures time-based
patterns and concentrates on those moments crucial for the
accurate result. Finally, standards are used to assess the
efficiency of the models in detecting and identifying the
emotional states derived from the EEG data.

CAE for Encoding
and Decoding

Graph Convolutional
4_

Extraction

Fig. 2 Proposed model flow diagram
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3.1. Datasets

Open-source EEG datasets are used in this segment for
emotion recognition. These datasets advance the research
space into EEG signal emotion recognition.

3.1.1. DEAP

The dataset for DEAP is a frequently used benchmark in
the domain of emotion recognition with EEG and
physiological data. It contains records of 32 participants from
ages 19 to 37 years, each of whom had watched forty-one-
minute music video clips that were selected to induce a broad
spectrum of emotional reactions. The group was evenly mixed
in terms of gender. Once after viewing a video, the participants
rated their emotional state along the arousal and valence
dimensions on a scale of 1 to 9. EEG was obtained with 32
electrodes placed according to the worldwide 10-20 method
and sampled at a frequency of 512 Hz. They were also
obtained along with the EEG. Preprocessing involved down-
sampling to 128 Hz, bandpass filtering, and removal of
artifacts through Independent Component Analysis (ICA).
The raw data is included in the dataset as well. They are also
compatible with valence-arousal models. For research
purposes, the dataset is a landmark in EEG-based emotion
recognition work.

3.1.2. SEED

The dataset is generally used for emotion recognition
through EEG. It consists of EEG recordings collected from
fifteen individuals while they were shown fifteen handpicked
short Chinese films, four minutes each, to evoke positive,
neutral, or negative emotions. The EEG signals were gathered
by an ESI NeuroScan system comprising 62 channels at a
1000 Hz sample rate. They essentially guaranteed that precise
brainwave data would be collected. Each participant was
engaged in three sessions, held on three separate days to
accommodate variability across time. The data are labeled on
the basis of emotional states as recorded by individuals
themselves, to offer a reliable ground truth for the supervised
learning tasks. To be clear with the signals, some
preprocessing steps were taken, such as bandpass filtering and
artifact removal. Thus, SEED allows three-emotion
classification, while SEED-1V has been extended to allow for
the classification of four emotions, including fear. When it
comes to the evaluation of ML and DL models for emotion
recognition, it has gained wide acceptance. The dataset is
available to the general public for academic research use.
Because of its consistency, enriched EEG properties, and
emotional variance, it serves as a resource of importance in
affective computing and EEG-BCI research [28].

3.2. Data Preprocessing

Preprocessing should be done to translate the raw EEG
signals into analysis-ready data in EEG-based BCI systems.
The next step involves the application of artifact removal
techniques, using ICA to mitigate interferences. The signal is
afterwards segmented into epochs corresponding to stimuli or
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events and normalized to get them all on the same scale. These
steps will immensely help in accuracy and fast feature
extraction for EEG-BCIs and in classification.

3.3. Data Normalization

EEG-BCI data normalization brings about the scaling of
the EEG features into a uniform range so that ML models have
better stability during performance. The more common
methods are min-max normalization, which normalizes values
into a uniform distribution. It would eliminate the feature with
a bigger magnitude from dominating the model training
procedure and would lessen the effect of variability from
individuals. For EEG-based emotion detection algorithms to
obtain balanced and accurate classification, data
normalization must be taken into consideration [29].

3.4. Graph Convolutional Network for Feature Extraction
In the construction of a GCN, the two primary functions
are convolution and pooling. Graph convolution and feature
transformation are the two primary components of the graph
convolution layer's processing of graph signals. Figure 3
illustrates the architectural structure of the GCN model.

&)

f— - - ’*% @
‘ Hidden Layers ‘
5 GINIY |13
=
Input Layer Output layer

Fig. 3 Architecture of GCN

3.4.1. Graph Convolution

Equation (1), which is based on a generalized convolution
method, uses the graph Laplacian, since the traditional
convolution operation is not directly applicable to graphs. It is
possible to express graph convolution as Equation (2).

Y = gB(Ls)X' (1)

Y = U, go(A)UTX )
A Fourier domain filter with parameters 6 € R™, where
X € R™** is the input matrix, go(.) = diag(.) and gg(A,) is
a function of the eigenvalues. Both Y € R™*S and U, € R™*™
are eigenvector matrices; the latter is the result of graph
convolution. In the conventional graph convolution, however,
calculating go(A;) is a challenging and computationally
costly process. The issue was addressed by introducing a
Chebyshev polynomial expansion. Up to K" order, it implies
that go(A) can be accurately given by a formulation using
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Chebyshev polynomials T, (x) as an expansion. As shown in
Equation (3).
94(s) = X820 6, T () 3)
Equation (4) shows that a recursive calculation, Ty (x), is
performed when 6, is a vector of Chebyshev coefficients.

Equation (5) can be used to obtain A, which is a normalized
version of A.

{To(x) =1,T,(x) = x, @)
T (x) = 2xT_1(x) = T3 (%), k = 2,
A= AZ‘; —1, (5)

where A components range from -1 to 1 and A ,,,,, are the
greatest elements of A,. The meaning of a signal x convolution
with a filter g, is used to calculate the graph convolution. As
shown in Equation (6).

Y = XK23 0,.U, T (UL X, (6)
3.4.2. Feature Transformation

To filter the signal without affecting the feature's
dimension, it can use the graph convolution technique. As
demonstrated by Equation (7), once an adjustable weight
matrix has been applied to the graph signal, the feature's
dimension can be changed.

X' = Cheb(X,W®) =yw® @)
X' € R™9 is the final output of the graph convolution of

it" layer, the function of Cheb(+) Chebyshev convolution, and
W® e R™*J is a trainable weight matrix of that layer it" [30].

In BCI-EEG, a GCN represents the physical or functional
interactions between the electrodes by modeling their spatial
relationships as a graph. Because EEG signals are not
geometric, GCNs can detect inter-channel relationships that
regular CNNs miss. Graph convolutions synthesize data from
nearby nodes to process the input features (raw signals,
frequency power, etc.) from each electrode. In the brain, the
operation aids in the learning of spatial patterns. If two
electrodes are close enough in proximity or have similar
signals, their effects on one another can be described by the
adjacency matrix. To make it more discriminative, these
learned properties are fed through a number of layers. The
collected features are then interpreted by a classifier for
applications such as emotion recognition.

3.5. Convolutional AUTOENCODER

AE is a typical DL technique that can learn effective
representations of unlabeled data and perform feature
extraction and dimensionality reduction. It works by building
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an encoder and decoder, then recreates the output after
mapping raw data to any hidden areas. In terms of reducing
data dimensions, AE is similar to PCA (Principal Component
Analysis). AE basically uses dimensionality reduction
algorithms of high-dimensional raw data to obtain
representative features. The computational complexity and
robustness of AE are great, despite the fact that it is usually
built on fully connected networks. However, convolutional
layers' local connections and weight-sharing properties allow
them to require fewer parameters to acquire richer
information.

As aresult, CAE employs convolutional layers rather than
fully connected ones. To help the encoder identify the hidden
space model, the input data is down-sampled, and a latent
representation with fewer dimensions is produced. The hidden
layer in the work uses input features that are typical of the
whole dataset, and the feature extraction method is
unsupervised. The goal of CAE is to make the decoder's
reconstruction more similar to the encoder's input. Rather than
determining the optimal replacement of input data, CAE is
used in the study to learn representations in latent vectors.
Various tasks, including dimension reduction and
classification, are performed by the well-trained encoder
following CAE training. The decoder is used for information
reconstruction, whereas the encoder converts temporal data
into potential space data. As illustrated in Equation (8), the
encoding process is explained below.

hk = o (x « Wk + b¥) 8)

Among these, it finds o, the activation function of the
method CAE, b* the offset of the entire mapping (+ indicating
a convolution operation) w is the shared weight matrix, x the
input feature, and h* the possible representation of the k"
mapping. As shown in Equation (9), the construction process
is described below.

y = (Zyen h* x Wk +C) ©

H stands for the potential mapping group, y is the
reconstruction features used for output, and the flipping of
weights is w7, the bias of each input channel is c. Decrease
reconstruction errors by optimizing weight and bias through
backpropagation. MSE (Mean Squared Error) is the activation
function that has been selected, and it is represented by the
following Equation (10).

MSE = 3¥, (x; — )2 (10)

where x; and y; are the original features and the
reconstructed features after ith iteration, respectively, and the
dimensionality of an input vector is N. In the study, a CAE
structure for the encoder that primarily uses activation and
normalization layers, max pooling, and convolutional layers.
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A feature extractor is a convolutional layer. Using convolution
kernels, it applies convolutional calculations to the input
signal while preserving its primary characteristics. The
amount and dimensionality of features are reduced using
iterative multiple convolution and pooling methods. The

Input signal Encoder

decoder is made up of the same components as the encoder,
but it operates in the opposite way. For signal recovery in the
decoder, the recovered features are utilized for deconvolution
and up-sampling reconstruction on the latent space. The
intricate architecture of CAE is seen in Figure 4.

Decoder Output signal

Pooling

|_L Activation
Batch Normalization

Convolution

|I-' Activation
Batch Normalization

Convolution
Upsampling

_8

Fig. 4 Structure of CAE

The encoder and decoder are making use of an
unsupervised learning method. The training features are used
to obtain all the parameters, and no label information from the
data is used. The most effective parameters learned by CAE
are memorialized throughout its training phase. A new layer,
a dense layer, and a softmax classifier have been added in
place of the decoder. Once the final classification task is
finished, EEG signal features are extracted using the encoder
and then applied to the model. The Rectified Linear Unit
(ReLV) is the activation function of the paradigm. All the
convolutional layers have a 3x3 convolution kernel size [31].

In BCI-EEG, a CAE is employed to generate compact and
meaningful representations from EEG data automatically. The
encoder part uses convolutional layers to
subtract geographical and temporal information from the raw
EEG data, hence decreasing its dimensionality. It helps in
removing background noise while collecting important
patterns associated with brain activity. Decoders employ
transposed convolutions to recover the original input from the
compressed feature map. To keep important data while
reducing the reconstruction error. CAEs are effective in
feature learning and EEG data denoising. Then, these acquired
characteristics can be applied to classification tasks like
emotion identification.

3.6. Bidirectional Gated Recurrent Unit

The BiGRU is used in the study to reproduce the first
scenario. The most well-known DL models for processing
sequential data are Residual Neural Networks (RNNs). Yet,
issues including disappearing gradient and growing gradient
have been noted to impact RNNs. As a result, RNNs are
unable to detect long-term dependencies. These problems
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have inspired the development of several specific RNN
architectures, such as GRU and LSTM. The latest feature of
the LSTM model has the capability to preserve long-term
dependency utilizing Input, Forget, and Output (IFO) gates.
LSTM requires more inputs than GRU. It can be acquired
faster than what LSTM provides. In addition, while LSTM
necessitates four gates, GRU requires only two: the update and
reset gates". ldentifying the best way to combine the current
input with the data that has already been saved is the main
function of the reset gate. The amount of required historical
memory can be controlled via the update gate. Figure 5
illustrates the GRU architecture, with the Equations detailed
in (11) to (14).

Update gate: (Z,) = o(W,h,_, + U, X;) (11)

Reset gate: (1) = 0 (W,.h,_, + U, X;) (12)

New state: (h,) = (Z; o C.)+ (1 —Z,) o h,_y) (13)

Cell state: (C,) = tanh(W.(1; o h,_y) + UX,) (14)

The sigmoid function is represented by r, and X, is the
input vector at time t. Both the h, and h,_, state vectors are
thought to be confidential. W, stands for the reset of the gate,
update the gate is W,, and current cell state W, in the parameter
matrices. The hidden state of the vector h,_; is connected to
all these matrices. U, stands for the reset gate, U, for the
update gate, and U, for the current cell state in a parameter
matrix. The vector of input X, is connected to each of these
matrices. Fundamental matrix multiplication is needed in the
framework of the circ, which transforms the state h, to
represent the vector output.
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-

Update |

(1]

Fig. 5 Gated Recurrent Unit (GRU) architecture

The classic GRU approach of forecasting a time series
evaluates the values recorded at previous time points. BiGRU
proves its worth in problems like speech recognition, proper

text representation, and missing data prediction, primarily
when the prior and subsequent values are accessible. The
BiGRU generic architecture is illustrated in detail in Figure 6.
Two new GRU layers, operating in opposite directions, are
integrated in the BiGRU, an innovative design. Each hidden
state is stored in its own layer; Separate layers are used to store
the forward and reverse states, respectively. For each time
step, BiGRU executes forward pass computation on a given
input sequence constructed as ..., X;_,, ..., Xy, X;—1. X, for
the step time ..,t,t—n,..,t—2,t—1,¢t, and the input
sequence is subsequently subjected to reverse pass processing
for each of the subsequent time steps t,t —1,t —2,...,t —
3, ...Consolidation of the hidden states occurs after both
backward and forward passes have been completed. The
observed sequence ..., Yi_n, -, Vi—2,Ye—1,Ye Yt IS generated,
when the highly connected layer analyzes its final hidden
states.

Output Layer

yt-l y‘ yt+1
T -
(1>)\‘ {/ _____________ e ‘L— _____ = \
3 &« el Backwardl ‘h _ Backward — <« Backward|_|
= | ‘ GRU ‘ GRU 7| GRU
5 5 ‘ i
S | ‘ 3
= J ' \
| |
§ _IH Forward = Forward | = Forward 2o s
E \ | GRU GRU GRU |
Jron et (ST e O S = /
| % |

Input Layer
Fig. 6 Bidirectional Gated Recurrent Unit architecture

3.6.1. Attention Layer

The development of efficient vectors should be prioritized
because several factors impact the reliability of NDVI
predictions, not only a small number of them. Each state that
is hidden (h,) at each time step (t) is given weight in the
bidirectional GRU second layer using an attention layer. 18-
time steps allow the variable (t) to contain a positive integer
that ranges from 1 to 18. A weighting vector («a
aq, a,, ..., Ayg) IS produced in relation to the sequence output
(hy, hy, ..., hyg). The expansion of the vector attention (s) is
then performed by adding the weights of the eighteen states.

S=X, o hy (15)

As shown in Equation (15), the weighting factors that
were represented by a,. Figure 7 shows how the attention
layer sends its outputs to the fully connected layer, which then
uses them to build the final MDVI predictor result [32].

74

00000

Fig. 7 Structure of the attention layer



Ramkumar Sivasakthivel et al. / IJETT, 74(1), 65-84, 2026

Both temporal dynamics and the significance of relevant
characteristics are captured from EEG data by an attention-
based bidirectional GRU in BCI-EEG. Because it can process
data in both ways, the bidirectional GRU is better able to
understand dependencies over time. Because EEG patterns
can be influenced by both past and future situations, it is very
important.

I Convolutional Autoencender
(CAE)

Input EEG

Signal Decoder

‘ 2. Graph Convolutional
Network

NS

At the next stage, the attention mechanism highlights the
most task-relevant features by giving each time step a weight.
It enables the model to focus on the critical aspects of the
EEG. When combined, it improves the model's
comprehension of detailed brain signal patterns. Applications
such as emotion identification benefit from these types of
designs.

3. Attention-Based

Bidirectional
GRU (ABIGRU
( ) Output
Ad)acency BIGRU _ Attention + Prediction
Matrix (A) Layers _Classification
Layer

Spatially-Enriched Features

Latent Features
(T'xC)

Spatially-Enriched Features
(TH x Cll)

Spatially-Enriched Features
(T"x C)

Fig. 8 Flow diagram of CAE, GCN, and GRU

A complete architecture diagram with data dimensions at
each stage is provided in Figure 8. The detailed block structure
clarifies the flow of spatial and temporal features throughout
the model.

Table 2. Hyperparameters of the proposed CAE-GCN-ABiGRU model

Parameter Value
Optimizer Adam
Initial Learning Rate 0.001
Batch Size 64
Dropout (GRU layers) 0.3
Epochs 100
Early Stopping Patience = 15

Regularization
Loss Function
Data Augmentation
Noise Injection

L2 weight decay = le-4
Categorical Cross-Entropy
Sliding window segmentation
Gaussian noise (o =0.01)

Table 2 optimizer Adam with a learning rate of 0.001 was
used, which ensures a rapid and stable convergence of the
spatiotemporal learning components. The A batch with a size
of 64 was selected to provide the required balance between
good performance and stable gradient updates. In the case of
dropout, a rate of 0.3 was used during training of the GRU
layers to reduce the chances of overfitting. The model was not
trained for more than 100 epochs, but an early removal
criterion with a patience of 15 was used, whereby the training
was automatically stopped when there were no further
improvements observed in the validation set. Moreover, the
use of L2 weight decay of le-4 was added to the model
training to further enhance generalization by preventing
weights from becoming too large. The workforce loss function
is categorical cross-entropy, which is well-suited for multi-
class emotion classification tasks. As part of data
augmentation, the sliding-window segmentation was applied,
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producing additional samples that have the same temporal
coherence as the original ones. The method of injecting
Gaussian noise with 6 = 0.01 was also applied, simulating the
natural variability of EEG signals and thus increasing the
robustness of the model. To sum up, the use of the above-
mentioned hyperparameters has triumphantly achieved a
situation where there is an even distribution among learning
capability, normalization, and noise immunity, thus
guaranteeing no model performance disparity across all
training trials.

Algorithm for GRU-GCN
Input: Raw EEG signals S, Labels Y
Output: Trained model parameters 0

Preprocessing

For each EEG trial, Siin S:

Apply bandpass filtering (4-45 Hz)

Normalize channel amplitudes

Segment signals into fixed-length windows

EndFor

CAE Pretraining

Initialize CAE parameters 6 _CAE

Train CAE on preprocessed
reconstruction loss

Extract latent feature matrices F_CAE for each window

Graph Construction for GCN

Define adjacency matrix A based on electrode topology

Normalize A to obtain A

Generate graph-structured features F_GCN = GCN(
F CAE, A)

Temporal Learning with ABiGRU

Initialize ABiGRU parameters 6 _ABiGRU

For each sequence of graph features:

Compute forward GRU outputs

windows  using
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Compute backward GRU outputs

Apply attention weighting to combined representations

EndFor

Classification

Pass the final feature vector through a fully connected
layer

Compute cross-entropy loss with labels Y

Model Training Loop

Optimize 6 = {6 CAE, 6 GCN, 6 ABiGRU} using
Adam optimizer

Repeat until convergence or early stopping criteria are
met

Return trained parameters 0

4. Results and Discussions

All experiments were conducted in a machine that has a
Ryzen 9 5950X CPU from AMD running at 3.4 GHz,
featuring 16 cores and 64 GB of RAM.

4.1. Evaluation Metrics
As evaluation measures, the following Equations (16) to
(19) determine the model's classification performance:

TP+TN
Accuracy = TPITNTFPTEN (16)
precision = TPTfFP a7
recall = —= (18)
TP+FP
F1lscore = 2% % (19)

The positive class's predictions are represented by TP, the
negative class's predictions by TN, the negative class's
predictions by FP, and the positive class's predictions by FN
[33].

4.2. Performance Analysis

For the DEAP dataset, Tables 2 and 3 present the results
of the multi-class and binary classification. Both the binary
classification performance graph (Figure 9) and the multi-
class classification results graph (Figure 10) are presented.
Both the DEAP and SEED datasets perform well on tasks
requiring binary and multi-class classifications. The EEG-BCI
system's effectiveness in emotional recognition using the
dataset DEAP is shown in Table 3. It focuses on the binary
classification of two different emotional variables, namely
valence and arousal.

Table 3. Binary classification on DEAP dataset

Metric Valence (%) Arousal (%)
Accuracy 94.86 98.12
Precision 93.94 97.61

Recall 94.59 97.85
F1-Score 94.41 97.50
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Fig. 9 Graph of binary classification on DEAP dataset

Accuracy

The model achieved an excellent level of accuracy, with
valence (94.86%) and arousal (98.12%), respectively. The
precision scores for valence were 93.94%, while the scores for
arousal were 97.61%, which indicates that there were not
many false positives. Recall was 97.85% for arousal and
94.59% for valence, showing that the model recognized the
most important events. Depends on the F1-score, which takes
precision and recall into account, the valence score was
94.41%, while the arousal score was 97.50%. Performance
that is balanced and constant across all parameters is
demonstrated by these findings. Compared to valence
classification, the model is better in arousal categorization.
The EEG-based BCI system's efficiency is shown by its
efficient performance. The DEAP dataset is well-suited for
emotion classification.

Table 4. Multiclass classification on SEED dataset

Metric Macro Avg Weighted Avg
Accuracy 97.58 97.58
Precision 97.04 97.49

Recall 97.32 97.43
F1-Score 97.17 97.24
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Fig. 10 Graph of Multiclass Classification on SEED dataset
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The results of a multiclass classification test using
emotion detection, EEG-based on the SEED dataset, are
displayed in Table 4. Metrics for macro average (across all
classes) and weighted average (which considers class
imbalance) are both provided. The model performed well in
classification overall, as it attained an accuracy of 97.58%. A
moderate rate of incorrect positives was indicated by the high
precision levels of 97.49% (weighted) and 97.04% (macro).

Accurate identification of most emotions was
demonstrated by a recall of 97.32% (macro) and 97.43%
(weighted). As a measure of accuracy and recall, the F1-score
was 97.17% for the macro and 97.24% for the weighted. When
the macro and weighted averages are close, it means that there
is little class imbalance in the predictions. Using EEG data
from a range of emotional states, the model maintains good
performance. The SEED dataset is useful for training strong
EEG-based emotion recognition systems.

Table 5. Comparison with existing models

Models Accuracy Precision Recall Flscore
GRU [13] 94.00 94.00 88.00 91.00
MES-CTNet [17] 94.91 94.26 95.16 94.69
CNN [19] 87.00 89.00 86.00 87.00
1-CNN-Bi-LSTM [20] 85.00 85.33 85.08 84.96
GRU [21] 91.80 92.00 92.00 92.00
TSF-MDD [23] 92.10 90.00 94.90 92.40
LSTM [24] 93.75 95.00 76.00 84.80
ANFIS [25] 95.97 92.93 94.68 NA
DANN-MAT [26] 95.74 96.05 96.05 96.05
DSP-EmotionNet [27] 82.50 NA NA 82.40
Proposed model 98.12 97.61 97.85 97.50
(Binary class)
Proposed model (Multiclass) 97.58 97.49 97.43 97.24
® Accuracy ®Precision ®Recall = Flscore
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Fig. 11 Graph of Results Comparison with Current Models

Table 5 provides a comparative evaluation of various
models used for EEG-based emotion recognition, including
traditional models like GRU, CNN, and LSTM, and advanced
approaches such as MES-CTNet, DANN-MAT, and DSP-

EmotionNet. Figure 11 depicts the graphical chart of the
results comparison. Each model is assessed using standard
classification metrics. Among all listed models, the proposed
GCN-GRU models, designed for both multiclass and binary
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classification, demonstrate the highest overall performance.
The binary system GCN-GRU model attained an accuracy
level of 98.12%, using precision, recall, and F1-score metrics
of 97.61%, 97.85%, and 97.50%, respectively, respectively.
Similarly, the multiclass version showed consistently high
performance with 97.58% accuracy and strong supporting
metrics. In contrast, other high-performing models like
DANN-MAT and MES-CTNet, although competitive, fall

slightly behind in one or more evaluation parameters.
Additionally, some models, like CNN and DSP-EmotionNet,
report significantly lower scores or lack complete metric data.
The superior and balanced results across all metrics for both
binary and multiclass classification indicate that the proposed
GCN-GRU framework is highly effective, outperforming
existing approaches for emotion recognition using EEG
signals.

Table 6. Statistical significance analysis of the proposed model

Dataset DEAP SEED
Test Used Paired t-test (10 folds) Paired t-test (10 folds)
Comparison Proposed vs. Competing Models Proposed vs. Competing Models
p-value p<0.01 p <0.05
Significance (95% CI) Statistically significant Statistically significant
Accuracy (Mean £ CI) 98.12% + 0.42 97.58% + 0.36

Accuracy with 95% Confidence Interval

98.6

98.4 T

98.2

97.8 -
97.6 -

97.4 -

Accuracy (%)

97.2 -

97 -

96.8

96.6 -

Deap

Seed

Fig. 12 Graph of statistical significance analysis

Table 6 statistical significance testing was performed in
order to confirm that the performance improvements obtained
by the suggested model were not due to random variation
among the ten-fold experiments. A paired t-test was used to
determine the model's accuracy compared to the competing
baseline methods on the SEED and DEAP datasets. The
outcomes indicate that the suggested model reached an
accuracy that was significantly higher than the others, with p-
values less than 0.01 for DEAP and less than 0.05 for SEED,
thus showing superiority at the 95% confidence level.

The 98.12% + 0.42 confidence interval for DEAP denotes
very stable performance with almost no variation across folds.
Similarly, the 97.58% =+ 0.36 interval for SEED signifies
strong consistency and dependability. Figure 12 depicts a
graph analysis of the statistical significance of the proposed
model.
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Table 7. DEAP dataset - binary classification (Valence/Arousal)

Fold Valence Accuracy Arousal Accuracy

(%) (%)
Fold 1 94.72 98.05
Fold 2 94.90 98.18
Fold 3 94.81 98.09
Fold 4 94.95 98.14
Fold 5 94.86 98.12
Fold 6 94.79 97.98
Fold 7 94.93 98.19
Fold 8 94.84 98.10
Fold 9 94.78 98.06
Fold 10 94.91 98.20

The results Table 7 obtained through cross-validation
reveal that the model proposed performs very stably for the
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classification of both valence and arousal throughout the
whole ten folds. Valence accuracy is almost the same for all
ten folds, being between 94.72% and 94.95%. This indicates
that the model can identify emotions very consistently with
just a negligible variation. The small range of accuracy proves
that the model is capable of generalizing and is not overfitting
to any of the folds. As for the reliability of arousal, it is even
better than that of valence and varies between 97.98% and
98.20%, which indicates that the model is highly skilled in
telling apart the high and low arousal states. The very high
accuracy scores across all the folds show the model's

robustness against the variations in the data distribution. The
tiny accuracy fluctuations could be interpreted as the model
being capable of learning stably and extracting reliable
temporal-spatial features from EEG signals. These findings
indicate that the proposed model performs consistently, with
no significant drop in performance in any of the folds. The
joint stability in both valence and arousal tasks points to the
CAE-GCN-ABiGRU architecture’s success for the binary
emotion classification on the DEAP dataset. Figure 13
illustrates the binary emotion classification results for Valence
and Arousal using the DEAP dataset.

—o—Valence Accuracy (%) 94.72

DEAP Dataset - Binary Classification (Valence/Arousal)

Avrousal Accuracy (%) 98.05
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Fig. 13 Graph performance of binary valence/arousal classification on the DEAP dataset

Table 8. Ten-fold cross-validation of SEED dataset (multiclass
classification)

Fold Accuracy | Precision recall Flscore
Fold 1 97.52 97.41 97.31 97.28
Fold 2 97.63 97.52 97.43 97.37
Fold 3 97.56 97.44 97.33 97.24
Fold 4 97.60 97.49 97.38 97.30
Fold 5 97.58 97.49 97.43 97.24
Fold 6 97.50 97.37 97.26 97.16
Fold 7 97.68 97.56 97.47 97.40
Fold 8 97.55 97.46 97.35 97.27
Fold 9 97.49 97.36 97.25 97.17
Fold 10 97.65 97.54 97.45 97.38

Table 8 presents the SEED dataset's ten-fold cross-
validation results, which reveal that the multiclass emotion
classification reached the highest point in terms of reliability
and stability. In a very limited range of 97.49% to 97.68%, the
model's accuracy was very consistent throughout all the folds
without much change. The precision also did not differ much
and was between 97.36% and 97.56%, which means that the
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model has very few false positives. The recall was quite stable
as well, with a range of 97.25% to 97.47%. This shows that
the model can detect the true emotional states consistently
with very few false negatives. The F1 scores showed stable
behavior as well; they were between 97.16% and 97.40%. This
reflects that there was a strong balance between precision and
recall. The differences among the folds were very small, often
within +0.2%, indicating that there was difficult expansion
even with changes in training-testing splits. Fold 7 got the best
overall performance across all metrics, whereas Fold 9 had the
lowest values, albeit the drop being slight and not degrading
the performance. This stability is proof that the CAE-GCN-
ABIGRU model has acquired spatiotemporal EEG features
that are very robust and can be applied to unseen samples. The
low differences between the folds support the notion of the
model not being sensitive to data partitioning and thus its
reliability for real-world emotion classification being
reinforced. Such uniformity in metrics further signifies the
model's capability of dealing with the complexity of the SEED
dataset multiclass scenarios. Figure 14 displays the ten-fold
cross-validation results for multiclass emotion classification
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using the SEED dataset. The ablation results Table 9 provides
a detailed understanding of the contribution of each module to
the effectiveness of the proposal CAE-GCN-ABIGRU
model.

The full architecture achieves the highest accuracy of
98.12%, confirming the effectiveness of integrating spatial,
structural, and temporal learning mechanisms. When the CAE
is removed, performance drops sharply to 94.72%, showing
that early-stage spatial feature extraction is essential for
improving signal quality. Eliminating the GCN causes the
largest degradation, reducing accuracy to 94.02%, which
highlights the importance of modeling inter-channel EEG

—&— Accuracy 97.52

SEED Dataset - Ten-Fold Cross-Validation (Multiclass Classification)

Precision 97.41

connectivity. Removing the attention mechanism also
decreases performance to 95.42%, indicating that the attention
mechanism has an impact on the efficacy of the proposal's
temporal segments. Similarly, removing bidirectionality
reduces accuracy to 96.22%, demonstrating that capturing
both forward and backward dependencies strengthens
temporal modeling. Precision, recall, and F1-score follow the
same trends, confirming consistency across all evaluation
metrics. These findings collectively show that each module
contributes meaningfully and that the complete model
provides the most balanced and robust representation of EEG
signals for emotion classification. Figure 15 presents the
ablation study results of the proposed CAE-GCN-ABIiGRU
model (binary classification using the DEAP dataset).
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Fig. 14 Graph of the ten-fold cross-validation results for the SEED dataset (multiclass classification)

Table 9. Ablation study of the proposed CAE-GCN-ABiIGRU model (binary classification — DEAP dataset)

Model Variant Acc Prec Rec F1
Proposed Model (Full Architecture) 98.12 97.61 97.85 97.50
Without CAE 94.72 93.40 93.95 93.67
Without GCN 94.02 92.88 93.41 93.15
Without Attention 95.42 94.21 94.78 94.46
Without Bidirectionality 96.22 95.40 95.70 95.53

Table 10. Error analysis and misclassification contribution

Misclassification Type Description Contribution to Total Errors (%)
Neutral <> Negative Confusion between neighbouring emotional states due
- 34.8%
(SEED) to similar spectral-temporal patterns
Low-émplltude EEG Weak or noisy signals reduce emotional separability 22.6%
egments
Subject—_De_p_endent Differences in individual brain responses 18.9%
Variability
Overlappér;%(;requency Similar alpha/theta rhythms across emotions 12.3%
Electrode Noise / Artifacts Blink, muscle, or movement-related distortions 7.4%
Transient Emotional Shifts Rapid within-trial emotional fluctuations 4.0%
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Ablation Study - CAE-GCN-ABIGRU Model (DEAP Dataset)
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Fig. 15 graphical representation of the ablation study for the proposed CAE-GCN-ABiIiGRU

The error distribution Table 10 indicates that most of the
misclassifications result from closely-related emotional
categories (34.8%) and EEG segments with low amplitude
(22.6%), hence confirming that even advanced DL methods
have difficulties in detecting. The subject variability factor
(18.9%) has a significant impact as well, as it points to the
differences in people's emotional responses. Overlapping EEG
frequency characteristics (12.3%) and electrode noise (7.4%)

are mentioned as additional sources of confusion in
predictions. However, the case of quick emotional transitions
accounts for only a small share of errors (4.0%). Such findings
are in agreement with the confusion matrix patterns and
indicate the most important challenges to be overcome in the
quest for better models through improvement. Figure 16
presents the error analysis and misclassification contribution
graph.

Error Analysis and Misclassification Contribution
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Fig. 16 Graphical representation of the error analysis and misclassification contribution
Table 11. Computational efficiency comparison with existing models
Model Model Size FLOPs Inference Time Remarks
(MB) (GFLOPs) (ms, CPU)
Proposed CAE-GCN- Lightweight, near real-time
posed ¢ 8.9 MB 1.8 11.4ms ghtwelg
ABIGRU performance
Transformer-Based EEG High accuracy but
42-65 MB 6.5-12.4 28-45 ms gh accuracy
Model computationally heavy
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CapsuleNet-Based EEG Complex routing increases
Model 30-40 MB 4.8-7.3 25-33ms latency
Deep CNN (e.g., 1D/2D 8 g Moderate speed but lower
CNN) 12-20MB 2.5-4.0 15-22ms temporal awareness
EEGNe_t (Baseline 12 MB 03 6-8'ms Very fast but lower classification
Lightweight Model) accuracy
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Fig. 17 Graph of computational efficiency against existing approaches

The comparison of computational efficiency in Table 11
clearly shows that the new CAE-GCN-ABIGRU model has
reached a great point in balancing between performance and
resource usage. The model, which is compactly sized at 8.9
MB and has a low computational cost of 1.8 GFLOPs,
processes every trial within only 11.4 ms on a regular CPU,
thereby being appropriate for near real-time BCI applications.
The Transformer-based and CapsuleNet-based models
consume a lot more FLOPs and memory, which results in their
inference being so much slower and, thereby, not suitable for
real-time environments. Deep CNN models have low
efficiency, but they still come behind the proposed
architecture in both speed and temporal representation
capability. EEGNet is still the fastest and the lightest, although
its lower complexity results in relatively lower accuracy. The
model shows a great trade-off, offering high accuracy while
still being computationally low. Thus, it is a very applicable
option for the resource-limited and real-time EEG emotion
recognition systems. Figure 17 presents the computational
efficiency comparison with existing models.

4.3. Advantages and Limitations

EEG-BCI systems enable non-invasive brain signal
acquisition and direct communication with external devices.
Attention-based bidirectional GRU enhances classification by
capturing temporal dependencies in both directions. Attention
weights were analyzed to understand which temporal
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segments influenced the final prediction. Consistently, peaks
in B-band-dominant segments contributed most strongly to
emotional state classification. This interpretability is essential
in BCI applications where transparency in model decisions is
required. CAEs effectively reduce data dimensionality while
preserving important features, yet they can lose subtle signal
details during compression. GCN is powerful in extracting
spatial features by modeling EEG channels as graph nodes, yet
its efficacy is significantly dependent upon the quality of the
graph structure. DL models overall provide robust feature
learning and high accuracy, but require large datasets and
substantial computational resources. The DEAP and SEED
datasets are standard benchmarks that support both binary and
multiclass classification, used as good evaluation platforms;
however, they are collected in controlled settings and do not
always generalize well to real-world scenarios. Inter-subject
variability affects generalization despite strong performance.

The model has not yet been deployed on wearable EEG
devices. Together, these components contribute to strong
performance in emotion recognition, but challenges remain in
real-time deployment, generalization across users, and
interpretability. In the future, to improve cross-subject
generalization using domain adaptation. Integrate multimodal
inputs such as ECG or facial expressions. Develop a low-
power embedded version of the model for real-time BCI
systems.
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4.4. Ethical Considerations For multiclass classification on the SEED dataset, it
All EEG data used in this study were sourced from attained an accuracy of 97.58%, a precision of 97.49%, a recall
publicly available datasets collected under ethical approval. of 97.43%, and an F1-score of 97.24%. These findings proved
No personal identifiers were used. The application of emotion- that the suggested model is efficient and has great potential for
recognition systems must consider user consent, secure data  use in emotional computing and BCI contexts requiring real-
handling, and potential privacy implications, particularly  time emotion recognition.
when deployed in real-time BCI systems.
In the future, the model can be improved by incorporating
5. Conclusion cross-subject generalization to handle individual differences
Th|s Study presented a DL_based framework for EEG- in EEG patterns. Real'time implementation and testing on
based BCI systems to enhance the efficacy and precision of ~ Wearable EEG devices can enhance practical usability.
emotion detection. The approach successfully leveraged EEG ~ Additionally, integrating multimodal data, such as facial
signals, which can record brain activity in real time using scalp ~ expressions, could further boost emotion recognition
electrodes and are non-invasive. The proposed model  accuracy.
combined a GCN to extract spatial relationships between EEG
channels, a CAE to compress and reconstruct the signalswhile  Funding Statement
preserving essential information, and an attention-based This research was supported by Christ University,
bidirectional GRU to capture temporal connections and focus Bangalore, Karnataka, India, under the Seed Money Scheme
on the highly informative time steps. Using the datasets DEAP ~ CU-ORS-SM-24/47.
and SEED, the method was tested. On the DEAP dataset, used
for binary classification, the model achieved 98.12% Acknowledgment

accuracy, a preciséion of 97.61%, a recall of 97.85%, and an We gratefully acknowledge the financial assistance
F1-score of 97.50%. provided by Christ (Deemed to be University) for this study.
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