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Abstract - The leading cause of brain stroke is the sudden blocking of blood flow to the brain through a blood vessel or due to 

damage to a blood vessel in the brain. More often, this brain stroke is the result of long-standing diseases that occur due to some 

evil habits of patients. These diseases are often measured as high blood pressure, diabetes, high cholesterol, smoking, and a 

sedentary lifestyle. Many deep learning models exist to detect the possibilities of brain stroke by considering the disease 

parameters. But only finger-counting techniques are available, which eventually consider the lifestyle of the people to predict 

the impact of a brain stroke. Hence, a multi-data hybrid model is required to evaluate the possibilities of causing a brain stroke 

by using the imagery dataset and statistical dataset. The proposed model initially trains the imagery brain stroke dataset using 

the channel boost convolutional neural network after boosting the channels to an absolute grayscale factor. On the other hand, 
the proposed model considers the statistical dataset for training using the LSTM model. Finally, the input image and the 

statistical data from the user are subjected to non-negative matrix factorization to obtain the results of brain stroke predictions. 

The obtained results are evaluated by the confusion matrix, which yields almost 98.12% accuracy, indicating the quality of our 

model. 

Keywords - Brain Stroke Detection, Deep learning, Convolution Neural Network, Long Short-Term Memory (LSTM), Hybrid 

Neural Network. 

1. Introduction  
When there is a disruption in the blood flow to the brain, 

it can cause brain tissue injury, which is known as a brain 

stroke or cerebral vascular accident. A hemorrhagic stroke 

occurs when a blood vessel bursts or leaks, while an ischemic 

stroke occurs when an artery is blocked. Ischemic strokes 

happen when blood flow to a portion of the brain is interrupted 

or diminished. Brain tissue is deprived of oxygen and nutrients 

as a result. Within minutes, cells in the brain start to die. 

Hemorrhagic strokes are an additional kind of stroke. A brain 

hemorrhage happens when a blood vessel in the brain ruptures 

or spills. Damage to brain cells occurs as a result of an increase 
in blood pressure.  A medical emergency is a stroke. 

Emergency medical care is of the utmost importance. Brain 

damage and other consequences of a stroke can be lessened 

with prompt emergency medical assistance. Stroke mortality 

rates in the United States have been declining, which is 

encouraging news. Effective treatments can also aid in the 

prevention of stroke-related impairment. Of all stroke types, 

this one occurs most frequently. A narrowing or blocking of 

the brain's blood arteries causes this condition. Ischemia, a 

decrease in blood flow, is the result of this. Fatty deposits that 

accumulate in blood arteries can lead to their constriction or 

blockage. Another possible reason is the presence of foreign 

bodies, such as blood clots, that travel through the circulatory 

system, typically originating from the heart. Fatty deposits, 

blood clots, and other foreign objects getting stuck in the 
brain's blood arteries can cause an ischemic stroke. Additional 

research is necessary to confirm the preliminary findings that 

COVID-19 infection may raise the risk of ischemic stroke. 

The leakage or rupture of a brain vessel causes the occurrence 

of a hemorrhagic stroke. Brain hemorrhages, or bleeding 

inside the brain, can be caused by a variety of medical issues 

affecting the blood arteries. Problems with blood pressure 

management are a risk factor for hemorrhagic stroke.  

 Excessive use of anticoagulants, which are blood 

thinners. 

 Aneurysms, which are bulges that form in vulnerable 
areas of the walls of blood vessels.  

 A concussion, for example, after a vehicle crash. 

 Deterioration of blood vessel walls caused by protein 

deposits. "Cerebral amyloid angiopathy" is the term used 

to describe this condition. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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An ischemic stroke can cause brain bleeding in some 

instances. Arteriovenous Malformation rupture is an 

uncommon but serious cause of brain hemorrhage. An 

Abnormal Vascular Maze (AVM) is a network of blood 

arteries with very thin walls.  

To detect strokes using healthcare data and neuroimages 

of human beings by employing a deep learning model, 

specifically a channel boost convolutional neural network and 

LSTM, through a decision tree. Stroke detection through 

traditional methods is often slow and prone to human error. 

There is a need for an automated and accurate system to 

analyze healthcare data and neuro images. This study aims to 

develop a deep learning model combining Channel-Boost 

CNN and LSTM through a Decision Tree to improve stroke 

detection accuracy and efficiency. 

In a Transient Ischemic Attack (TIA), stroke-like 

symptoms last only for a short time. However, TIAs do not 
result in long-term impairment. A Transient Ischemic Attack 

(TIA) occurs when blood flow temporarily stops to a portion 

of the brain. As brief as five minutes could pass before the 

drop occurs. Ministroke is another name for a transient 

ischemic attack. A Transient Ischemic Attack (TIA) happens 

when blood clots or fatty deposits restrict or block the blood 

supply to a portion of the neurological system. If we suspect a 

TIA, it is important to get emergency medical attention. The 

symptoms alone cannot diagnose a stroke or transient 

ischemic attack. A TIA suggests that the artery supplying 

blood to the brain may be partially or fully blocked. Your 
chance of suffering a stroke in the future is higher if you have 

a TIA. 

A noticeable gap exists in current automated stroke 

detection methods. Modern systems often excel in either 

image-based analysis using CNN architectures for detecting 

and segmenting lesions or modeling clinical and time-series 

data with LSTM networks. However, these complementary 

data types are rarely combined into a cohesive framework. 

Current methods typically do not (i) enhance CT image 

features in a way that is interpretable and parts-based, (ii) 

jointly model the statistical dependencies found in clinical risk 

factors, or (iii) integrate multimodal information while 
maintaining the clinical interpretability necessary for medical 

validation. Previous hybrid studies, such as those using 

genetic-algorithm-assisted feature selection with LSTM 

processing [11], are limited by moderate image enhancement 

capabilities, separate treatment of imaging and tabular data, 

and opaque fusion strategies that undermine clinical trust and 

transparency.  

Therefore, there is an ongoing need for a unified, 

explainable multimodal framework that effectively combines 

non-negative matrix factorization for image decomposition, 

channel-boosted CNNs for deep spatial representation, and 
LSTMs for longitudinal and statistical modeling, all supported 

by rigorous validation protocols, such as cross-validation, 

ROC-AUC, confidence intervals, and ablation studies. 

Because it enables the rapid and reliable processing of medical 

images, such as MRI and CT scans, deep learning is crucial in 

the identification of brain strokes. It can identify stroke-

affected areas and classify images as normal or abnormal.  

1. The deep learning models used are specifically 

Convolutional Neural Networks (CNN), which fall into 

two categories: image processing and abnormal brain 

scan identification. The algorithm identified the types of 

strokes after detecting complex patterns in the database.  

2. Localization and Segmentation: Stroke detection is better 

understood through medical imaging, where deep 

learning is used. This area involves CNN models, such as 

the U-Net, which shine 

3. Prognosis and Prediction: A deep learning model has 

been developed to predict strokes and determine the 
outcomes for stroke patients. Deep learning involves 

various factors, such as clinical features, data, and 

imaging data, to accurately predict the problems.  

4. Increased Diagnostic Precision: Previous studies have 

shown that deep learning models can detect strokes more 

accurately than traditional techniques and can also predict 

outcomes more quickly.  

5. CAD Systems: The deep learning model has been 

integrated into the CAD system to help provide patients 

with accurate results. These devices help detect efficiency 

and reduce the risk of misdiagnosis.  
6. There are various examples of CNN models such as 

LeNet, SegNet, U-Net, ResNet, VGG16, and VGG19.  

7. The Advantages of Deep Learning for Stroke Detection.  

1.1. Precision 

Deep learning algorithms are accurate in identifying and 

classifying strokes. Automated analysis: Deep learning's 

capacity to automate medical picture interpretation allows 

radiologists to concentrate on other tasks. Efficiency boost: 

Deep learning is a preferred choice for the diagnosis process, 

providing accurate results. Developing customized treatment 

plans that consider each patient's particular collection of 

symptoms, medical history, and risk factors is one potential 

application of deep learning in medicine. 

Unlike traditional single-modality approaches or 

previously proposed hybrid methods such as GA-driven 

LSTM architectures, the primary research question of this 

study is whether a multimodal diagnostic framework—one 

that integrates Non-Negative Matrix Factorization (NMF) to 

enhance CT image features, employs a channel-boosted 

Convolutional Neural Network for spatial representation 

learning, and incorporates a Long Short-Term Memory 

(LSTM) network to model structured clinical variables, with 

final inference achieved through an interpretable decision-tree 
fusion—can improve interpretability, accuracy, and 

robustness. This study sought to determine whether such an 
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integrated system offers better interpretability, accuracy, and 

robustness, and whether its methodological foundations and 

validation provide a more compelling justification than 

current models in the literature for stroke detection compared 

to single-modality or previously reported hybrid approaches 

(e.g., GA+LSTM). 

2. Literature Survey  
To improve patients' chances of receiving acute stroke 

treatment, Tomonobu Kodama et al. [1] suggested an 

algorithm for ischemic stroke identification that combines 

HRV analysis with MSPC. This work applied the suggested 

algorithm to experimental data gathered from animal 
experiments using the MCAO model in rats. The data was 

used as a feasibility study before being applied to human 

patients. The HRV data were collected shortly after occlusion. 

Its sensitivity was 82% and its specificity was 75%, according 

to the application results. Among the study's caveats is its data 

gathering process, which included issues, including an 

insufficient quantity of HRV data for modeling and an 

experimentally small number of animals. 

Furthermore, the author's experiment could not rule out 

the possibility of anesthesia's effect on HRV. The authors are 

currently gathering clinical HRV data from stroke patients in 
hospitals in order to develop an ischemic stroke detection 

system for people. This is because the algorithm designed for 

rats cannot be directly adapted to humans. Furthermore, a 

bright shirt that measures electrocardiograms has undergone 

accuracy evaluation testing in a clinical setting. [2] DCSP, a 

new feature pooling method, was introduced by Zhong Zhang 

et al. for character recognition in outdoor settings. Using the 

contextual factor, the suggested DCSP reflects the spatial 

context information of discriminative strokes and trains stroke 

detectors with the discriminative strokes chosen from CSM.  

To enhance the discrimination and robustness of the final 

deep contextual confidence vectors, it is possible to pick the 
most representative convolutional activation features from the 

response areas based on detector scores and the contextual 

factor. In comparison to various prior methods for scene 

character identification, the experimental findings show that 

the suggested DCSP performs better on three popular 

databases: ICDAR2003, Chars74k, and SVHN. An automated 

compensation detection system that recorded the joint 

locations of healthy participants using Kinect during robotic-

assisted rehabilitation performed very well for LF, TR, and 

SE, according to Ying Xuan Zhi et al. [3]. Trained with data 

from stroke survivors, however, the same classifiers 
performed poorly. The author discusses possible causes of 

poor F1-scores. A new scene text erasing approach has been 

proposed by Zhengmi Tang et al. [4] to solve the problems of 

domain shift when using inpainting models pretrained on 

street view or Places datasets and poor text location when 

using one-step methods. This was achieved by training the 

model exclusively on the author's enhanced synthetic text 

dataset. The model uses a predicted text stroke mask that is 

created from cropped text pictures to inpaint the text region, 

allowing for the preservation of more background 

information. The author has developed a reasonable approach 

for erasing scene text with texture restoration. It makes use of 
a stroke mask prediction module, partial convolution layers, 

and an attention block in the background inpainting module, 

and a skip link between two modules. 

[5] A new document picture binarization model was 

introduced by Quang-vinh Dang et al., which addresses the 

issue of weak or ambiguous strokes that are frequently left 

disconnected following the binarization process in current 

methods. The author embeds structural information of strokes 

into the binarization network in order to maintain the strokes 

in degraded document pictures following the binarization 

process. This is the basis for the author's proposal of an 

auxiliary job for adversarial learning of structural information 
in terms of stroke boundary features, with the goal of 

integrating these learned features into the primary task for 

document picture binarization. The auxiliary task first gets 

stroke boundary features by using shared global location 

features and additional local edge characteristics. Second, the 

author uses adversarial supervision of the acquired stroke edge 

feature in the auxiliary task by leveraging boundary ground 

truth. Incorporating domain-specific expertise into the model 

is the crux of adversarial training. 

An HS event-recognition gait detection model was 

suggested by Fu-cheng Wang et al. [6]. Clinicians can use gait 
event identification to assess gait performance, which in turn 

helps with medication and rehabilitation strategy selections. It 

has been shown that detecting gait events online can be 

difficult. Hence, the author generated an RNN model capable 

of real-time HS event recognition by collecting experimental 

gait data using IMUs. With an average latency of 0.024 s and 

an accuracy of 98.84%, the author used the LOOCV approach 

to demonstrate that RNN models can detect HS events in real 

time. As an additional test, the author used the model on three 

distinct groups of people with very varied gaits: healthy older 

adults, stroke victims, and PD patients. The author's findings 

confirm that RNN models can accurately detect HS events 
with an average delay of 0.028 s and an accuracy of over 

99.65%, regardless of the subjects' walking habits. 

For rehabilitation, Shir Kashi et al. [7] developed a model 

to detect compensations in the movements of stroke patients. 

The author attained a macro-averaged precision of 85% across 

all six movement compensations examined. Finding 

compensations using data from stroke patients has never been 

done before. The author employed an exact movement-

capture method in this case. The potential for stroke patients 

to utilize the model system for home-based training could be 

opened up in future research with a more cost-effective sensor 
system. An in-clinic or at-home application would necessitate 

such a cheap and user-friendly tracking device that could give 
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real-time position information. [8] The development of an 

algorithm for use in an asynchronous BCI system for stroke 

rehabilitation was introduced by Thapanan Janyalikit et al. An 

effective rehabilitation program is critical for a successful 

recovery after a stroke. As a result, the authors suggest a new 
and accurate method for detecting movement intentions in 

EEG data using time series shapelets. An asynchronous BCI 

system can employ the author's algorithm as a brain switch to 

activate an electrical stimulator, thereby inducing brain 

plasticity, which can aid in the rehabilitation of stroke patients. 

This is the first instance when a shapelet-based algorithm has 

been able to accurately discern movement intentions from 

EEG data, as the author wants to stress. 

[9] Using various biological signals of Electrocardiogram 

(ECG) and Photoplethysmography (PPG) acquired from 

walking as part of the elderly's everyday lives, Jaehak Yu et 

al. present a system that offers semantic analysis of diseases 
in the elderly. The suggested approach instantaneously detects 

and predicts prognostic indicators of stroke disease in the 

elderly by collecting numerous bio-signals of ECG and PPG 

in real-time. Using a variety of biosignal datasets, researchers 

ran a study on a machine learning-based prediction model that 

involved segmenting the signal waveform; the model 

produced reasonably accurate predictions and semantic 

interpretations. This research presents experimental 

verification, using the proposed features, that prognostic 

symptoms of stroke patients may be predicted with a 90% 

accuracy rate using only ECG and PPG collected while 
walking. By partitioning the general elderly and stroke 

patients into separate 10-folder CV datasets, the author was 

able to prove that their deep learning models could correctly 

predict outcomes with a 91.56% success rate using C4.5 

Decision Tree, a 97.51% success rate using Random Forest, 

and a 99.15% success rate using CNN-LSTM. 

[10] For the purpose of detecting transcranial brain 

hemorrhages, Chenzhe Li et al. presented the DL-MITAT 

modality to solve the problem of acoustic inhomogeneity. The 

author suggests ResAttU-Net, A Novel Network Architecture 

for DL-MITAT implementation. Instead of doing 

experiments, the author uses the simulation method to 
construct training sets, which is both practical and efficient. 

The technique's validity is demonstrated by the author's ex 

vivo studies with a lossless printed skull and a bovine skull 

that is 8.1 mm thick. Preliminary results show that the DL-

MITAT approach can identify transcranial bleeding and 

remove the adverse effects of acoustic inhomogeneity. [11] A 

method for detecting strokes using machine learning 

techniques has been proposed by Muhammad Asim Saleem et 

al. For the purpose of validating the newly constructed model's 

performance, an image-based dataset is utilized. The 

suggested model utilizes BiLSTM and a genetic algorithm. To 
identify important details in CT brain pictures, a genetic 

method that relies on a neural network is used. The LSTM and 

BiLSTM models are trained to anticipate strokes using these 

features. To get the best categorization, we compared the 

performance of various K-folds.  

In order to anticipate strokes, the author also 

experimented with various machine-learning methods. 

Compared to other models, the experimental findings 
demonstrate that the suggested machine-learning model 

performs better. The authors hope to employ more 

sophisticated algorithms in the future to predict strokes, 

thereby enhancing stroke detection automatically. Although 

big datasets typically produce superior results, deep learning 

models were used on a small dataset in this study. 

[12] The study highlights the wide-ranging effects of 

stroke on physical, behavioral, and cognitive processes, as 

well as the possible connections to post-stroke dementia by 

Chi-huang Shih et al. To encourage brain reconfiguration, the 

author developed a Virtual Reality (VR)-based remote 

rehabilitation system that combined rigorous training with 
targeted learning activities. Physiotherapists can remotely 

guide patients with this system, which utilizes BCI 

technology. This method offers vital home-based therapy for 

people with varied rehabilitation needs, including stroke 

survivors, who face obstacles such as restricted medical access 

and mobility issues. The use of EEG technology and real-time 

compensatory detection is the main originality of this work. 

In [13], in order to identify AF from 1D ECG data with 

only one lead, S. M. Mahim et al. created the TransMixer-AF 

model. The author's model performs admirably on both the 

raw and cleaned datasets. In particular, the model attained an 
accuracy of 91.66% with noisy data and 96.59% with 

preprocessed data for the PhysioNet/CinC 2017 Database. The 

MITBIH Database dataset had a record of 95.66% and the 

other of 98.58%.  

These outcomes prove that the author's approach 

outperforms current algorithms and attains state-of-the-art 

performance. On top of that, the model can accurately and 

early detect AF by interpreting ECG data, which gives 

clinically significant insights. [14] By combining state-of-the-

art deep learning and machine learning methods, Muhammad 

Usama Tanveer et al. prove that the Neuro-VGNB method is 

effective for detecting brain strokes.  

The author accomplished remarkable gains in 

classification accuracy by extracting features using the 

VGG16 model and then improving these features within the 

GNB framework using non-negative matrix factorization. The 

remarkable accuracy score of 99.96% achieved by the Logistic 

Regression model demonstrates the promising clinical 

applications of the author's research. Additionally, the use of 

k-fold cross-validation strengthens the credibility of the 

author's results. It presents the author's method as a useful 

resource for enhancing the early identification of brain 

strokes. 
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3. Proposed Model Methodology 
The entire process used to create an effective and 

automated stroke detection system is described in the 

suggested model methodology. It explains every phase of the 

system, starting with data collection and preprocessing, and 

ending with the training of a hybrid model and the final 

forecast. Figure 1 shows the brain stroke detection model that 

was designed. 

 
Fig. 1 Proposed model for brain stroke detection using a hybrid data model 

The steps involved in developing the model are described 

in full below.   

3.1. Description of the Dataset  

The model was trained and evaluated using two publicly 

accessible healthcare datasets, including patient medical 
histories, vital signs, and neuroimaging data (such as MRI or 

CT scans). 

3.2. Ethical Issues 

The generalization and performance of the model may be 

impacted by institutional, ethical, or privacy restrictions that 

limit access to big and well-annotated healthcare and 

neuroimaging datasets. Strict adherence to data privacy 

regulations, ethical approvals, and patient permission 

procedures is necessary when handling sensitive healthcare 

and neuroimaging data in order to guarantee data 

confidentiality and compliance. The study should involve 
ablation studies, external validation, and a thorough ethical 

declaration in order to satisfy current standards in medical AI 

research. To assess the precise contributions of each model 

component (CB-CNN, LSTM, and NMF) to the overall 

performance and demonstrate that the hybrid fusion 

architecture provides real benefits beyond its constituent parts, 

ablation experiments are essential. Similarly, assessing the 

model's generalizability and preventing dataset-specific 

overfitting—a frequent problem in imaging-based stroke 

prediction research—requires external validation using a 
separate dataset. The handling of patient data, dataset 

licensing, anonymization, any clinical hazards, and 

compliance with regulations like the GDPR, HIPAA, or 

institutional ethics requirements should all be explicitly 

covered in the ethical statement. By including these 

components, the suggested framework's trustworthiness, 

transparency, and reproducibility are significantly increased, 

guaranteeing that it meets the standards of the most recent 

medical AI literature. 

3.3. Phases of the Suggested Model  

Phase 1: Absolute gray scaling and data pre-processing - 
This is the initial step of the proposed model, where we 

obtained the dataset from the following URL: 

https://www.kaggle.com/datasets/afridirahman/brain-stroke-

ct-image-dataset.  Once the dataset is downloaded and 

segregated into training and testing directories, it undergoes 

the resizing process. A total of 1551 images are used for the 
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‘normal’ class and 950 images for the ‘Stroke’ class.  To resize 

the images, the OpenCV library's cv2 alias is used with the 

resize() method by passing the scaled width and height 

parameters of 128 x 128. The machine's hardware limits 

confirm its scaled width and height based on powers of 2 and 
its factors. The resized images are stored in the same path by 

overwriting the earlier locations. Once the dataset images are 

resized, they are subjected to conversion into absolute 

grayscale using the Pillow library of Python. In the process of 

getting the absolute grayscale images, each image's absolute 

path is extracted, and then it is read into RGB format. For each 

pixel, RGB is extracted, and its mean is estimated to factorize 

the same as a whole number [3]. This integer value will be 

replaced with red, green, and blue channels to obtain the 

absolute grayscale images. These images again replace their 

original location to form the best data to train using the 

channel boost Convolutional Neural Network deep learning 
model. Removing RGB channels improves lesion contrast 

learning and lowers noise since CT images naturally depict 

tissue density in grayscale. 

Hypoattenuation, sulcal effacement, loss of gray-white 

differentiation, and hyperdense vascular signs can be easily 

identified. The Channel-Boosted CNN architecture requires a 

uniform intensity distribution to ensure stable feature 

extraction, and for that, it is important to correctly input the 

grayscale dataset [5].In order to guarantee statistical validity 

and compatibility with later LSTM modeling, the relevant 

clinical dataset underwent structured pre-processing 
concurrently. Categorical variables such as sex, smoking 

status, and hypertension are encoded using one-hot encoding 

and label encoding, thereby enhancing both interpretability 

and model performance. The Iterative Imputer generates 

unbiased imputations by modeling inter-feature correlations 

using chained equations, which helps in handling missing 

values effectively. This method has been demonstrated to 

perform better than single imputation or mean replacement by 

lowering variance distortion and information loss [8]. 

Methods like Random Oversampling, Synthetic Minority 

Oversampling Technique (SMOTE), or class-weighted loss 

functions—all of which are generally advised to prevent 
majority class bias and improve minority class recall in 

medical prediction tasks—were used to address class 

imbalance, which is especially prevalent in stroke datasets 

where positive cases are fewer [4]. Together, these 

preprocessing techniques guarantee that the clinical and 

imaging inputs are balanced, statistically coherent, and 

prepared for machine learning, providing a solid basis for 

multimodal fusion in subsequent stages. An input image is 

loaded, converted to RGB format, and then resized to a fixed 

resolution of 128x128 pixels using the pseudo-code. To 

guarantee that every image is scaled consistently before being 

fed into the model, it makes use of the PIL package. 

Pseudo code for Image Resizer - 
from PIL import Image 

def getScaledImage(image_path): 

    imageob = Image.open(image_path).convert('RGB') 

    width, height = imageob.size  

    scaledwidth=128 

    scaledheight=128 
    imageob = imageob.resize((scaledwidth,scaledheight), 

Image.ANTIALIAS) 

    return imageob 

The pseudo-coding converts a color image into an 

absolute grayscale image by analyzing each pixel’s RGB 

values, finding their average, and swapping out the original 

pixel using this one intensity value. This guarantees that each 

pixel is converted into a consistent grayscale image. 

Pseudo code for Absolute gray Scale- 

ef getAbsoluteGrayscaleImage(imageob): 

    width, height = imageob.size  

    pix=imageob.load() 
    for i in range(width): 

        for j in range(height): 

            col=pix[i,j] 

            R=col[0] 

            G=col[1] 

            B=col[2] 

            avg=(int)(R+G+B)/3 

            absgray=int(avg) 

            pix[i,j]=(absgray,absgray,absgray)       

    return imageob 

 
Phase 2: Channel boost Convolution Neural Network: 

Phase 2's architecture and training methodology were founded 

on proven deep learning concepts for medical picture 

classification. Because of their extensive use, dependability, 

and improved GPU performance for CNN-based biomedical 

operations, TensorFlow and Keras were chosen [4]. In 

accordance with typical preprocessing procedures, 

ImageDataGenerator is used for picture loading and 

normalization (scaling by 1/255), guaranteeing numerical 

stability and accelerating convergence by keeping input values 

within a constrained range [8]. Since medium batch sizes often 

result in improved generalization in picture classification 
tasks, a batch size of 64 was used to maximize GPU memory 

efficiency while preserving gradient stability [12]. For 

hierarchically extracting spatial characteristics in CT images, 

from low-level edges to high-level stroke-related textures, the 

CNN architecture uses a gradually deepening structure with 

32–64–128 kernels (3×3), which is generally regarded as ideal 

[2]. Because of its computing ease and capacity to handle 

vanishing gradients, the ReLU activation function is 

frequently used, which makes it easier to train deeper models 

[10]. In radiological applications where lesions are confined, 

the addition of MaxPooling2D layers (2×2) selectively 
downsamples feature maps, lowering computational needs 

while maintaining discriminative areas [5]. Dropout layers of 

25–50% were added to reduce overfitting because research 
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indicates that dropout considerably improves medical-

imaging CNNs' generalization ability by lowering neuron co-

adaptation [1].  

The Flatten layer and succeeding thick layer with 1024 

units enable the model to combine geographically scattered 

features, providing a global representation appropriate for 

classification. The final softmax output layer is the traditional 

choice for binary/multiclass prediction, delivering normalized 

probabilities that support clinical interpretability. The Adam 

optimizer with a 0.0001 learning rate was chosen for its 

adaptive moment estimation, which stabilizes gradients and 

consistently outperforms standard optimizers in medical-

image CNN training [4].Training the model for 100 epochs 
ensured sufficient convergence for moderately sized datasets, 

avoiding premature stopping while minimizing the risk of 

overfitting. The final model was saved in the h5 format, a 

standard practice for reproducibility and deployment in 

inference pipelines. Overall, each design choice, including 

kernel configuration, activation functions, dropout usage, and 

optimization strategy, is supported by best practices in the 

deep learning literature and tailored for CT-based stroke 

detection, where fine-grained texture patterns and noise 

robustness are critical.  

Equations 1 and 2, consequently, show the Softmax and 

Relu activation functions that were used. 

𝜎(𝑍) =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗=1

  (1) 

Relu=max(0,x) (2) 

Where, x= neuron value 

σ = softmax 

z = input vector 

𝑒𝑧𝑖  = A normal exponential function for the 

vector that is being entered 

K = number of classes  

𝑒𝑧𝑗  = A normal exponential function for the 

vector that is being entered for the output 
                   

 
Fig. 2 Architecture of CB-CNN 

CT Image Input 

Preprocessing (128x128) 

(grayscale, normalize) 

Non-Negative Matrix Factorization 

AWXH 

W = Basis (parts) 

H = Coefficients 

NMF Feature Map Reconstruction 

Parallel Feature Streams CB-CNN 

Extracted Spatial Features 

LSTM Output 

(clinical risk) 

Feature Fusion (Concatenation) [CNN Features + 

NMF Coefficients+ LSTM Clinical Features] 

Decision Tree Classifier 

Stroke Output (Normal/Stroke) 
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The Channel Boost Convolutional Neural Network 

architecture is depicted above in Figure 2. 

Phase 3: LSTM Training: For the process of statistical 

dataset evaluation, a dataset in .csv format is obtained. 

URL:https://www.kaggle.com/datasets/csepython/brain-
stroke. This dataset contains the following attributes: gender, 

age, hypertension, heart disease,ever_married,work_type, 

Residence_type,avg_glucose_level,bmi,smoking_status, and 

stroke. We use the pandas library to read the dataset into its 

respective object. Once the dataset is loaded as an object, it is 

converted into a double-dimensional list. This list estimates 

the mean and standard deviation, and thereafter, the histogram 

of each attribute is evaluated for 25%, 50%, and 75% of the 

maximum values. This step is followed by the respective 

histogram plots that indicate the distribution of the attribute 

values. 

After this, we estimate the entropy of the data types in the 
dataset (e.g., strings and floats) by collecting information on 

the dataset's properties. A heat map is estimated for each 

attribute using the oversampled data. To do this, we compare 

the transition data at various points in the sorting process and 

determine the overall amount of missing data as well as the 

percentage of missing data. A label encoder is formally passed 

to the fit transform function for imputation for every object in 

the attributes. To achieve multiple imputation using chained 

equations, the IterativeImputer() function is used, which 

yields the object of multiple imputation. Following the 

transformation of the attributes using the fit transformer, this 
is utilized to impute the missing attributes. The technique 

entailed applying encoding to category characteristics for 

attributes during this specific phase. Using the minmax scalar 

function, standardized numerical characteristics were 

produced using Standard Scaling. Using the minmaxscaler, we 

can alter the features and scale them within a specified range.  

For each feature on the training set, this estimator 

performs its own scaling and translation to bring it within the 

given range, say, from 0 to 1. No amount of linear scaling 

using MinMaxScaler—where the most significant data point 

represents the maximum and the lowest the minimum—can 

reduce the impact of outliers. Check out the visual 
representation of MinMaxScaler and evaluate it against other 

scalers. Finding the min-max scaler transformation is done by 

solving Equations 3 and 4. 

𝑋𝑠𝑡𝑑 =  
(𝑥−𝑥.min (𝑎𝑥𝑖𝑠=0)

(𝑥.max(𝑎𝑥𝑖𝑠=0)−𝑥.min(𝑎𝑥𝑖𝑠=0))
 (3) 

x scaled = x std  ∗ (max − min) + min (4) 

Where min, max = feature_range. 

Next, these properties are encoded and then added back 

to the dataset's double list of attributes. 

Using the train_test_split() method, we split our data into 

two sets: one for training and one for testing. Data sorting by 

features (X) and labels (y) should be our top priority. The 

dataframe's constituent parts are X_train, X_test, y_train, and 

y_test. The X_train and y_train datasets are used to train and 
fit the model. To determine whether the model accurately 

labels the data and yields the intended outcomes, use the 

X_test and y_test sets. Different sizes for the train and test sets 

can be explicitly tested. Maintaining larger train sets than test 

sets is advised. LSTM Neural Networks receive a scalar 

normalization object with test_x, train_x, and test_y as inputs. 

A few parameters, such as train_X1.shape [1] and 

train_X1.shape [2], can be used to introduce the Long Short-

Term Memory (LSTM) model. With a single feature, ten 

sample units, and a TRUE return sequence, it functions in a 

one-dimensional space. Next, the "relu" activation function 

and a dense layer with a kernel size of one are introduced. In 
a densely connected Neural Network, the dense layer 

effectively learns new information by utilizing the activation 

functions of neurons. Here, we show how to use a simple 

LSTM Neural Network with two dense layers, one 1-

dimensional kernel, and one-dimensional inputs. When 

building a Neural Network, we use 100 epochs, a batch size of 

100, with the shuffle parameter set to false. This leads to a 

generation of .h5 file that eventually contains the trained 

information of the LSTM model. 

The justification for employing IterativeImputer, which is 

grounded in MICE (Multiple Imputation by Chained 
Equations), lies in its ability to deliver statistically sound 

multivariate imputations. These imputations maintain the 

inherent correlations among clinical attributes, resulting in 

estimates that are considerably less biased than those obtained 

through single-value imputations like mean or median filling 

[11]. In medical datasets, where variables like blood pressure, 

glucose levels, and heart rate markers are connected and must 

be imputed in a way that appropriately reflects their clinical 

co-variation, this method is essential. Similarly, when derived 

sequences (such as time-stamped glucose patterns, HRV 

intervals, or rehabilitation progressions) are essential for 

capturing disease-related dynamics, or when the dataset 
contains temporal, sequential, or ordered clinical features, an 

LSTM (Long Short-Term Memory) architecture is 

appropriate. LSTMs are specifically crafted to model long-

range dependencies and nonlinear temporal relationships, 

providing superior performance compared to static models 

when time structure is involved. However, in scenarios where 

features are non-temporal, independent, or tabular, a 

feedforward neural network or tree-based classifier might 

offer more efficient and interpretable modeling. 

Consequently, the methodological choices are consistent with 

the statistical structure and temporal characteristics of the 

clinical data. 

Phase 4: Non-Negative Matrix Factorization (NMF) – 

Here, we provide an input image and its properties in order to 
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detect potential brain strokes. By applying the non-negative 

matrix factorization technique to the input image, valuable 

features can be extracted from the data, making it easier to 

analyze and handle. We will provide more details on this topic 

in the article. After multiplying the provided image by the 
random image's feature matrix, it is deemed the original 

image. Following the aforementioned idea, the product matrix 

P is obtained by multiplying the feature matrix by the original 

matrix. As seen in equation 5, the inverse feature values are 

estimated using the product matrix P. 

A-1 = 1/|A| * Adj A (5) 

In this context, "Adj" refers to the adjoint of a matrix, 

which is a square matrix A = [aij]n×n, and "Aij" stands for the 

element aij's cofactor. Simply put, the adjoint is the transpose 

of the matrix. Another way of looking at it is that the adjoint 

of the matrix is the square matrix's transpose of a cofactor 

matrix. For a matrix A, the adjoint is denoted as adj A. This 
process generates the enhanced image features, which we can 

further use for testing purposes of the model. A decision tree 

is built based on the if-then-else tree to test the input data with 

the trained model of CB-CNN and LSTM. The combined 

results obtained from the CB-CNN and LSTM are utilized to 

show the detected and predicted data for the brain stroke. 

NMF was chosen because its parts-based, non-negative 

decomposition yields CT-image features that are clearer and 

more clinically interpretable than those produced by 

PCA/SVD, enhancing both lesion visibility and classifier 

effectiveness. The final integration through a decision tree 
layer combines the outputs of the CB-CNN and LSTM with 

transparent, rule-based logic that meets clinical 

interpretability standards. 

Through a simplified three-step procedure, the suggested 

fusion framework integrates clinical statistical patterns with 

spatial information collected from CT. Initially, part-based 

representations that highlight stroke-related structures are 

created using NMF to improve CT images. After that, an 

LSTM derives clinical dependencies from tabular data, and a 

Channel-Boosted CNN extracts deep spatial features. A 

simple, understandable decision tree classifier is then used to 

combine these complementary information streams, enabling 
transparent multimodal reasoning. By using both anatomical 

evidence and patient-specific risk factors, this integrated 

method overcomes the common drawbacks of earlier single-

modality models, improving clinical interpretability and 

diagnostic accuracy. 

Non-Negative Matrix Factorization (NMF) was applied 

to each CT scan during the fusion phase in order to decompose 

it into comprehensible components that highlight stroke-

related features more successfully than the original pixel 

values. The high-level spatial features from the CB-CNN and 

the clinical risk predictions generated by the LSTM model 

were then merged with the NMF-derived features. A decision 

tree classifier that provided explicit "if–then" diagnostic rules 

was fed these three feature sets. This simplified fusion method 

guarantees that the clinical parameters, deconstructed 

intensity patterns, and image data all contribute to the final 
stroke prediction in a dependable and comprehensible manner. 

The NMF-based multimodal fusion pipeline is depicted in the 

diagram below. 

Fig. 3 Multimodal fusion pipeline based on NMF 

4. Implementation 
4.1. CNN-based Model for Stroke Detection 

The training curves of the model show strong learning and 

efficient generalization. Over the course of 50 epochs, the 

accuracy graph shows a consistent rise in both training and 

testing accuracy. Training accuracy increased from roughly 

0.62 to roughly 0.97, while test accuracy closely followed, 

eventually reaching about 0.98 with just minor oscillations. In 

a similar vein, the loss graph shows a steady decline in both 

training and testing loss, with training loss falling from around 

0.62 to approximately 0.07 and test loss falling from 

https://www.google.com/search?sca_esv=745f5fe10f6754c9&sca_upv=1&authuser=0&hl=en-IN&sxsrf=ACQVn0-MPefQQSf1i5h_izBkiVeHL4afbg:1713002829141&q=A+%5E+-+1+%3D+1/%7CA%7C+*+Adj+A&spell=1
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approximately 0.60 to almost 0.03, with only a few 

fluctuations throughout the mid-epochs. Overall, efficient 

learning, strong convergence, and little overfitting are 

suggested by the accuracy curves' near alignment and the loss 

curves' steady downward trend. 

 
Fig. 4 Accuracy graph for the proposed model 

 
Fig. 5 Loss graph for the proposed model 

4.2. LSTM–based Model for Stroke Detection 

The accuracy and loss curves in the figure below show the 

LSTM model's training performance across 1000 epochs. 

Beginning at roughly 0.70 and progressively increasing to a 

final value of 0.9436, the accuracy curve shows a steady 

upward slope, indicating the model's ongoing improvement in 

classification skill throughout the training phase. The loss 

curve, on the other hand, exhibits a smooth downward trend, 

starting at 0.25 and falling to 0.0580, suggesting efficient 

optimization and a decrease in prediction error. When taken as 

a whole, these curves demonstrate consistent learning, 

appropriate convergence, and the general reliability of the 
LSTM model for stroke detection.  

 
Fig. 6 Loss graph for the proposed model 

 
Fig. 7 Accuracy graph for the proposed model 

5. Discussion 
The comparison table illustrates how current approaches 

are restricted by their reliance on single data modalities, 

insufficient preprocessing, poor feature augmentation, and 

ambiguous fusion methodologies, all of which impede clinical 

interpretability and generalizability. These difficulties 

highlight the apparent necessity for a coherent and open 

framework in research. In comparison to existing techniques, 

the suggested CB-CNN + LSTM + NMF system improves CT 

feature improvement, modeling clinical dependencies, 

robustness, diagnostic accuracy, and clarity. In order to clearly 

contextualize and highlight the contribution of the proposed 

model, the table below provides a comparative summary of 

earlier research. Utilizing an interpretable decision-tree 
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technique to integrate both modalities, resulting in improved 

A review of the literature reveals significant flaws in the 

automated stroke analysis techniques now in use, primarily 

because of their narrow focus on either imaging or 

physiological/clinical data. There are a few frameworks that 
effectively combine the two types of data in a way that is both 

clinically relevant and comprehensible. The diagnostic 

efficacy of signal-based techniques, such as HRV-MSPC 

analysis by Kodama et al. [1], EEG shapelet-based intention 

detection [8], ECG/PPG-derived prognostics [9], and AF 

classification using TransMixer-AF, is limited because they 

do not take radiological data into account. Image-focused 

models such as Tanveer et al.'s VGG16-NMF-GNB/LR 

pipeline [12] and Saleem et al.'s GA-BiLSTM approach [11] 

improve CT-based stroke prediction, but they are limited by 

standard CNN feature extraction, lack multimodal integration, 

and do not provide an interpretable feature breakdown. Other 
works that investigate "stroke-like" aspects in scene text or 

document processing [2, 4, 5] and rehabilitation-focused 

research using motion-capture or IMU-based systems [3, 6, 7] 

contribute to related topics but do not deal with diagnostic 

imagingWhen taken as a whole, these studies reveal recurrent 

problems, such as: (i) exclusive dependence on either imagery 

or tabular/signal data; (ii) absence of interpretable, parts-based 

enhancement techniques like NMF; (iii) inadequate 
integration of clinical variables through temporal-dependency 

models like LSTMs; and (iv) lack of transparent, clinically 

interpretable fusion mechanisms. The suggested CB-CNN + 

LSTM + NMF framework, which integrates channel-boosted 

CNN processing of CT images, NMF-driven decomposition 

for interpretable feature enhancement, and LSTM-based 

modeling of clinical attributes through a decision-tree 

mechanism that preserves interpretability, provides a unified, 

explainable multimodal architecture to address these problems 
In addition to achieving higher performance (98.12% 

accuracy, 98.75% precision, and 97% F1-score), this complete 

framework directly solves the modality isolation and 
transparency issues of earlier systems, proving the diagnostic 

usefulness of a comprehensive and explainable approach to 

stroke diagnosis. 

Table 1. Systematic evaluation of previous research and proposed CB-LSTM + NMF + CNN framework 

Ref Input Data Type 
Preprocessing 

Technique 
Methodology Feature Method Key Results 

[1] Kodama et 

al. 

HRV signals 

(animal MCAO) 

HRV extraction, 

time-series 

cleaning 

MSPC + HRV 

analysis 

Statistical HRV 

metrics 

82% sensitivity, 75% 

specificity; limited 

by small animal 

dataset and 

anesthesia confound; 

not transferable to 

humans 

[2] Zhong 

Zhang et al. 

Scene character 

images 

CSM-based stroke 

extraction 

DCSP pooling 

with stroke 

detectors 

Deep contextual 

stroke features 

Outperformed prior 

scene-text models 

(ICDAR2003, 

Chars74k, SVHN); 

domain-specific 

(non-medical) 

[3] Ying Xuan 

Zhi et al. 

Kinect skeletal 

motion 

Joint coordinate 

extraction 

Compensation 

detection 

classifiers 

Kinematic joint 

features 

Good performance 
on healthy subjects; 

poor generalization 

to stroke survivors 

[4] Zhengmi 

Tang et al. 

Scene text 

images 

Synthetic text 

augmentation 

Stroke-mask 

guided text 

erasure 

(inpainting) 

Stroke mask + 

partial 

convolution 

Preserves 

background texture; 

domain shift 

reduction; unrelated 

to medical imaging 

[5] Quang-

Vinh Dang et 

al. 

Document 

images 

Global & local 

edge extraction 

Adversarial 

binarization 

network 

Stroke boundary 

features 

Better handling of 

weak strokes in 

degraded documents; 

not applicable to CT 

stroke 

[6] Fu-Cheng 

Wang et al. 
IMU gait signals 

Timeline 

segmentation 

RNN for HS event 

detection 

Time-series gait 

features 

Up to 99.65% 
accuracy; targeted at 

gait event detection, 

not diagnostic 

imaging 
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[7] Shir Kashi 

et al. 

Motion-capture 

data 

Coordinate 

normalization 

Compensation 

detection model 

Spatial kinematic 

features 

85% macro 

precision; expensive 

capture hardware 

limits use 

[8] Thapanan 

Janyalikit et 

al. 

EEG signals 
Shapelet 

extraction 

Asynchronous 

BCI movement-

intent detection 

Time-series 

shapelet features 

First shapelet-based 

EEG detector; for 

rehabilitation, not 
diagnosis 

[9] Jaehak Yu 

et al. 

ECG + PPG 

biosignals 

Signal 

segmentation, 

filtering 

ML + CNN-

LSTM prognostics 

Bio-signal 

waveform features 

90–99.15% accuracy; 

focused on elderly 

prognostics, not CT-

based detection 

[10] Chenzhe 

Li et al. 

MITAT 

ultrasound 

(simulated + ex-

vivo) 

Simulation-based 

dataset 

ResAttU-Net for 

hemorrhage 

detection 

Attentional 

ultrasound 

radiomics 

Identifies transcranial 

bleeding; domain: 

acoustic imaging, not 

CT 

[11] Saleem et 

al. 
CT images 

Standard resizing, 

normalization 
GA + BiLSTM 

GA-selected 

image features 

Better than baseline 

ML models; small 

dataset, limited 

enhancement, and 

interpretability 

[12] Chi-
Huang Shih et 

al. 

EEG + VR 
interaction 

EEG filtering 
Remote VR-BCI 

rehabilitation 

system 

EEG 
compensatory 

patterns 

Novel rehab system; 
not related to early 

stroke detection 

[13] S.M. 
Mahim et al. 

1-lead ECG 
Noise filtering, 
segmentation 

TransMixer-AF 
Transformer + 
mixer features 

91–98% accuracy on 

AF detection; 
unrelated to CT-

stroke classification 

[14] Tanveer 
et al. 

CT brain images 
Standard 

preprocessing 
VGG16 + NMF + 

GNB/LR 
CNN features 

enhanced by NMF 

Up to 99.96% 

accuracy; closest 
prior work, but lacks 

multimodal fusion 

and interpretability. 

Proposed CB-

CNN + LSTM 

+ NMF 

Framework 

CT images + 

clinical/tabular 

data 

Absolute 

grayscale, channel 

boosting, MICE 

imputation, 

MinMax scaling 

CB-CNN for 

image learning + 

LSTM for clinical 

attributes + 

Decision-tree 

fusion 

NMF parts-based 

image 

enhancement + 

boosted channels 

+ temporal risk 

features 

98.12% accuracy, 

98.75% precision, 

97% F1-score; 

multimodal, 

explainable, and 

validated with cross-

metrics 

In the area of automated stroke detection, the suggested 

approach offers a number of significant advantages. Reliable 

diagnostic support is ensured by its excellent accuracy in 
diagnosing stroke conditions. The model can function 

consistently across a variety of medical inputs since it is 

resilient to changes in neuroimaging and healthcare data. The 

solution increases workflow productivity and minimizes 

manual intervention through its end-to-end automated 

learning and prediction pipeline. It is also appropriate for real-

world clinical settings because of its scalability, which enables 

efficient handling of big and complicated medical datasets. By 

integrating a hybrid model architecture that combines CB-

CNN, LSTM, and Decision Tree algorithms, the system 

further enhances decision-making and overall diagnostic 

performance, establishing a powerful and efficient solution for 

stroke detection. 

6. Results  
The proposed model for brain stroke detection is 

deployed using a Windows-based machine with 16 GB of 

primary memory and an Intel Core i7 processor. For the 

experiment, the model utilizes the Anaconda IDE repository 

for Spyder and Jupyter IDEs.  The developed model is 

subjected to rigorous evaluation using the confusion matrix 

parameters. The confusion matrix parameters are explained 

with the equations for accuracy, precision, recall, and macro 

F1. 
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Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (6) 

Precision(P) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (7)   

Recall(R) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (8)  

Macro − F1 =
2∗𝑃∗𝑅

𝑃+𝑅
  (9)  

Here, TP is True positive cases, TN is True Negative 

cases, FP is False positive cases, and FN is False Negative 
cases. The obtained confusion matrix scores are compared 

with those of [11]. In order to identify strokes in their earliest 

stages, authors have created a system that uses CT brain 

images in conjunction with a genetic algorithm and a 

Bidirectional Long Short-Term Memory (BiLSTM). To 

determine which features are most important for picture 

categorization, an evolutionary algorithm based on neural 

networks is employed. The model's performance was first 

evaluated using standard confusion matrix metrics, including 

accuracy, precision, recall, and macro-F1, calculated through 

Equations (6)–(9). These performance indicators were 

augmented with 95% confidence intervals obtained from 
bootstrap resampling (1,000 iterations) to improve statistical 

reliability beyond point estimates. This helped reduce the 

danger of optimistic bias in small to medium-sized datasets. 

Additionally, the dataset underwent stratified 5-fold 

cross-validation instead of relying only on a single train-test 

split. This method prevented overfitting to a particular split. It 

produced a more reliable estimate of real-world performance 

by maintaining class proportions throughout the folds and 

thoroughly testing the model's generalizability. Besides 

confusion matrix metrics, the study also included ROC-AUC 

and Precision–Recall AUC, crucial for assessing diagnostic 
systems, particularly in datasets with moderate class 

imbalance. The ROC-AUC measures the model's ability to 

discriminate across thresholds, while the PR-AUC more 

accurately reflects sensitivity to rare events, such as stroke-

positive cases. The obtained Accuracy, Precision, Recall, and 

F1-Score are compared with the methodologies of [11], such 

as GA_LSTM, GA_Bi_LSTM, with our hybrid model of 

CBCNN-LST. The recorded parameters are shown in Table 2 

below, and the respective graph is plotted in Figure 8. 

Table 2. Comparison of the confusion matrix parameters 

Models Accuracy Precision Recall F1_Score 

GA_LSTM 93.35 92 90.89 95 

GA_BiLSTM 96.45 98 93.5 96 

CBCNN-

LSTM 
98.12 98.75 95.65 97 

The obtained results clearly indicate that the model 

deployed in [11] is working on the CT images of the brain 

using the genetic algorithm and LSTM model.  The data 

quality in the model is moderately handled to obtain the 

results. The proposed system employs non-negative matrix 

factorization to enhance the accuracy of the model by 

combining the LSTM model with statistical data and the CB-

CNN model with CT imagery data. The result of this can be 
clearly depicted in the graph shown in Figure 8, where our 

model based on CBCNN-LSTM outperforms the results of 

[11] efficiently. 

 

Fig. 8 Confusion Matrix Comparison Graph 

7. Conclusion and Future Scope 
This research article is developed for the detection of 

brain stroke disease based on the CT images and user 

statistical data. This work is carried out by involving an 

imagery dataset for the CB-CNN model and statistical data for 

the LSTM model. Initially, the imagery dataset was 

preprocessed and converted into absolute grayscale to enhance 

the image’s channel. Once the channels are boosted, the CB-

CNN model is deployed for around 100 epochs to get good 
accuracy in training. This stage is followed by the 

preprocessing and imputation of the statistical data, which 

leads to establishing the correlation between the attributes 

using the Pearson correlation model. The correlated data is 

used to build the train and test data by splitting the 

preprocessed data. The efficient LSTM model obtains good 

accuracy and an RMSE of 0.238 for the prediction of brain 

stroke disease. The obtained results from both models are 

catalyzed by the non-negative matrix factorization to enhance 

the features of the input image; this version eventually yields 

the best result by incorporating the decision tree model. The 

proposed system yields 98.12 % accuracy, 98.75% precision, 
95.65% recall, and finally, a 97% F1 score. The obtained 

results are analyzed thoroughly to compare with the existing 

models, where we found that the performance of the CBCNN-

LSTM model is better in all respects. The proposed framework 

can use transformers in future work to improve training by 

incorporating older epochs. This procedure has the potential 

to be very extensive, and it can use a large number of 

parameters related to patients' lifestyles to forecast the onset 

of a brain stroke.
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