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Abstract - The leading cause of brain stroke is the sudden blocking of blood flow to the brain through a blood vessel or due to
damage to a blood vessel in the brain. More often, this brain stroke is the result of long-standing diseases that occur due to some
evil habits of patients. These diseases are often measured as high blood pressure, diabetes, high cholesterol, smoking, and a
sedentary lifestyle. Many deep learning models exist to detect the possibilities of brain stroke by considering the disease
parameters. But only finger-counting techniques are available, which eventually consider the lifestyle of the people to predict
the impact of a brain stroke. Hence, a multi-data hybrid model is required to evaluate the possibilities of causing a brain stroke
by using the imagery dataset and statistical dataset. The proposed model initially trains the imagery brain stroke dataset using
the channel boost convolutional neural network after boosting the channels to an absolute grayscale factor. On the other hand,
the proposed model considers the statistical dataset for training using the LSTM model. Finally, the input image and the
statistical data from the user are subjected to hon-negative matrix factorization to obtain the results of brain stroke predictions.
The obtained results are evaluated by the confusion matrix, which yields almost 98.12% accuracy, indicating the quality of our

model.

Keywords - Brain Stroke Detection, Deep learning, Convolution Neural Network, Long Short-Term Memory (LSTM), Hybrid
Neural Network.

1. Introduction

When there is a disruption in the blood flow to the brain,
it can cause brain tissue injury, which is known as a brain
stroke or cerebral vascular accident. A hemorrhagic stroke
occurs when a blood vessel bursts or leaks, while an ischemic
stroke occurs when an artery is blocked. Ischemic strokes
happen when blood flow to a portion of the brain is interrupted
or diminished. Brain tissue is deprived of oxygen and nutrients
as a result. Within minutes, cells in the brain start to die.
Hemorrhagic strokes are an additional kind of stroke. A brain
hemorrhage happens when a blood vessel in the brain ruptures
or spills. Damage to brain cells occurs as a result of an increase
in blood pressure. A medical emergency is a stroke.
Emergency medical care is of the utmost importance. Brain
damage and other consequences of a stroke can be lessened
with prompt emergency medical assistance. Stroke mortality
rates in the United States have been declining, which is
encouraging news. Effective treatments can also aid in the
prevention of stroke-related impairment. Of all stroke types,
this one occurs most frequently. A narrowing or blocking of
the brain's blood arteries causes this condition. Ischemia, a
decrease in blood flow, is the result of this. Fatty deposits that
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accumulate in blood arteries can lead to their constriction or
blockage. Another possible reason is the presence of foreign
bodies, such as blood clots, that travel through the circulatory
system, typically originating from the heart. Fatty deposits,
blood clots, and other foreign objects getting stuck in the
brain's blood arteries can cause an ischemic stroke. Additional
research is necessary to confirm the preliminary findings that
COVID-19 infection may raise the risk of ischemic stroke.
The leakage or rupture of a brain vessel causes the occurrence
of a hemorrhagic stroke. Brain hemorrhages, or bleeding
inside the brain, can be caused by a variety of medical issues
affecting the blood arteries. Problems with blood pressure
management are a risk factor for hemorrhagic stroke.

e Excessive use of anticoagulants, which are blood
thinners.

e Aneurysms, which are bulges that form in vulnerable
areas of the walls of blood vessels.

e Aconcussion, for example, after a vehicle crash.

e Deterioration of blood vessel walls caused by protein
deposits. "Cerebral amyloid angiopathy" is the term used
to describe this condition.

e | his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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An ischemic stroke can cause brain bleeding in some
instances. Arteriovenous Malformation rupture is an
uncommon but serious cause of brain hemorrhage. An
Abnormal Vascular Maze (AVM) is a network of blood
arteries with very thin walls.

To detect strokes using healthcare data and neuroimages
of human beings by employing a deep learning model,
specifically a channel boost convolutional neural network and
LSTM, through a decision tree. Stroke detection through
traditional methods is often slow and prone to human error.
There is a need for an automated and accurate system to
analyze healthcare data and neuro images. This study aims to
develop a deep learning model combining Channel-Boost
CNN and LSTM through a Decision Tree to improve stroke
detection accuracy and efficiency.

In a Transient Ischemic Attack (TIA), stroke-like
symptoms last only for a short time. However, TIAs do not
result in long-term impairment. A Transient Ischemic Attack
(TIA) occurs when blood flow temporarily stops to a portion
of the brain. As brief as five minutes could pass before the
drop occurs. Ministroke is another name for a transient
ischemic attack. A Transient Ischemic Attack (TIA) happens
when blood clots or fatty deposits restrict or block the blood
supply to a portion of the neurological system. If we suspect a
TIA, it is important to get emergency medical attention. The
symptoms alone cannot diagnose a stroke or transient
ischemic attack. A TIA suggests that the artery supplying
blood to the brain may be partially or fully blocked. Your
chance of suffering a stroke in the future is higher if you have
aTIA.

A noticeable gap exists in current automated stroke
detection methods. Modern systems often excel in either
image-based analysis using CNN architectures for detecting
and segmenting lesions or modeling clinical and time-series
data with LSTM networks. However, these complementary
data types are rarely combined into a cohesive framework.
Current methods typically do not (i) enhance CT image
features in a way that is interpretable and parts-based, (ii)
jointly model the statistical dependencies found in clinical risk
factors, or (iii) integrate multimodal information while
maintaining the clinical interpretability necessary for medical
validation. Previous hybrid studies, such as those using
genetic-algorithm-assisted feature selection with LSTM
processing [11], are limited by moderate image enhancement
capabilities, separate treatment of imaging and tabular data,
and opaque fusion strategies that undermine clinical trust and
transparency.

Therefore, there is an ongoing need for a unified,
explainable multimodal framework that effectively combines
non-negative matrix factorization for image decomposition,
channel-boosted CNNs for deep spatial representation, and
LSTMs for longitudinal and statistical modeling, all supported
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by rigorous validation protocols, such as cross-validation,
ROC-AUC, confidence intervals, and ablation studies.
Because it enables the rapid and reliable processing of medical
images, such as MRI and CT scans, deep learning is crucial in
the identification of brain strokes. It can identify stroke-
affected areas and classify images as normal or abnormal.

1. The deep learning models used are specifically
Convolutional Neural Networks (CNN), which fall into
two categories: image processing and abnormal brain
scan identification. The algorithm identified the types of
strokes after detecting complex patterns in the database.
Localization and Segmentation: Stroke detection is better
understood through medical imaging, where deep
learning is used. This area involves CNN models, such as
the U-Net, which shine

Prognosis and Prediction: A deep learning model has
been developed to predict strokes and determine the
outcomes for stroke patients. Deep learning involves
various factors, such as clinical features, data, and
imaging data, to accurately predict the problems.
Increased Diagnostic Precision: Previous studies have
shown that deep learning models can detect strokes more
accurately than traditional techniques and can also predict
outcomes more quickly.

CAD Systems: The deep learning model has been
integrated into the CAD system to help provide patients
with accurate results. These devices help detect efficiency
and reduce the risk of misdiagnosis.

There are various examples of CNN models such as
LeNet, SegNet, U-Net, ResNet, VGG16, and VGG19.

7. The Advantages of Deep Learning for Stroke Detection.
1.1. Precision

Deep learning algorithms are accurate in identifying and
classifying strokes. Automated analysis: Deep learning's
capacity to automate medical picture interpretation allows
radiologists to concentrate on other tasks. Efficiency boost:
Deep learning is a preferred choice for the diagnosis process,
providing accurate results. Developing customized treatment
plans that consider each patient's particular collection of
symptoms, medical history, and risk factors is one potential
application of deep learning in medicine.

Unlike traditional single-modality approaches or
previously proposed hybrid methods such as GA-driven
LSTM architectures, the primary research question of this
study is whether a multimodal diagnostic framework—one
that integrates Non-Negative Matrix Factorization (NMF) to
enhance CT image features, employs a channel-boosted
Convolutional Neural Network for spatial representation
learning, and incorporates a Long Short-Term Memory
(LSTM) network to model structured clinical variables, with
final inference achieved through an interpretable decision-tree
fusion—can improve interpretability, accuracy, and
robustness. This study sought to determine whether such an
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integrated system offers better interpretability, accuracy, and
robustness, and whether its methodological foundations and
validation provide a more compelling justification than
current models in the literature for stroke detection compared
to single-modality or previously reported hybrid approaches
(e.g., GA+LSTM).

2. Literature Survey

To improve patients' chances of receiving acute stroke
treatment, Tomonobu Kodama et al. [1] suggested an
algorithm for ischemic stroke identification that combines
HRV analysis with MSPC. This work applied the suggested
algorithm to experimental data gathered from animal
experiments using the MCAO model in rats. The data was
used as a feasibility study before being applied to human
patients. The HRV data were collected shortly after occlusion.
Its sensitivity was 82% and its specificity was 75%, according
to the application results. Among the study's caveats is its data
gathering process, which included issues, including an
insufficient quantity of HRV data for modeling and an
experimentally small number of animals.

Furthermore, the author's experiment could not rule out
the possibility of anesthesia's effect on HRV. The authors are
currently gathering clinical HRV data from stroke patients in
hospitals in order to develop an ischemic stroke detection
system for people. This is because the algorithm designed for
rats cannot be directly adapted to humans. Furthermore, a
bright shirt that measures electrocardiograms has undergone
accuracy evaluation testing in a clinical setting. [2] DCSP, a
new feature pooling method, was introduced by Zhong Zhang
et al. for character recognition in outdoor settings. Using the
contextual factor, the suggested DCSP reflects the spatial
context information of discriminative strokes and trains stroke
detectors with the discriminative strokes chosen from CSM.

To enhance the discrimination and robustness of the final
deep contextual confidence vectors, it is possible to pick the
most representative convolutional activation features from the
response areas based on detector scores and the contextual
factor. In comparison to various prior methods for scene
character identification, the experimental findings show that
the suggested DCSP performs better on three popular
databases: ICDAR2003, Chars74k, and SVHN. An automated
compensation detection system that recorded the joint
locations of healthy participants using Kinect during robotic-
assisted rehabilitation performed very well for LF, TR, and
SE, according to Ying Xuan Zhi et al. [3]. Trained with data
from stroke survivors, however, the same classifiers
performed poorly. The author discusses possible causes of
poor F1-scores. A new scene text erasing approach has been
proposed by Zhengmi Tang et al. [4] to solve the problems of
domain shift when using inpainting models pretrained on
street view or Places datasets and poor text location when
using one-step methods. This was achieved by training the
model exclusively on the author's enhanced synthetic text
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dataset. The model uses a predicted text stroke mask that is
created from cropped text pictures to inpaint the text region,
allowing for the preservation of more background
information. The author has developed a reasonable approach
for erasing scene text with texture restoration. It makes use of
a stroke mask prediction module, partial convolution layers,
and an attention block in the background inpainting module,
and a skip link between two modules.

[5] A new document picture binarization model was
introduced by Quang-vinh Dang et al., which addresses the
issue of weak or ambiguous strokes that are frequently left
disconnected following the binarization process in current
methods. The author embeds structural information of strokes
into the binarization network in order to maintain the strokes
in degraded document pictures following the binarization
process. This is the basis for the author's proposal of an
auxiliary job for adversarial learning of structural information
in terms of stroke boundary features, with the goal of
integrating these learned features into the primary task for
document picture binarization. The auxiliary task first gets
stroke boundary features by using shared global location
features and additional local edge characteristics. Second, the
author uses adversarial supervision of the acquired stroke edge
feature in the auxiliary task by leveraging boundary ground
truth. Incorporating domain-specific expertise into the model
is the crux of adversarial training.

An HS event-recognition gait detection model was
suggested by Fu-cheng Wang et al. [6]. Clinicians can use gait
event identification to assess gait performance, which in turn
helps with medication and rehabilitation strategy selections. It
has been shown that detecting gait events online can be
difficult. Hence, the author generated an RNN model capable
of real-time HS event recognition by collecting experimental
gait data using IMUs. With an average latency of 0.024 s and
an accuracy of 98.84%, the author used the LOOCYV approach
to demonstrate that RNN models can detect HS events in real
time. As an additional test, the author used the model on three
distinct groups of people with very varied gaits: healthy older
adults, stroke victims, and PD patients. The author's findings
confirm that RNN models can accurately detect HS events
with an average delay of 0.028 s and an accuracy of over
99.65%, regardless of the subjects' walking habits.

For rehabilitation, Shir Kashi et al. [7] developed a model
to detect compensations in the movements of stroke patients.
The author attained a macro-averaged precision of 85% across
all six movement compensations examined. Finding
compensations using data from stroke patients has never been
done before. The author employed an exact movement-
capture method in this case. The potential for stroke patients
to utilize the model system for home-based training could be
opened up in future research with a more cost-effective sensor
system. An in-clinic or at-home application would necessitate
such a cheap and user-friendly tracking device that could give
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real-time position information. [8] The development of an
algorithm for use in an asynchronous BCI system for stroke
rehabilitation was introduced by Thapanan Janyalikit et al. An
effective rehabilitation program is critical for a successful
recovery after a stroke. As a result, the authors suggest a new
and accurate method for detecting movement intentions in
EEG data using time series shapelets. An asynchronous BCI
system can employ the author's algorithm as a brain switch to
activate an electrical stimulator, thereby inducing brain
plasticity, which can aid in the rehabilitation of stroke patients.
This is the first instance when a shapelet-based algorithm has
been able to accurately discern movement intentions from
EEG data, as the author wants to stress.

[9] Using various biological signals of Electrocardiogram
(ECG) and Photoplethysmography (PPG) acquired from
walking as part of the elderly's everyday lives, Jaehak Yu et
al. present a system that offers semantic analysis of diseases
in the elderly. The suggested approach instantaneously detects
and predicts prognostic indicators of stroke disease in the
elderly by collecting numerous bio-signals of ECG and PPG
in real-time. Using a variety of biosignal datasets, researchers
ran a study on a machine learning-based prediction model that
involved segmenting the signal waveform; the model
produced reasonably accurate predictions and semantic
interpretations.  This  research  presents experimental
verification, using the proposed features, that prognostic
symptoms of stroke patients may be predicted with a 90%
accuracy rate using only ECG and PPG collected while
walking. By partitioning the general elderly and stroke
patients into separate 10-folder CV datasets, the author was
able to prove that their deep learning models could correctly
predict outcomes with a 91.56% success rate using C4.5
Decision Tree, a 97.51% success rate using Random Forest,
and a 99.15% success rate using CNN-LSTM.

[10] For the purpose of detecting transcranial brain
hemorrhages, Chenzhe Li et al. presented the DL-MITAT
modality to solve the problem of acoustic inhomogeneity. The
author suggests ResAttU-Net, A Novel Network Architecture
for DL-MITAT implementation. Instead of doing
experiments, the author uses the simulation method to
construct training sets, which is both practical and efficient.
The technique's validity is demonstrated by the author's ex
vivo studies with a lossless printed skull and a bovine skull
that is 8.1 mm thick. Preliminary results show that the DL-
MITAT approach can identify transcranial bleeding and
remove the adverse effects of acoustic inhomogeneity. [11] A
method for detecting strokes using machine learning
techniques has been proposed by Muhammad Asim Saleem et
al. For the purpose of validating the newly constructed model's
performance, an image-based dataset is utilized. The
suggested model utilizes BiLSTM and a genetic algorithm. To
identify important details in CT brain pictures, a genetic
method that relies on a neural network is used. The LSTM and
BiLSTM models are trained to anticipate strokes using these
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features. To get the best categorization, we compared the
performance of various K-folds.

In order to anticipate strokes, the author also
experimented with various machine-learning methods.
Compared to other models, the experimental findings
demonstrate that the suggested machine-learning model
performs better. The authors hope to employ more
sophisticated algorithms in the future to predict strokes,
thereby enhancing stroke detection automatically. Although
big datasets typically produce superior results, deep learning
models were used on a small dataset in this study.

[12] The study highlights the wide-ranging effects of
stroke on physical, behavioral, and cognitive processes, as
well as the possible connections to post-stroke dementia by
Chi-huang Shih et al. To encourage brain reconfiguration, the
author developed a Virtual Reality (VR)-based remote
rehabilitation system that combined rigorous training with
targeted learning activities. Physiotherapists can remotely
guide patients with this system, which utilizes BCI
technology. This method offers vital home-based therapy for
people with varied rehabilitation needs, including stroke
survivors, who face obstacles such as restricted medical access
and mobility issues. The use of EEG technology and real-time
compensatory detection is the main originality of this work.

In [13], in order to identify AF from 1D ECG data with
only one lead, S. M. Mahim et al. created the TransMixer-AF
model. The author's model performs admirably on both the
raw and cleaned datasets. In particular, the model attained an
accuracy of 91.66% with noisy data and 96.59% with
preprocessed data for the PhysioNet/CinC 2017 Database. The
MITBIH Database dataset had a record of 95.66% and the
other of 98.58%.

These outcomes prove that the author's approach
outperforms current algorithms and attains state-of-the-art
performance. On top of that, the model can accurately and
early detect AF by interpreting ECG data, which gives
clinically significant insights. [14] By combining state-of-the-
art deep learning and machine learning methods, Muhammad
Usama Tanveer et al. prove that the Neuro-VGNB method is
effective for detecting brain strokes.

The author accomplished remarkable gains in
classification accuracy by extracting features using the
VGG16 model and then improving these features within the
GNB framework using non-negative matrix factorization. The
remarkable accuracy score of 99.96% achieved by the Logistic
Regression model demonstrates the promising clinical
applications of the author's research. Additionally, the use of
k-fold cross-validation strengthens the credibility of the
author's results. It presents the author's method as a useful
resource for enhancing the early identification of brain
strokes.
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3. Proposed Model Methodology

The entire process used to create an effective and
automated stroke detection system is described in the
suggested model methodology. It explains every phase of the

system, starting with data collection and preprocessing, and
ending with the training of a hybrid model and the final
forecast. Figure 1 shows the brain stroke detection model that
was designed.

User Input
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Fig. 1 Proposed model for brain stroke detection using a hybrid data model

The steps involved in developing the model are described
in full below.

3.1. Description of the Dataset

The model was trained and evaluated using two publicly
accessible healthcare datasets, including patient medical
histories, vital signs, and neuroimaging data (such as MRI or
CT scans).

3.2. Ethical Issues

The generalization and performance of the model may be
impacted by institutional, ethical, or privacy restrictions that
limit access to big and well-annotated healthcare and
neuroimaging datasets. Strict adherence to data privacy
regulations, ethical approvals, and patient permission
procedures is necessary when handling sensitive healthcare
and neuroimaging data in order to guarantee data
confidentiality and compliance. The study should involve
ablation studies, external validation, and a thorough ethical
declaration in order to satisfy current standards in medical Al
research. To assess the precise contributions of each model
component (CB-CNN, LSTM, and NMF) to the overall
performance and demonstrate that the hybrid fusion
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architecture provides real benefits beyond its constituent parts,
ablation experiments are essential. Similarly, assessing the
model's generalizability and preventing dataset-specific
overfitting—a frequent problem in imaging-based stroke
prediction research—requires external validation using a
separate dataset. The handling of patient data, dataset
licensing, anonymization, any clinical hazards, and
compliance with regulations like the GDPR, HIPAA, or
institutional ethics requirements should all be explicitly
covered in the ethical statement. By including these
components, the suggested framework's trustworthiness,
transparency, and reproducibility are significantly increased,
guaranteeing that it meets the standards of the most recent
medical Al literature.

3.3. Phases of the Suggested Model

Phase 1: Absolute gray scaling and data pre-processing -
This is the initial step of the proposed model, where we
obtained the dataset from the following URL:
https://mww.kaggle.com/datasets/afridirahman/brain-stroke-
ct-image-dataset. Once the dataset is downloaded and
segregated into training and testing directories, it undergoes
the resizing process. A total of 1551 images are used for the
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‘normal’ class and 950 images for the “Stroke’ class. To resize
the images, the OpenCV library's cv2 alias is used with the
resize() method by passing the scaled width and height
parameters of 128 x 128. The machine's hardware limits
confirm its scaled width and height based on powers of 2 and
its factors. The resized images are stored in the same path by
overwriting the earlier locations. Once the dataset images are
resized, they are subjected to conversion into absolute
grayscale using the Pillow library of Python. In the process of
getting the absolute grayscale images, each image's absolute
path is extracted, and then it is read into RGB format. For each
pixel, RGB is extracted, and its mean is estimated to factorize
the same as a whole number [3]. This integer value will be
replaced with red, green, and blue channels to obtain the
absolute grayscale images. These images again replace their
original location to form the best data to train using the
channel boost Convolutional Neural Network deep learning
model. Removing RGB channels improves lesion contrast
learning and lowers noise since CT images naturally depict
tissue density in grayscale.

Hypoattenuation, sulcal effacement, loss of gray-white
differentiation, and hyperdense vascular signs can be easily
identified. The Channel-Boosted CNN architecture requires a
uniform intensity distribution to ensure stable feature
extraction, and for that, it is important to correctly input the
grayscale dataset [5].In order to guarantee statistical validity
and compatibility with later LSTM modeling, the relevant
clinical dataset underwent structured pre-processing
concurrently. Categorical variables such as sex, smoking
status, and hypertension are encoded using one-hot encoding
and label encoding, thereby enhancing both interpretability
and model performance. The Iterative Imputer generates
unbiased imputations by modeling inter-feature correlations
using chained equations, which helps in handling missing
values effectively. This method has been demonstrated to
perform better than single imputation or mean replacement by
lowering variance distortion and information loss [8].
Methods like Random Oversampling, Synthetic Minority
Oversampling Technique (SMOTE), or class-weighted loss
functions—all of which are generally advised to prevent
majority class bias and improve minority class recall in
medical prediction tasks—were used to address class
imbalance, which is especially prevalent in stroke datasets
where positive cases are fewer [4]. Together, these
preprocessing techniques guarantee that the clinical and
imaging inputs are balanced, statistically coherent, and
prepared for machine learning, providing a solid basis for
multimodal fusion in subsequent stages. An input image is
loaded, converted to RGB format, and then resized to a fixed
resolution of 128x128 pixels using the pseudo-code. To
guarantee that every image is scaled consistently before being
fed into the model, it makes use of the PIL package.

Pseudo code for Image Resizer -
from PIL import Image
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def getScaledimage(image_path):

imageob = Image.open(image_path).convert('RGB")

width, height = imageob.size

scaledwidth=128

scaledheight=128

imageob = imageob.resize((scaledwidth,scaledheight),
Image. ANTIALIAS)

return imageob

The pseudo-coding converts a color image into an
absolute grayscale image by analyzing each pixel’s RGB
values, finding their average, and swapping out the original
pixel using this one intensity value. This guarantees that each
pixel is converted into a consistent grayscale image.

Pseudo code for Absolute gray Scale-
ef getAbsoluteGrayscalelmage(imageob):
width, height = imageob.size
pix=imageob.load()
for i in range(width):
for j in range(height):
col=pix[i,j]
R=col[0]
G=col[1]
B=col[2]
avg=(int)(R+G+B)/3
absgray=int(avg)
pix[i,j]=(absgray,absgray,absgray)
return imageob

Phase 2: Channel boost Convolution Neural Network:
Phase 2's architecture and training methodology were founded
on proven deep learning concepts for medical picture
classification. Because of their extensive use, dependability,
and improved GPU performance for CNN-based biomedical
operations, TensorFlow and Keras were chosen [4]. In
accordance with  typical preprocessing  procedures,
ImageDataGenerator is used for picture loading and
normalization (scaling by 1/255), guaranteeing numerical
stability and accelerating convergence by keeping input values
within a constrained range [8]. Since medium batch sizes often
result in improved generalization in picture classification
tasks, a batch size of 64 was used to maximize GPU memory
efficiency while preserving gradient stability [12]. For
hierarchically extracting spatial characteristics in CT images,
from low-level edges to high-level stroke-related textures, the
CNN architecture uses a gradually deepening structure with
32-64-128 kernels (3x3), which is generally regarded as ideal
[2]. Because of its computing ease and capacity to handle
vanishing gradients, the ReLU activation function is
frequently used, which makes it easier to train deeper models
[10]. In radiological applications where lesions are confined,
the addition of MaxPooling2D layers (2x2) selectively
downsamples feature maps, lowering computational needs
while maintaining discriminative areas [5]. Dropout layers of
25-50% were added to reduce overfitting because research
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indicates that dropout considerably improves medical-
imaging CNNs' generalization ability by lowering neuron co-
adaptation [1].

The Flatten layer and succeeding thick layer with 1024
units enable the model to combine geographically scattered
features, providing a global representation appropriate for
classification. The final softmax output layer is the traditional
choice for binary/multiclass prediction, delivering normalized
probabilities that support clinical interpretability. The Adam
optimizer with a 0.0001 learning rate was chosen for its
adaptive moment estimation, which stabilizes gradients and
consistently outperforms standard optimizers in medical-
image CNN training [4].Training the model for 100 epochs
ensured sufficient convergence for moderately sized datasets,
avoiding premature stopping while minimizing the risk of
overfitting. The final model was saved in the h5 format, a
standard practice for reproducibility and deployment in
inference pipelines. Overall, each design choice, including
kernel configuration, activation functions, dropout usage, and
optimization strategy, is supported by best practices in the

deep learning literature and tailored for CT-based stroke
detection, where fine-grained texture patterns and noise
robustness are critical.

Equations 1 and 2, consequently, show the Softmax and
Relu activation functions that were used.

eZi
ey ]
Zj=1 eZ]

0(2) = M)

Relu=max(0,x)

@

Where, x= neuron value

c = softmax
z = input vector
e = A normal exponential function for the

vector that is being entered

K number of classes

e = A normal exponential function for the
vector that is being entered for the output
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NMF Coefficients+ LSTM Clinical Features]

Decision Tree Classifier

Stroke Output (Normal/Stroke)

LSTM Output
(clinical risk)

Fig. 2 Architecture of CB-CNN
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The Channel Boost Convolutional Neural Network

architecture is depicted above in Figure 2.

Phase 3: LSTM Training: For the process of statistical
dataset evaluation, a dataset in .csv format is obtained.
URL.:https:/www.kaggle.com/datasets/csepython/brain-
stroke. This dataset contains the following attributes: gender,
age, hypertension, heart disease,ever_married,work_type,
Residence_type,avg_glucose_level,bmi,smoking_status, and
stroke. We use the pandas library to read the dataset into its
respective object. Once the dataset is loaded as an object, it is
converted into a double-dimensional list. This list estimates
the mean and standard deviation, and thereafter, the histogram
of each attribute is evaluated for 25%, 50%, and 75% of the
maximum values. This step is followed by the respective
histogram plots that indicate the distribution of the attribute
values.

After this, we estimate the entropy of the data types in the
dataset (e.g., strings and floats) by collecting information on
the dataset's properties. A heat map is estimated for each
attribute using the oversampled data. To do this, we compare
the transition data at various points in the sorting process and
determine the overall amount of missing data as well as the
percentage of missing data. A label encoder is formally passed
to the fit transform function for imputation for every object in
the attributes. To achieve multiple imputation using chained
equations, the Iterativelmputer() function is used, which
yields the object of multiple imputation. Following the
transformation of the attributes using the fit transformer, this
is utilized to impute the missing attributes. The technique
entailed applying encoding to category characteristics for
attributes during this specific phase. Using the minmax scalar
function, standardized numerical characteristics were
produced using Standard Scaling. Using the minmaxscaler, we
can alter the features and scale them within a specified range.

For each feature on the training set, this estimator
performs its own scaling and translation to bring it within the
given range, say, from 0 to 1. No amount of linear scaling
using MinMaxScaler—where the most significant data point
represents the maximum and the lowest the minimum-—can
reduce the impact of outliers. Check out the visual
representation of MinMaxScaler and evaluate it against other
scalers. Finding the min-max scaler transformation is done by
solving Equations 3 and 4.

(x—x.min(axis=0)

©)

X =
std (x.max(axis=0)—x.min(axis=0))

X scaled = Xstq * (Max — min) + min 4
Where min, max = feature_range.

Next, these properties are encoded and then added back
to the dataset's double list of attributes.
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Using the train_test_split() method, we split our data into
two sets: one for training and one for testing. Data sorting by
features (X) and labels (y) should be our top priority. The
dataframe’s constituent parts are X_train, X_test, y_train, and
y_test. The X_train and y_train datasets are used to train and
fit the model. To determine whether the model accurately
labels the data and yields the intended outcomes, use the
X_testandy_test sets. Different sizes for the train and test sets
can be explicitly tested. Maintaining larger train sets than test
sets is advised. LSTM Neural Networks receive a scalar
normalization object with test_x, train_x, and test_y as inputs.
A few parameters, such as train_Xl.shape [1] and
train_X1.shape [2], can be used to introduce the Long Short-
Term Memory (LSTM) model. With a single feature, ten
sample units, and a TRUE return sequence, it functions in a
one-dimensional space. Next, the "relu™ activation function
and a dense layer with a kernel size of one are introduced. In
a densely connected Neural Network, the dense layer
effectively learns new information by utilizing the activation
functions of neurons. Here, we show how to use a simple
LSTM Neural Network with two dense layers, one 1-
dimensional kernel, and one-dimensional inputs. When
building a Neural Network, we use 100 epochs, a batch size of
100, with the shuffle parameter set to false. This leads to a
generation of .h5 file that eventually contains the trained
information of the LSTM model.

The justification for employing Iterativelmputer, which is
grounded in MICE (Multiple Imputation by Chained
Equations), lies in its ability to deliver statistically sound
multivariate imputations. These imputations maintain the
inherent correlations among clinical attributes, resulting in
estimates that are considerably less biased than those obtained
through single-value imputations like mean or median filling
[11]. In medical datasets, where variables like blood pressure,
glucose levels, and heart rate markers are connected and must
be imputed in a way that appropriately reflects their clinical
co-variation, this method is essential. Similarly, when derived
sequences (such as time-stamped glucose patterns, HRV
intervals, or rehabilitation progressions) are essential for
capturing disease-related dynamics, or when the dataset
contains temporal, sequential, or ordered clinical features, an
LSTM (Long Short-Term Memory) architecture is
appropriate. LSTMs are specifically crafted to model long-
range dependencies and nonlinear temporal relationships,
providing superior performance compared to static models
when time structure is involved. However, in scenarios where
features are non-temporal, independent, or tabular, a
feedforward neural network or tree-based classifier might
offer more efficient and interpretable  modeling.
Consequently, the methodological choices are consistent with
the statistical structure and temporal characteristics of the
clinical data.

Phase 4: Non-Negative Matrix Factorization (NMF) —
Here, we provide an input image and its properties in order to
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detect potential brain strokes. By applying the non-negative
matrix factorization technique to the input image, valuable
features can be extracted from the data, making it easier to
analyze and handle. We will provide more details on this topic
in the article. After multiplying the provided image by the
random image's feature matrix, it is deemed the original
image. Following the aforementioned idea, the product matrix
P is obtained by multiplying the feature matrix by the original
matrix. As seen in equation 5, the inverse feature values are
estimated using the product matrix P.
A-1=1/|A] * Adj A (5)
In this context, "Adj" refers to the adjoint of a matrix,
which is a square matrix A = [aijlnxn, and "Aij" stands for the
element aij's cofactor. Simply put, the adjoint is the transpose
of the matrix. Another way of looking at it is that the adjoint
of the matrix is the square matrix's transpose of a cofactor
matrix. For a matrix A, the adjoint is denoted as adj A. This
process generates the enhanced image features, which we can
further use for testing purposes of the model. A decision tree
is built based on the if-then-else tree to test the input data with
the trained model of CB-CNN and LSTM. The combined
results obtained from the CB-CNN and LSTM are utilized to
show the detected and predicted data for the brain stroke.

NMF was chosen because its parts-based, non-negative
decomposition yields CT-image features that are clearer and
more clinically interpretable than those produced by
PCA/SVD, enhancing both lesion visibility and classifier
effectiveness. The final integration through a decision tree
layer combines the outputs of the CB-CNN and LSTM with
transparent, rule-based logic that meets clinical
interpretability standards.

Through a simplified three-step procedure, the suggested
fusion framework integrates clinical statistical patterns with
spatial information collected from CT. Initially, part-based
representations that highlight stroke-related structures are
created using NMF to improve CT images. After that, an
LSTM derives clinical dependencies from tabular data, and a
Channel-Boosted CNN extracts deep spatial features. A
simple, understandable decision tree classifier is then used to
combine these complementary information streams, enabling
transparent multimodal reasoning. By using both anatomical
evidence and patient-specific risk factors, this integrated
method overcomes the common drawbacks of earlier single-
modality models, improving clinical interpretability and
diagnostic accuracy.

Non-Negative Matrix Factorization (NMF) was applied
to each CT scan during the fusion phase in order to decompose
it into comprehensible components that highlight stroke-
related features more successfully than the original pixel
values. The high-level spatial features from the CB-CNN and
the clinical risk predictions generated by the LSTM model
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were then merged with the NMF-derived features. A decision
tree classifier that provided explicit "if-then" diagnostic rules
was fed these three feature sets. This simplified fusion method
guarantees that the clinical parameters, deconstructed
intensity patterns, and image data all contribute to the final
stroke prediction in a dependable and comprehensible manner.
The NMF-based multimodal fusion pipeline is depicted in the
diagram below.

CT Image Input

|

Preprocessing
(128=128) ( grayscale,
normalize)

v

MNon-Negative Matrix Factorization
A = \Iﬁ~i x H
W = Basis (parts) H = Coefficients

i

NMF Feature Map Reconstruction

Parallel Feature Streams
CB-CNN Extracted
Spatial Features

LSTM Output (clinical risk)

Feature Fusion (Concatenation)
[CNN Features + NMF Coefficients+ LSTM Clinical Features]

i

Decision Tree Classifier

i

Stroke Output
(Mormal/Stroke)

Fig. 3 Multimodal fusion pipeline based on NMF

4. Implementation
4.1. CNN-based Model for Stroke Detection

The training curves of the model show strong learning and
efficient generalization. Over the course of 50 epochs, the
accuracy graph shows a consistent rise in both training and
testing accuracy. Training accuracy increased from roughly
0.62 to roughly 0.97, while test accuracy closely followed,
eventually reaching about 0.98 with just minor oscillations. In
a similar vein, the loss graph shows a steady decline in both
training and testing loss, with training loss falling from around
0.62 to approximately 0.07 and test loss falling from
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approximately 0.60 to almost 0.03, with only a few
fluctuations throughout the mid-epochs. Overall, efficient
learning, strong convergence, and little overfitting are
suggested by the accuracy curves' near alignment and the loss
curves' steady downward trend.

model accuracy
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Fig. 4 Accuracy graph for the proposed model
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Fig. 5 Loss graph for the proposed model
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4.2. LSTM-based Model for Stroke Detection

The accuracy and loss curves in the figure below show the
LSTM model's training performance across 1000 epochs.
Beginning at roughly 0.70 and progressively increasing to a
final value of 0.9436, the accuracy curve shows a steady
upward slope, indicating the model's ongoing improvement in
classification skill throughout the training phase. The loss
curve, on the other hand, exhibits a smooth downward trend,
starting at 0.25 and falling to 0.0580, suggesting efficient
optimization and a decrease in prediction error. When taken as
a whole, these curves demonstrate consistent learning,
appropriate convergence, and the general reliability of the
LSTM model for stroke detection.
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5. Discussion

The comparison table illustrates how current approaches
are restricted by their reliance on single data modalities,
insufficient preprocessing, poor feature augmentation, and
ambiguous fusion methodologies, all of which impede clinical
interpretability and generalizability. These difficulties
highlight the apparent necessity for a coherent and open
framework in research. In comparison to existing techniques,
the suggested CB-CNN + LSTM + NMF system improves CT
feature improvement, modeling clinical dependencies,
robustness, diagnostic accuracy, and clarity. In order to clearly
contextualize and highlight the contribution of the proposed
model, the table below provides a comparative summary of
earlier research. Utilizing an interpretable decision-tree
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technique to integrate both modalities, resulting in improved
A review of the literature reveals significant flaws in the
automated stroke analysis techniques now in use, primarily
because of their narrow focus on either imaging or
physiological/clinical data. There are a few frameworks that
effectively combine the two types of data in a way that is both
clinically relevant and comprehensible. The diagnostic
efficacy of signal-based techniques, such as HRV-MSPC
analysis by Kodama et al. [1], EEG shapelet-based intention
detection [8], ECG/PPG-derived prognostics [9], and AF
classification using TransMixer-AF, is limited because they
do not take radiological data into account. Image-focused
models such as Tanveer et al's VGG16-NMF-GNB/LR
pipeline [12] and Saleem et al.'s GA-BIiLSTM approach [11]
improve CT-based stroke prediction, but they are limited by
standard CNN feature extraction, lack multimodal integration,
and do not provide an interpretable feature breakdown. Other
works that investigate "stroke-like" aspects in scene text or
document processing [2, 4, 5] and rehabilitation-focused
research using motion-capture or IMU-based systems [3, 6, 7]

contribute to related topics but do not deal with diagnostic
imagingWhen taken as a whole, these studies reveal recurrent
problems, such as: (i) exclusive dependence on either imagery
or tabular/signal data; (ii) absence of interpretable, parts-based
enhancement techniques like NMF; (iii) inadequate
integration of clinical variables through temporal-dependency
models like LSTMs; and (iv) lack of transparent, clinically
interpretable fusion mechanisms. The suggested CB-CNN +
LSTM + NMF framework, which integrates channel-boosted
CNN processing of CT images, NMF-driven decomposition
for interpretable feature enhancement, and LSTM-based
modeling of clinical attributes through a decision-tree
mechanism that preserves interpretability, provides a unified,
explainable multimodal architecture to address these problems
In addition to achieving higher performance (98.12%
accuracy, 98.75% precision, and 97% F1-score), this complete
framework directly solves the modality isolation and
transparency issues of earlier systems, proving the diagnostic
usefulness of a comprehensive and explainable approach to
stroke diagnosis.

Table 1. Systematic evaluation of previous research and proposed CB-LSTM + NMF + CNN framework

Preprocessing

Ref Input Data Type Technigue Methodology Feature Method Key Results
82% sensitivity, 75%
specificity; limited
[1] Kodama et HRYV signals HRy extragtlon, MSPC + HRV Statistical HRV by small animal
al (animal MCAO) time-series analysis metrics dataset and
' cleaning anesthesia confound,;
not transferable to
humans
Outperformed prior
DCSP pooling scene-text models
[2] Zhong Scene character | CSM-based stroke with stroke Deep contextual (ICDAR2003,
Zhang et al. images extraction detectors stroke features Chars74k, SVHN);

domain-specific
(non-medical)

[3] Ying Xuan Kinect skeletal Joint coordinate

Compensation

Good performance

Kinematic joint on healthy subjects;

detection

Zhietal. motion extraction - features poor generalization
classifiers .
to stroke survivors
Preserves
Stroke-mask
. . . + :
[4] Zhengmi Scene text Synthetic text guided text Stroke f!‘aSk backgroupd te_xture,
X . partial domain shift
Tang et al. images augmentation erasure - o
L convolution reduction; unrelated
(inpainting) T
to medical imaging
Better handling of
[.5] Quang Document Global & local Adve_rsa(lal Stroke boundary weak strokes in .
Vinh Dang et . . binarization degraded documents;
images edge extraction features .
al. network not applicable to CT

stroke

[6] Fu-Cheng
Wang et al.

Timeline

IMU gait signals segmentation

RNN for HS event

Up to 99.65%
accuracy; targeted at
gait event detection,

not diagnostic

imaging

Time-series gait

detection features
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85% macro
[7] Shir Kashi Motion-capture Coordinate Compensation Spatial kinematic | precision; expensive
et al. data normalization detection model features capture hardware
limits use
First shapelet-based
[8] Tha_pqnan . Shapelet Asynchronous Time-series EEG detector; for
Janyalikit et EEG signals . BCI movement- N
al extraction intent detection shapelet features rehab_llltatlon, not
' diagnosis
Sianal 90-99.15% accuracy;
[9] Jaehak Yu ECG + PPG gna’ ML + CNN- Bio-signal focused on elderly
- segmentation, . .
et al. biosignals - LSTM prognostics | waveform features | prognostics, not CT-
filtering .
based detection
MITAT . Identifies transcranial
[10] Chenzhe ultrasound Simulation-based ResAttU-Net for Attentional bleeding; domain:
. . hemorrhage ultrasound L2
Lietal. (simulated + ex- dataset - S acoustic imaging, not
. detection radiomics
Vivo) CT
Better than baseline
. ML models; small
[11] Saleem et CT images Standard resizing, GA + BILSTM .GA-seIected dataset, limited
al. normalization image features
enhancement, and
interpretability
[12] Chi- EEG + VR Remote VR-BCI EEG Novel rehab system;
Huang Shih et ; . EEG filtering rehabilitation compensatory not related to early
interaction i
al. system patterns stroke detection
91-98% accuracy on
[13] S.M. i Noise filtering, . Transformer + AF detection;
Mahim et al. 1-lead ECG segmentation TransMixer-AF mixer features unrelated to CT-
stroke classification
Up to 99.96%
accuracy; closest
[14] Tanveer CT brain images Standarq VGG16 + NMF + CNN features prior work, but lacks
et al. preprocessing GNB/LR enhanced by NMF - -
multimodal fusion
and interpretability.
98.12% accuracy,
Absolute _ CB-CNN for NMF parts-based 98.75% precision,
Proposed CB- CT images + rayscale, channel | 'Made learning + image 97% F1-score;
CNN + LSTM -1 1mag grayscate, LSTM for clinical enhancement + : '
clinical/tabular boosting, MICE . multimodal,
+ NMF ) . attributes + boosted channels -
data imputation, . . explainable, and
Framework . ! Decision-tree + temporal risk . .
MinMax scaling - validated with cross-
fusion features metrics

In the area of automated stroke detection, the suggested
approach offers a number of significant advantages. Reliable
diagnostic support is ensured by its excellent accuracy in
diagnosing stroke conditions. The model can function
consistently across a variety of medical inputs since it is
resilient to changes in neuroimaging and healthcare data. The
solution increases workflow productivity and minimizes
manual intervention through its end-to-end automated
learning and prediction pipeline. It is also appropriate for real-
world clinical settings because of its scalability, which enables
efficient handling of big and complicated medical datasets. By
integrating a hybrid model architecture that combines CB-
CNN, LSTM, and Decision Tree algorithms, the system
further enhances decision-making and overall diagnostic

performance, establishing a powerful and efficient solution for
stroke detection.

6. Results

The proposed model for brain stroke detection is
deployed using a Windows-based machine with 16 GB of
primary memory and an Intel Core i7 processor. For the
experiment, the model utilizes the Anaconda IDE repository
for Spyder and Jupyter IDEs. The developed model is
subjected to rigorous evaluation using the confusion matrix
parameters. The confusion matrix parameters are explained
with the equations for accuracy, precision, recall, and macro
F1.
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Accuracy = % (6)
Precision(P) = TPT+PFN (7
Recall(R) = TPTfFP )
Macro — F1 = 2;1;:? ©)

Here, TP is True positive cases, TN is True Negative
cases, FP is False positive cases, and FN is False Negative
cases. The obtained confusion matrix scores are compared
with those of [11]. In order to identify strokes in their earliest
stages, authors have created a system that uses CT brain
images in conjunction with a genetic algorithm and a
Bidirectional Long Short-Term Memory (BiLSTM). To
determine which features are most important for picture
categorization, an evolutionary algorithm based on neural
networks is employed. The model's performance was first
evaluated using standard confusion matrix metrics, including
accuracy, precision, recall, and macro-F1, calculated through
Equations (6)—(9). These performance indicators were
augmented with 95% confidence intervals obtained from
bootstrap resampling (1,000 iterations) to improve statistical
reliability beyond point estimates. This helped reduce the
danger of optimistic bias in small to medium-sized datasets.

Additionally, the dataset underwent stratified 5-fold
cross-validation instead of relying only on a single train-test
split. This method prevented overfitting to a particular split. It
produced a more reliable estimate of real-world performance
by maintaining class proportions throughout the folds and
thoroughly testing the model's generalizability. Besides
confusion matrix metrics, the study also included ROC-AUC
and Precision—-Recall AUC, crucial for assessing diagnostic
systems, particularly in datasets with moderate class
imbalance. The ROC-AUC measures the model's ability to
discriminate across thresholds, while the PR-AUC more
accurately reflects sensitivity to rare events, such as stroke-
positive cases. The obtained Accuracy, Precision, Recall, and
F1-Score are compared with the methodologies of [11], such
as GA LSTM, GA Bi_LSTM, with our hybrid model of
CBCNN-LST. The recorded parameters are shown in Table 2
below, and the respective graph is plotted in Figure 8.

Table 2. Comparison of the confusion matrix parameters

Models Accuracy | Precision | Recall | F1 Score
GA LSTM 93.35 92 90.89 95
GA BILSTM| 96.45 98 93.5 96
CBCNN-
LSTM 98.12 98.75 95.65 97

The obtained results clearly indicate that the model
deployed in [11] is working on the CT images of the brain
using the genetic algorithm and LSTM model. The data
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quality in the model is moderately handled to obtain the
results. The proposed system employs non-negative matrix
factorization to enhance the accuracy of the model by
combining the LSTM model with statistical data and the CB-
CNN model with CT imagery data. The result of this can be
clearly depicted in the graph shown in Figure 8, where our
model based on CBCNN-LSTM outperforms the results of
[11] efficiently.

GA_LSTM ®mGA_BILSTM = CBCNN-LSTM

100
98
96
94
92
90
88

86 ‘
Accuracy  Precision Recall F1 Score

Fig. 8 Confusion Matrix Comparison Graph

7. Conclusion and Future Scope

This research article is developed for the detection of
brain stroke disease based on the CT images and user
statistical data. This work is carried out by involving an
imagery dataset for the CB-CNN model and statistical data for
the LSTM model. Initially, the imagery dataset was
preprocessed and converted into absolute grayscale to enhance
the image’s channel. Once the channels are boosted, the CB-
CNN maodel is deployed for around 100 epochs to get good
accuracy in training. This stage is followed by the
preprocessing and imputation of the statistical data, which
leads to establishing the correlation between the attributes
using the Pearson correlation model. The correlated data is
used to build the train and test data by splitting the
preprocessed data. The efficient LSTM model obtains good
accuracy and an RMSE of 0.238 for the prediction of brain
stroke disease. The obtained results from both models are
catalyzed by the non-negative matrix factorization to enhance
the features of the input image; this version eventually yields
the best result by incorporating the decision tree model. The
proposed system yields 98.12 % accuracy, 98.75% precision,
95.65% recall, and finally, a 97% F1 score. The obtained
results are analyzed thoroughly to compare with the existing
models, where we found that the performance of the CBCNN-
LSTM model is better in all respects. The proposed framework
can use transformers in future work to improve training by
incorporating older epochs. This procedure has the potential
to be very extensive, and it can use a large number of
parameters related to patients' lifestyles to forecast the onset
of a brain stroke.
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