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Abstract - Project schedule management has long remained one of the unresolved issues, particularly in dynamic and uncertain 
environments where conventional methods are mostly inadequate for handling disturbances. This article introduces an intelligent 

and modular scheduling framework that integrates supervised machine learning, metaheuristic optimization, simulation, and 

deep reinforcement learning. The system employs machine and deep learning models, including Support Vector Machines (SVM), 

Random Forest, and Long Short-Term Memory (LSTM) networks for task duration prediction as well as delay detection and 

classification. The optimization components use Genetic Algorithms and Particle Swarm Optimization to produce efficient 

schedules that are both timely and resource-conscious. In addition, Monte Carlo simulation and fuzzy logic are applied to 

address uncertainty, while deep reinforcement learning autonomously selects the best rules to keep the system adaptable in real 

time. The study is validated by implementing the concept within the existing infrastructure using synthetic project data of complex 

types that include task dependencies, different risk levels, and stochastic disturbances. The experimental outcomes indicate that 

the proposed technique is not only flexible but also features self-healing capabilities, allowing it to respond to environmental 

changes without human intervention. The resulting method maintains task prediction accuracy and resilience, representing a 

promising direction in the field of intelligent scheduling research. 

Keywords - Project Scheduling, Machine Learning, Reinforcement Learning, Metaheuristic Optimization, Monte Carlo 

Simulation, Dynamic Environments. 

1. Introduction 
Project scheduling is arguably one of the most vital and 

complicated factors of project management, particularly when 

stable and certain conditions cannot be assumed. It has been 
shown that standard project management instruments such as 

the Critical Path Method (CPM) and the Program Evaluation 

and Review Technique (PERT) cannot efficiently handle real-

time uncertainties and overlapping task relationships [1, 2]. 

Due to the increasing amount of project data in various 

sectors, traditional scheduling methods have become 

increasingly ineffective in terms of adaptability and 

responsiveness in the construction, computing, and 

infrastructure sectors [3]. 

These industries are frequently trapped in a cycle of 

delays, resource shortages, and contractual penalties resulting 
from unpredictable risks such as weather events, supply 

disruptions, and workforce fluctuations. Consequently, the 

failure to adjust schedules dynamically in real-time may cause 

exorbitant costs and project inefficiencies of great magnitude. 

Researchers have sought to address this issue by developing 

AI-driven scheduling systems, which can be represented as 

predictive, adaptive, and optimized project scheduling [4, 5]. 

Machine learning techniques, e.g., Random Forest, Support 

Vector Machines (SVM), and Long Short-Term Memory 

(LSTM), have been implemented to estimate the duration of a 

task and locate delays based on historical or real-time data and 

thus have gained a lot of popularity recently [6, 7]. Uddin et 
al. [7], for instance, focus solely on delay prediction through 

Deep Learning Methods, while they do not discuss adaptive 

control or resource-constrained optimization. In the same way, 

Wei and Rana [6] came up with data mining methods for delay 

identification, but they did not facilitate simulation or 

reinforcement learning. Recently, Pal et al. [8], for example, 

have developed a natural-language-based assistant for 

construction scheduling, thereby making progress in user 

interaction, but real-time adaptability is still missing. The 

system proposed in this paper is a step towards connecting 
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these voids by an end-to-end hybrid architecture that 

integrates forecasting, optimization, uncertainty modeling, 

and dynamic adaptation within one framework. 

Around the same time, metaheuristic algorithms, such as 

the Genetic Algorithms (GA) or Particle Swarm Optimization 
(PSO), are famous for considering models of constrained 

resources. They also have the feature of avoiding scheduling 

problems, and in this role, they have been utilized for quite a 

long time [9, 10]. Moreover, the simulation of the project’s 

probabilistic aspects is performed using Monte Carlo and 

fuzzy logic methods that provide the additional power of 

robustness and the capability of considering numerous 

approaches [11, 12]. Deep Reinforcement Learning (DRL), a 

new sub-area of AI, can grant the system the decision-making 

power and thus genuine adaptivity through decision-making 

agents that keep interacting with the project environment to 

figure out the most efficient scheduling strategies [13]. 

Despite recent advances, current AI-based approaches 

remain fragmented. To address this limitation, this study 

introduces a unified, modular framework integrating 

prediction, optimization, uncertainty modeling, and adaptive 

control. This research proposes a next-generation scheduling 

system that aims to consolidate the complementary AI 

capabilities necessary for robust and adaptive planning. This 

is the first piece of work that combines machine learning–

based prediction, GA–PSO hybrid optimization, Monte Carlo 

and fuzzy–based robustness simulation, and deep 

reinforcement learning in a fully modular and end–to–end 
scheduling system. The suggested system is put to the test 

through synthetic project data with complex task 

dependencies, stochastic risks, and real-time disruptions, 

demonstrating its effectiveness in managing uncertainty and 

enhancing real-time adaptability. 

2. Related Work  
An AI-powered project scheduling system has received 

significant attention in numerous research papers. A common 

theme among these papers is that the system should be able to 

provide solutions that are flexible, accurate, and scalable. The 

different writers have proposed various ideas for the resolution 

of this complicated issue. 

In [1], the Author emphatically points out the importance 

of project planning and scheduling and, at the same time, 
states that using traditional methods in a rapidly changing 

environment is impractical. Bibliometric and scientometric 

reviews [3, 14, 15] provide a comprehensive overview of 

scheduling evolution and identify key milestones, particularly 

in innovative scheduling systems for the construction and IT 

sectors. 

The combination of machine learning and metaheuristics 

as intelligent systems has been proven to be a good idea in 

several studies. As an illustration, [6] has advanced a proposal 

for the creation of AI-run platforms that cover schedule 

forecasting and buffer management. A good example is [11], 

which has taken a few steps in that direction and identified the 

benefits of probabilistic simulation in uncertain situations. 

Several studies have reported that deep learning can be a 
source of accurate delay prediction, especially in the case of 

LSTM and DNNs. For example, [7] brought out the 

connection between deep learning and schedule delay 

prediction. Besides, [2] was instrumental in understanding 

how artificial intelligence with genetic algorithms and Support 

Vector Machines (SVM) work together to achieve high-

quality scheduling as the end goal. These models help to 

improve the prediction of task duration and assessment of the 

risk level. Recent work has delved deeply into the use of AI in 

construction scheduling. As an example, Pal et al. [8] invented 

a natural language-based scheduling assistant for construction 

projects and had very promising results in the way it 
understood the textual project data. On the other hand, their 

method is heavily concentrated on language understanding 

only, without any integrated forecasting, optimization, and 

adaptive control, which the proposed hybrid framework is 

designed to do. 

Another study [2] compared metaheuristic techniques 

such as GA and PSO in terms of their practicability for 

resource-constrained project scheduling. Moreover, the 

employment of fuzzy logic and Monte Carlo simulation has 

been revealed as more beneficial in dealing with uncertainty 

in [16, 17].  

One of the conceptual frameworks that has been put 

forward to merge these approaches is [18], which outlines the 

architecture for a modular resilient scheduling system 

consisting of AI agents able to learn from uncertain events. 

Furthermore, [10, 13] not only provide intelligent rule 

selection systems using reinforcement learning and AI models 

that are integrated with corporate data, but also streamline 

automated adaptation. 

As far as the system design is concerned, [19] proposes 

the use of AI technologies (LSTM + PSO) in the industrial 

project environment as proof of concept, elaborates on the 

strategic incorporation of AI technologies into the project 
management environment, and highlights the enabling role of 

AI technologies at the enterprise level for coordination, 

decision-making, and resource optimization. The 

improvement highlighted in the previous publications still has 

a major shared weakness, which is that the majority of the 

research works do not consider the issue of prediction, 

uncertainty, and adaptation in a single coherent system. The 

authors [4, 5] of the succeeding papers are of the opinion that 

the future of the scheduling system would be intelligent, 

modular, and autonomous software solutions that can 

collaborate with AI components throughout the lifetime of a 

project. 
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3. Materials and Methods  
This section presents the design of the proposed hybrid 

intelligent scheduling system, which integrates Machine 

Learning (ML), metaheuristic optimization, probabilistic 

simulation, and Deep Reinforcement Learning (DRL). The 

proposed architecture is inspired by multiple recent 

contributions, each addressing different but complementary 

aspects of intelligent project scheduling. While no single study 

encompasses all components simultaneously, collectively 

they form a robust foundation for developing a modular, 

adaptive, and data-driven framework suitable for complex and 

uncertain environments [20, 22]. A strong case for combining 
these methods is that there is now a growing demand for 

systems that are not only flexible but also able to forecast task 

durations, handle risks, and adapt to changes immediately. 

Conventional methods are not sufficient in dealing with these 

issues when there are changes in constraints and various 

unexpected events that may occur [23, 24]. To name a few, 

Deep Reinforcement Learning (DRL)-based scheduling [12, 

22] has gained a lot of traction in the field of dynamic 

manufacturing processes. In contrast, Monte Carlo-based risk 

models [11, 25] can still be relied upon for having a clear 

picture in the early stages of forecasting and conducting 

robustness analysis. 

The four layers of the suggested architecture are 

functionally linked to each other, working as a cohesive 

pipeline. The Prediction Layer (ML) initially goes through 

historical or simulated task data to perform a classification and 

prediction of the possible delays. Such outputs become input 

features for the Optimization Layer, which uses them to 

develop the initial schedules that consider resource constraints 

and sequencing. Subsequently, the schedule is reviewed in the 

Simulation Layer, where random variations (e.g., Delays, 

Resource Availability) are generated by Monte Carlo and 

fuzzy logic for robustness evaluation. The DRL Layer, in 
contrast, is always aware of the changes in the environment 

and learns the most effective rescheduling strategies by 

interacting with the simulation output. This continual 

feedback loop not only ensures that the system can react to 

unforeseen events in real-time but also that the overall 

performance is maintained. 

3.1. General System Architecture  

The proposed architecture consists of four interconnected 

layers: 

 Layer 1 – Prediction and Classification (ML) 

 Layer 2 – Scheduling Optimization (Metaheuristics) 

 Layer 3 – Uncertainty Modeling (Simulation) 

 Layer 4 – Continuous Adaptation (DRL) 

Each module communicates through a shared project 

repository and operates on a structured synthetic dataset 
reflecting realistic project features: resource limitations, task 

dependencies, and random disruptions [23, 25]. 

Fig. 1 Hybrid intelligent scheduling architecture 

3.1.1. Mathematical Formalization of the Hybrid Architecture 

To clarify the mode of the hybrid intelligent scheduling 

system that was proposed, the whole process is treated as a 

flow through four functional modules: a machine learning 

predictor, a metaheuristic optimizer, a robustness evaluator, 

and an adaptive reinforcement learning agent. The system 

works in a modular pipeline, where the output of each stage 

becomes the input of the subsequent one. The overall process 

is modeled as a composite function: 

The functional composition represents the process: 

𝑆𝒻ᵢₙₐₙ =  ℱᴰᴿᴸ ∘  ℱᵁᴺᶜ ∘  ℱᴼᴾᵀ ∘  ℱᴹᴸ(𝑋) (1) 

Where: 

 𝑋:  represents the input data (historical and real-time 

project parameters), 

 ℱᴹᴸ: is the delay prediction function based on Machine 

Learning Models (SVM, RF, LSTM), 

Synthetic Project Data  

(Historical + Real-Time) 

<<Layer1>>> 

Prediction and Classification  

(Random Forest, SVM, LSTM) 

<<Layer2>>> 

Scheduling Optimization  

(Genetic Algorithm, PSO) 

<<Layer3>>>> 

Uncertainty Modeling  

(Monte Carlo Simulation, Fuzzy Logic) 

<<Layer4>>>> 

Continuous Adaptation  

(Deep Reinforcement Learning) 

Rule Selection and  

Schedule Adjustment Engine 
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 ℱᴼᴾᵀ : generates an initial schedule using Metaheuristics 

(GA, PSO), 

 ℱᵁᴺᶜ : uncertainty modeling (Fuzzy logic and Monte 

Carlo), 

 ℱᴰᴿᴸ   : is the adaptive policy learned by a DRL agent to 

respond to real-time disruptions, 

 𝑆𝑓𝑖𝑛𝑎𝑙 : is the adaptive and robust schedule delivered to 

the user. 

1. Prediction Layer (ML): 

Ŷ =  ℱᴹᴸ(𝑋) =  { 𝑑̂ᵢ, 𝑟̂ᵢ }ⁿᵢ=1 (2) 

With 𝑑̂ᵢ and 𝑟̂ᵢ being the estimated task duration and delay 

risk for task iii, respectively. 

2. Optimization Layer: 

S₍ᵢₙᵢₙ₎ = ℱᴼᴾᵀ (Ŷ)  (3) 

Where S₍ᵢₙᵢₜ₎  is the initial feasible schedule. 

3. Robustness Evaluation: 

𝑆ᵣₒᵦᵤₙₙ =  ℱᵁᴺᶜ(𝑆₍ᵢₙᵢₙ₎)  (4) 

Representing a robustified version of the schedule 

through stochastic simulation and fuzzy evaluation. 

4. Adaptive Adjustment: 

S𝒻ᵢₙₐₗ = ℱᴰᴿᴸ   (Sᵣₒᵦᵤₛₜ, 𝐸ₜ) (5) 

Where 𝐸ₜ is the system’s current execution state at time t, 

and the DRL agent updates the schedule accordingly. 

3.2. Prediction via Machine Learning 

Inspired by approaches in [24, 26, 27], the ML module 

applies supervised learning to perform two key functions: 

 Classification: Support Vector Machines (SVM) and 

Random Forest algorithms identify critical tasks with 

high delay probability. 

 Forecasting: LSTM (Long Short-Term Memory) neural 

networks use performance histories and contextual 

features to predict task durations.  

These models are trained on synthetic datasets that are 

designed to mirror interdependent project structures and 

dynamic performance patterns [23]. 

3.2.1. Training Configuration 

Supervised Machine Learning Models (SVM, Random 

Forest, and LSTM) were trained with an 80/20 train-test split, 

and five-fold cross-validation was used to check 

generalization and robustness. LSTM model training went 

through 50 epochs with a batch size of 32, and the Adam 

optimizer was used along with a learning rate of 0.001. Mean 

Squared Error (MSE) was used as the loss function for 

regression tasks. To avoid overfitting, the procedure of early 

stopping was carried out on the basis of the validation loss.  

The model hyperparameters (for example, SVM kernel 

type, Random Forest tree depth, and LSTM hidden units) were 

determined by performing a grid search on the training set. 

3.3. Optimization Using Metaheuristic Algorithms 

Based on the approaches proposed in [20, 21, 28], the 

optimization layer uses two complementary metaheuristic 

algorithms: 

 Genetic Algorithms (GA): Generate initial candidate 

schedules by encoding task-resource mappings under 

precedence and resource constraints. 

 Particle Swarm Optimization (PSO): Refines these 
candidates to minimize makespan and balance resource 

load while improving resilience against disturbances. 

The combined GA-PSO strategy allows the system to 

explore large solution spaces effectively while adjusting to 

multi-objective requirements. 

3.4. Uncertainty Modelling: Monte Carlo Simulation and 

Fuzzy Logic 

Project environments are regularly uncertain as a result of 

random events that cannot be predicted. The system features 

the following elements to meet this challenge: 

 Monte Carlo Simulation: Simulates hundreds of different 

situations by changing the time a task takes, the 
availability of resources, and the sequence of events [19, 

25]. 

 Fuzzy Logic: Based on the work of [11, 12], fuzzy rules 

recreate the vagueness of the input, such as the experience 

of the team, the probability of the risk, and the 

responsiveness of the client, by adding the features of 

flexibility and interpretability. 

These features ensure that the system is dealing with the 

randomness and vagueness of project planning. 

3.5. Dynamic Adaptation via Deep Reinforcement Learning 
Based on recent changes in DRL-based scheduling [13, 

16, 22], the final stage employs a Deep Q-Network (DQN) 

agent: 

 The agent learns strategies by experimenting with a 

project simulator and selecting the best outcomes for 

long-term performance.  

 It changes the schedule promptly in the event of 

operational setbacks like task delay, resource conflict, or 

environmental changes. 



Issam TALKAM et al. / IJETT, 74(1), 142-151, 2026 
 

146 

Such a feature of the adaptation system, being strong and 

proactive, is constantly maintaining the schedule stability 

amidst the changing and unpredictable environment. 

3.6. Experimental Dataset 

In order to test the effectiveness of the proposed hybrid 
intelligent system, a well-structured synthetic dataset was 

developed to simulate project management scenarios in the 

real world. This synthetic dataset models the dynamic task 

interactions, resource limitations, risk factors, and execution 

uncertainties, which are common in industrial environments. 

The dataset consists of 100 interdependent tasks that are 

divided into four project categories: analysis, development, 

testing, and deployment. Each task record in the dataset is 

characterized by the main features necessary for training, 

optimization, simulation, and adaptation stages. The dataset 

schema is shown in Table 1. 

Table 1. Schema and description of attributes in the synthetic project 

dataset 

Column Name Description 

Task_ID Unique identifier for each task 

Project_ID Project identifier 

Task_Name Descriptive task name 

Duration_ 

Estimated 

Estimated duration according to the 

initial plan 

Start_ 
Date_ 

Planned 

Planned task start date 

End_Date_ 

Planned 
Planned task end date 

Dependencies 
Predecessor task(s) required to start 

this task 

Complexity_ 

Level 
Estimated task complexity 

Required_ 

Resources 
Number of person-days required 

Risk_Score 
Assigned risk probability (0 = low, 1 = 

high) 

Delay_ 

Observed 

Actual delay recorded (used for 

supervised ML training) 

Disruption_ 

Flag 

True if a disruption occurred during 

task execution 

Progress_% 
Real-time execution progress 

percentage 

MonteCarlo_ 

Variation 

Simulated variance under stochastic 

conditions 

Label_Delay_ 
Class 

Delay classification 

Simulation_ 

ScenarioID 

Identifier of the stochastic simulation 

scenario applied 

The dataset acts as the system’s four core elements and 

accordingly determines how each module works with the 

specific data features. The Machine Learning (ML) module 

utilizes features such as Delay_Observed, Dependencies, 

Risk_Score, and Label_Delay_Class to train predictive 

models and perform classification tasks. The optimization 

module uses Required_Resources, Dependencies, and 

Complexity_Level not only to generate but also, through 
iterations, refine feasible schedules under resource and 

precedence constraints.  

The simulation module uses MonteCarlo_Variation and 

Disruption_Flag in order to assess schedule robustness over a 

wide range of stochastic scenarios. Meanwhile, the DRL agent 

changes its scheduling policy regularly by using real-time 

inputs like Progress_%, disruption indicators, and simulation 

feedback. 

The synthetic dataset was constructed on the basis of 

typical patterns seen in large-scale construction and IT 

projects so that it is as close to the real as possible. The 

experimental results utilizing this dataset demonstrate 
significant advances in the prediction accuracy, schedule 

robustness, and adaptability over the conventional baseline 

methods [13, 23, 25, 26]. 

3.7. Sequence Diagram of System Execution 

To understand the hybrid intelligent scheduling system 

better, the authors present a UML sequence diagram that is 

depicted in Figure 2. The diagram visually represents the 

workflow of the system components, starting from the input 

provided by the user and ending with the final adaptive 

schedule output. Moreover, it schematically shows how the 

different system components work together during their on-
the-spot decision-making process. In the end, the user receives 

an adaptive and robust schedule from the system, which 

completes the intelligent scheduling cycle. First, the user loads 

both historical and real-time project data into the Shared Data 

Repository, which is the primary source of the structure input. 

The data is fed into the Prediction & Classification layer, using 

SVM, Random Forest, and LSTM models, is the unit that not 

only predicts delays but also estimates the durations of tasks. 

The Scheduling Optimization component receives these 

predictions and uses metaheuristic methods (GA and PSO) to 

draft a first schedule. 

The Uncertainty Modelling module is the place where 
Monte Carlo simulations and fuzzy logic are applied to assess 

the schedule’s trustworthiness under various uncertainty 

scenarios. A robustness check leads to the schedule being re-

optimized if a re-optimization request occurs; thus, the 

feedback loop with the optimization module is reopened to 

draw up another more reliable plan. 

The schedule is then sent to the Continuous Adaptation 

layer, where the Deep Reinforcement Learning (DRL) agent 

supervising the execution progress can make real-time 

adjustments to the schedule, provided that the changes are due 

to disruptions or real-time execution conditions. 
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Fig. 2 System workflow from data input to adaptive scheduling 

4. Results and Discussion 

This section presents the testing process used to verify the 

effectiveness of the hybrid intelligent scheduling system 

proposed. It was stated in Section 3.6 that the system’s 

evaluation was conducted through a synthetic dataset 

specifically designed. The criteria of the system are based on 

the four main features of the system, i.e., the precision of 

prediction, the value of the schedule optimization, the 

robustness of the system in the case of uncertainty, and the 

system’s adaptive reaction to changes in the environment. 

4.1. Prediction Performance (ML Module) 
The Random Forest, Support Vector Machines (SVM), 

and Long Short-Term Memory (LSTM), three supervised 
learning models, were trained with features like Risk_Score, 

Dependencies, Delay_Observed, and Label_Delay_Class. 

Their performance in predicting task delay risk was measured 

using the metrics of classification accuracy and F1 score. 

Table 2. Performance metrics of supervised learning models for project 

delay risk prediction 

Model 
Accuracy 

(%) 

F1-

Score 
Key Strength 

Random 

Forest 
89.6 0.87 

Best overall accuracy in 

delay classification 

SVM 85.2 0.83 

High precision for 

short-term delay 
categories 

LSTM 83.4 0.89 

Superior detection of 

medium and significant 

delays 

Figure 3 presents a visual comparison of the three models 

based on their accuracy and F1-score. As shown, Random 

Forest achieved the highest accuracy, while LSTM led in F1-

score, indicating its strength in detecting more complex delay 

patterns. 

Fig. 3 Performance metrics of supervised learning models for project 

delay risk prediction 

These results illustrate a compromise between accuracy 

and recall performance. Random Forest, for example, when 

used as a single classifier, achieved the best overall accuracy 
(89.6%). However, the LSTM model’s F1-score (89.0%) 

reveals the capability of the model for recognition of not only 

the popular but also the rare delay classes. On the other hand, 
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SVM was a little bit lower in both metrics but fairly 

demonstrated the classification without mistakes with fewer 

false positives. LSTM is a suitable method for temporal risk 

modeling because delay propagation depends on sequential 

patterns, where such a model can recognize them easily. 

4.2. Optimization Quality (GA–PSO Scheduling Engine) 

The hybrid GA–PSO optimization module was assessed 

based on three key scheduling metrics: 

 Makespan reduction 

 Resource load balancing 

 Precedence constraint compliance 

Table 3. Comparison of scheduling performance metrics between 

baseline heuristics and proposed GA–PSO hybrid optimization 

Metric 
Baseline 

(Heuristics) 

GA 

Only 

PSO 

Only 

GA + PSO 

(Proposed) 

Average 

Makespan 

(in days) 

138 124 122 114 

Resource 

Overload 

Incidents 

18 13 12 9 

Precedence 

Constraint 

Compliance 

84.6% 91.2% 93.7% 96.3% 

Both GA and PSO independently contributed to the 

enhancement of the performance metrics in all the cases when 

they were compared to the baseline heuristics. GA alone 

managed a 10.1% makespan reduction (from 138 to 124 days) 

and a 27.8% reduction of the overload incidents (from 18 to 
13), while PSO resulted in 11.6% and 33.3% decreases in 

Makespan and overloads, respectively. Constraint compliance 

has been significantly increased to 91.2% with GA and 93.7% 

with PSO, compared to 84.6% in the baseline. The hybrid GA-

PSO method was more advantageous than any of the two 

alone, with a 17.5% reduction in Makespan, only a few 

overloads, and a 96.3% compliance rate. These improvements 

are evidence that the hybrid approach effectively combines the 

GA’s capability for deep exploration with the PSO’s ability 

for fast convergence. GA is the one that ensures an exhaustive 

search of the scheduling space, whereas PSO is the one that 

can strictly adjust candidate solutions to make them more 

accurate and feasible. 

Multi-objective optimization is especially important in 

dynamic project environments where the availability of 

resources and the dependencies of tasks may suddenly change. 

Through the combination of two algorithms, the system 

becomes more adaptable to the complexity of the problem 

than the methods using either one of the heuristics or single-

heuristic methods. Basically, it results in quicker turnaround 

of projects, fewer scheduling conflicts, and higher operational 

stability. 

 
Fig. 4 Comparative performance of optimization strategies across key scheduling metrics 

Table 4. Robustness evaluation metrics comparing non-optimized schedules and GA–PSO with simulation 

Robustness Metric Without Optimization With GA+PSO + Simulation 

Scenario Feasibility Rate (%) 49.3 70.1 

Critical Path Sensitivity (Δ Days) 14.8 11.6 

Fuzzy Risk Zone Classification Accuracy – 91.4% 

4.3. Robustness Evaluation under Simulation 

Three hundred Monte Carlo simulations were run per 

schedule to check schedule robustness under uncertainty. Task 

durations were randomly changed within ±10% to ±30% using 

MonteCarlo_Variation, and fuzzy logic was used considering 

Complexity_Level and other qualitative attributes. 
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Figure 5 illustrates the distribution of scenario feasibility 

rates across the 500 Monte Carlo simulations. Without 

optimization, the results show a wider spread and a lower 

average feasibility of around 49%, indicating greater 

instability. In contrast, the GA–PSO optimized schedules are 
more concentrated around 70%, with less variation, 

demonstrating greater reliability under uncertainty. In 

practical terms, 70.1% of the optimized schedules remained 

feasible in over 90% of simulated scenarios, compared to just 

49.3% without optimization. Figure 6 presents a comparison 

of the two methods in terms of the critical path sensitivity. The 

critical path fluctuated more in the case of no optimization, as 

the differences could reach even 25 days in some scenarios. 

By means of the GA–PSO method, this fluctuation was 

drastically reduced, as the majority of the values were within 

the 10–14-day range. Such a decrease in the range of values is 

a clear indication that the optimized schedules have become 
less reactive to uncertainty and thus planning reliability has 

been enhanced. 

 
Fig. 5 Statistical distribution of scenario feasibility rates across 500 

monte carlo simulations 

 
Fig. 6 Box plot of critical path sensitivity under monte carlo simulation 

The GA–PSO + Simulation pipeline achieved a 91.4% 

classification accuracy in fuzzy risk zone assignment, based 

on qualitative and probabilistic attributes. This helped support 

human interpretability in risk-prone conditions, especially for 

ambiguous project phases. 

4.4. Adaptive Behaviour of the DRL Agent 

The Deep Q-Network (DQN) reinforcement learning 

agent was trained over 100 rescheduling episodes using state 

inputs, including Progress%, Disruption Flag, and Task 

Dependencies. 

Table 5. Comparison of performance metrics between static re-planning 

and the proposed DRL-based adaptive scheduler 

Performance Metric 
Static Re-

Planning 

DRL Agent 

(Proposed) 

Average Recovery 

Time 
– 4.2 

Recovery Success 

Rate (%) 
72.8 90.3 

Reward Convergence – After 60 Episodes 

Average Delay 
Reduction (%) 

– 14.2% 

 

Based on the criteria detailed in Table 5, Figure 7 offers a 

visual comparison to emphasize the disparities between static 

re-planning and the DRL-based method. The DRL agent was 

far superior to the static methods in all the essential measures: 

it recovered the interrupted project more often, substantially 

decreased the delay of the project, and restored feasibility in 

fewer iterations. Such a graphical representation serves to 

confirm the agent’s capacity to adjust and interact 

appropriately with interruptions in changeable project 

situations.  

Fig. 7 Adaptive rescheduling performance: Static re-planning vs. DRL 

agent. 

The DRL agent achieved a remarkable performance of 

90% in restoring feasible schedules within five iterations of 

training and was also able to effectively respond to diverse 
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disruption scenarios such as resource unavailability and task 

reordering. These results illustrate the DRL agent’s capability 

to formulate adaptive recovery strategies through its 

interaction with the environment. A static re-planning, which 

always reacts in the same manner to disruptions, cannot be 
directly compared to an agent that modifies its operations 

based on the scenario context. The convergence at 60 episodes 

indicates the efficiency of learning. At the same time, the 

90.3% recovery success rate is a very strong point for its 

practical application to be considered as a tool for project 

continuity in a dynamic environment. 

4.5. Discussion 

The individual performance of each module, as presented 

above, highlights the capabilities of each component. This 

section merges these results to assess the overall functioning 

of the system as a whole. 

Table 6. Core contributions of each layer in the hybrid intelligent 

framework 

System Layer Primary Contribution 

Machine Learning 

(ML) 

Anticipates delays and supports 

informed pre-scheduling decisions 

Metaheuristic 

Optimizer 

Constructs efficient, constraint-

compliant schedules 

Simulation 

Module 

Enhances robustness against stochastic 

variability 

DRL Agent 
Learns to adjust plans in real-time 

under disruptions reactively 

The different layers of the system serve distinct but 

essential roles: Machine Learning provides prediction, 

metaheuristics generate good scheduling, simulation verifies 

the stability, and deep reinforcement learning enables 

adaptability. On its own, the proposed system forms a 
modular, extensible, and intelligent scheduling architecture. 

This system, which employs learning-based prediction, 

probabilistic simulation, and autonomous control, is a robust 

solution for unstable industrial environments such as 

construction, IT deployment, and manufacturing. 

Nevertheless, a few limitations have to be admitted. To 

illustrate, the DRL agent’s performance depends on the 

reward function’s design and the selection of state variables; 

thus, different project types may need different tunings. 

Besides, the robustness evaluation was based on synthetic 

simulation data; therefore, applying the same approach to real-
world industrial datasets will serve as the next validation 

stage. The subsequent investigation might also consider the 

multi-agent reinforcement learning or attention-based models 

to raise the level of scalability and decision quality. 

5. Conclusion and Future Work  
This paper presents a hybrid intelligent scheduling system 

that integrates elements of machine learning, metaheuristic 

optimization, uncertainty modeling, and deep reinforcement 

learning in a single architecture for dynamic project 

environments. The system consists of delay prediction (using 

SVM, Random Forest, and LSTM), schedule optimization 

(using GA and PSO), robustness analysis (using Monte Carlo 

and fuzzy logic), and adaptive decision-making (using a Deep 

Q-Network agent). The results of the experiments show that 

the implementation of this modular and layered architecture 
significantly enhances adaptability, robustness, and, overall, 

the performance of project scheduling in uncertain 

environments. The hybrid GA–PSO optimizer was successful 

in shortening Makespan and improving constraint compliance. 

The fuzzy and Monte Carlo simulations validated the 

reliability of the produced schedules, while the DRL agent 

was very efficient in real-time schedule adjustments, thus it 

was able to achieve over 90% of recovery success during 

disruption scenarios. 

Future work will focus on various ways of broadening this 

framework. For example, the use of real industrial datasets 

from sectors such as construction and IT would make the 

system more generalizable. Moreover, by mixing in more 

learning methods such as attention-based Neural Networks 

and Transformer Models, the accuracy of forecasting could be 

improved. Also, the reinforcement learning part could be 

extended to cater to multi-agent collaboration, and human-in-

the-loop decision support may be added as well to give the 

scheduler more autonomy and make it more reliable. 
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