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Abstract - Project schedule management has long remained one of the unresolved issues, particularly in dynamic and uncertain
environments where conventional methods are mostly inadequate for handling disturbances. This article introduces an intelligent
and modular scheduling framework that integrates supervised machine learning, metaheuristic optimization, simulation, and
deep reinforcement learning. The system employs machine and deep learning models, including Support Vector Machines (SVM),
Random Forest, and Long Short-Term Memory (LSTM) networks for task duration prediction as well as delay detection and
classification. The optimization components use Genetic Algorithms and Particle Swarm Optimization to produce efficient
schedules that are both timely and resource-conscious. In addition, Monte Carlo simulation and fuzzy logic are applied to
address uncertainty, while deep reinforcement learning autonomously selects the best rules to keep the system adaptable in real
time. The study is validated by implementing the concept within the existing infrastructure using synthetic project data of complex
types that include task dependencies, different risk levels, and stochastic disturbances. The experimental outcomes indicate that
the proposed technique is not only flexible but also features self-healing capabilities, allowing it to respond to environmental
changes without human intervention. The resulting method maintains task prediction accuracy and resilience, representing a

promising direction in the field of intelligent scheduling research.

Keywords - Project Scheduling, Machine Learning, Reinforcement Learning, Metaheuristic Optimization, Monte Carlo
Simulation, Dynamic Environments.

1. Introduction

Project scheduling is arguably one of the most vital and
complicated factors of project management, particularly when
stable and certain conditions cannot be assumed. It has been
shown that standard project management instruments such as
the Critical Path Method (CPM) and the Program Evaluation
and Review Technique (PERT) cannot efficiently handle real-
time uncertainties and overlapping task relationships [1, 2].
Due to the increasing amount of project data in various
sectors, traditional scheduling methods have become
increasingly ineffective in terms of adaptability and
responsiveness in the construction, computing, and
infrastructure sectors [3].

These industries are frequently trapped in a cycle of
delays, resource shortages, and contractual penalties resulting
from unpredictable risks such as weather events, supply
disruptions, and workforce fluctuations. Consequently, the
failure to adjust schedules dynamically in real-time may cause
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exorbitant costs and project inefficiencies of great magnitude.
Researchers have sought to address this issue by developing
Al-driven scheduling systems, which can be represented as
predictive, adaptive, and optimized project scheduling [4, 5].
Machine learning techniques, e.g., Random Forest, Support
Vector Machines (SVM), and Long Short-Term Memory
(LSTM), have been implemented to estimate the duration of a
task and locate delays based on historical or real-time data and
thus have gained a lot of popularity recently [6, 7]. Uddin et
al. [7], for instance, focus solely on delay prediction through
Deep Learning Methods, while they do not discuss adaptive
control or resource-constrained optimization. In the same way,
Wei and Rana [6] came up with data mining methods for delay
identification, but they did not facilitate simulation or
reinforcement learning. Recently, Pal et al. [8], for example,
have developed a natural-language-based assistant for
construction scheduling, thereby making progress in user
interaction, but real-time adaptability is still missing. The
system proposed in this paper is a step towards connecting
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these voids by an end-to-end hybrid architecture that
integrates forecasting, optimization, uncertainty modeling,
and dynamic adaptation within one framework.

Around the same time, metaheuristic algorithms, such as
the Genetic Algorithms (GA) or Particle Swarm Optimization
(PSO), are famous for considering models of constrained
resources. They also have the feature of avoiding scheduling
problems, and in this role, they have been utilized for quite a
long time [9, 10]. Moreover, the simulation of the project’s
probabilistic aspects is performed using Monte Carlo and
fuzzy logic methods that provide the additional power of
robustness and the capability of considering numerous
approaches [11, 12]. Deep Reinforcement Learning (DRL), a
new sub-area of Al, can grant the system the decision-making
power and thus genuine adaptivity through decision-making
agents that keep interacting with the project environment to
figure out the most efficient scheduling strategies [13].

Despite recent advances, current Al-based approaches
remain fragmented. To address this limitation, this study
introduces a unified, modular framework integrating
prediction, optimization, uncertainty modeling, and adaptive
control. This research proposes a next-generation scheduling
system that aims to consolidate the complementary Al
capabilities necessary for robust and adaptive planning. This
is the first piece of work that combines machine learning—
based prediction, GA-PSO hybrid optimization, Monte Carlo
and fuzzy-based robustness simulation, and deep
reinforcement learning in a fully modular and end-to-end
scheduling system. The suggested system is put to the test
through synthetic project data with complex task
dependencies, stochastic risks, and real-time disruptions,
demonstrating its effectiveness in managing uncertainty and
enhancing real-time adaptability.

2. Related Work

An Al-powered project scheduling system has received
significant attention in numerous research papers. A common
theme among these papers is that the system should be able to
provide solutions that are flexible, accurate, and scalable. The
different writers have proposed various ideas for the resolution
of this complicated issue.

In [1], the Author emphatically points out the importance
of project planning and scheduling and, at the same time,
states that using traditional methods in a rapidly changing
environment is impractical. Bibliometric and scientometric
reviews [3, 14, 15] provide a comprehensive overview of
scheduling evolution and identify key milestones, particularly
in innovative scheduling systems for the construction and IT
sectors.

The combination of machine learning and metaheuristics
as intelligent systems has been proven to be a good idea in
several studies. As an illustration, [6] has advanced a proposal
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for the creation of Al-run platforms that cover schedule
forecasting and buffer management. A good example is [11],
which has taken a few steps in that direction and identified the
benefits of probabilistic simulation in uncertain situations.

Several studies have reported that deep learning can be a
source of accurate delay prediction, especially in the case of
LSTM and DNNs. For example, [7] brought out the
connection between deep learning and schedule delay
prediction. Besides, [2] was instrumental in understanding
how artificial intelligence with genetic algorithms and Support
Vector Machines (SVM) work together to achieve high-
quality scheduling as the end goal. These models help to
improve the prediction of task duration and assessment of the
risk level. Recent work has delved deeply into the use of Al in
construction scheduling. As an example, Pal et al. [8] invented
a natural language-based scheduling assistant for construction
projects and had very promising results in the way it
understood the textual project data. On the other hand, their
method is heavily concentrated on language understanding
only, without any integrated forecasting, optimization, and
adaptive control, which the proposed hybrid framework is
designed to do.

Another study [2] compared metaheuristic techniques
such as GA and PSO in terms of their practicability for
resource-constrained project scheduling. Moreover, the
employment of fuzzy logic and Monte Carlo simulation has
been revealed as more beneficial in dealing with uncertainty
in [16, 17].

One of the conceptual frameworks that has been put
forward to merge these approaches is [18], which outlines the
architecture for a modular resilient scheduling system
consisting of Al agents able to learn from uncertain events.
Furthermore, [10, 13] not only provide intelligent rule
selection systems using reinforcement learning and Al models
that are integrated with corporate data, but also streamline
automated adaptation.

As far as the system design is concerned, [19] proposes
the use of Al technologies (LSTM + PSO) in the industrial
project environment as proof of concept, elaborates on the
strategic incorporation of Al technologies into the project
management environment, and highlights the enabling role of
Al technologies at the enterprise level for coordination,
decision-making, and resource  optimization. The
improvement highlighted in the previous publications still has
a major shared weakness, which is that the majority of the
research works do not consider the issue of prediction,
uncertainty, and adaptation in a single coherent system. The
authors [4, 5] of the succeeding papers are of the opinion that
the future of the scheduling system would be intelligent,
modular, and autonomous software solutions that can
collaborate with Al components throughout the lifetime of a
project.
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3. Materials and Methods

This section presents the design of the proposed hybrid
intelligent scheduling system, which integrates Machine
Learning (ML), metaheuristic optimization, probabilistic
simulation, and Deep Reinforcement Learning (DRL). The
proposed architecture is inspired by multiple recent
contributions, each addressing different but complementary
aspects of intelligent project scheduling. While no single study
encompasses all components simultaneously, collectively
they form a robust foundation for developing a modular,
adaptive, and data-driven framework suitable for complex and
uncertain environments [20, 22]. A strong case for combining
these methods is that there is now a growing demand for
systems that are not only flexible but also able to forecast task
durations, handle risks, and adapt to changes immediately.
Conventional methods are not sufficient in dealing with these
issues when there are changes in constraints and various
unexpected events that may occur [23, 24]. To hame a few,
Deep Reinforcement Learning (DRL)-based scheduling [12,
22] has gained a lot of traction in the field of dynamic
manufacturing processes. In contrast, Monte Carlo-based risk
models [11, 25] can still be relied upon for having a clear
picture in the early stages of forecasting and conducting
robustness analysis.

The four layers of the suggested architecture are
functionally linked to each other, working as a cohesive
pipeline. The Prediction Layer (ML) initially goes through
historical or simulated task data to perform a classification and
prediction of the possible delays. Such outputs become input
features for the Optimization Layer, which uses them to
develop the initial schedules that consider resource constraints
and sequencing. Subsequently, the schedule is reviewed in the
Simulation Layer, where random variations (e.g., Delays,
Resource Awvailability) are generated by Monte Carlo and
fuzzy logic for robustness evaluation. The DRL Layer, in
contrast, is always aware of the changes in the environment
and learns the most effective rescheduling strategies by
interacting with the simulation output. This continual
feedback loop not only ensures that the system can react to
unforeseen events in real-time but also that the overall
performance is maintained.

3.1. General System Architecture
The proposed architecture consists of four interconnected
layers:

Layer 1 — Prediction and Classification (ML)

Layer 2 — Scheduling Optimization (Metaheuristics)
Layer 3 — Uncertainty Modeling (Simulation)

Layer 4 — Continuous Adaptation (DRL)

Each module communicates through a shared project
repository and operates on a structured synthetic dataset
reflecting realistic project features: resource limitations, task
dependencies, and random disruptions [23, 25].
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Synthetic Project Data
(Historical + Real-Time)

<<Layer1>>>
Prediction and Classification

(Random Forest, SVM, LSTM)

<<Layer2>>>
Scheduling Optimization
(Genetic Algorithm, PSO)
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(Deep Reinforcement Learning)

Rule Selection and
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Fig. 1 Hybrid intelligent scheduling architecture

3.1.1. Mathematical Formalization of the Hybrid Architecture

To clarify the mode of the hybrid intelligent scheduling
system that was proposed, the whole process is treated as a
flow through four functional modules: a machine learning
predictor, a metaheuristic optimizer, a robustness evaluator,
and an adaptive reinforcement learning agent. The system
works in a modular pipeline, where the output of each stage
becomes the input of the subsequent one. The overall process
is modeled as a composite function:

The functional composition represents the process:

S#ia — TDRL ° TUNC ° TOPT ° TML(X) (1)
Where:
e X: represents the input data (historical and real-time

project parameters),
FML: is the delay prediction function based on Machine
Learning Models (SVM, RF, LSTM),
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FOPT: generates an initial schedule using Metaheuristics
(GA, PSO),

FUN¢: uncertainty modeling (Fuzzy logic and Monte
Carlo),

FPRL - is the adaptive policy learned by a DRL agent to
respond to real-time disruptions,

Sfinal : is the adaptive and robust schedule delivered to
the user.

1. Prediction Layer (ML):
Y = A = {dipi ot )
With d; and #; being the estimated task duration and delay
risk for task iii, respectively.

2. Optimization Layer:

Sa:@y = FOPT (V) €))
Where Sanir 1S the initial feasible schedule.

3. Robustness Evaluation:

Sropu@B = FUN(SqB;E)) 4)

Representing a robustified version of the schedule
through stochastic simulation and fuzzy evaluation.

4. Adaptive Adjustment:

Sﬁnnl = ?DRL (Sro/z’ush Ef') (5)
Where E\ is the system’s current execution state at time t,
and the DRL agent updates the schedule accordingly.

3.2. Prediction via Machine Learning

Inspired by approaches in [24, 26, 27], the ML module

applies supervised learning to perform two key functions:

e Classification: Support Vector Machines (SVM) and
Random Forest algorithms identify critical tasks with
high delay probability.

Forecasting: LSTM (Long Short-Term Memory) neural
networks use performance histories and contextual

features to predict task durations.

These models are trained on synthetic datasets that are
designed to mirror interdependent project structures and
dynamic performance patterns [23].

3.2.1. Training Configuration

Supervised Machine Learning Models (SVM, Random
Forest, and LSTM) were trained with an 80/20 train-test split,
and five-fold cross-validation was used to check
generalization and robustness. LSTM model training went
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through 50 epochs with a batch size of 32, and the Adam
optimizer was used along with a learning rate of 0.001. Mean
Squared Error (MSE) was used as the loss function for
regression tasks. To avoid overfitting, the procedure of early
stopping was carried out on the basis of the validation loss.

The model hyperparameters (for example, SVM kernel
type, Random Forest tree depth, and LSTM hidden units) were
determined by performing a grid search on the training set.

3.3. Optimization Using Metaheuristic Algorithms

Based on the approaches proposed in [20, 21, 28], the
optimization layer uses two complementary metaheuristic
algorithms:

Genetic Algorithms (GA): Generate initial candidate
schedules by encoding task-resource mappings under
precedence and resource constraints.

Particle Swarm Optimization (PSO): Refines these
candidates to minimize makespan and balance resource
load while improving resilience against disturbances.

The combined GA-PSO strategy allows the system to
explore large solution spaces effectively while adjusting to
multi-objective requirements.

3.4. Uncertainty Modelling: Monte Carlo Simulation and
Fuzzy Logic

Project environments are regularly uncertain as a result of
random events that cannot be predicted. The system features
the following elements to meet this challenge:

Monte Carlo Simulation: Simulates hundreds of different
situations by changing the time a task takes, the
availability of resources, and the sequence of events [19,
25].

Fuzzy Logic: Based on the work of [11, 12], fuzzy rules
recreate the vagueness of the input, such as the experience
of the team, the probability of the risk, and the
responsiveness of the client, by adding the features of
flexibility and interpretability.

These features ensure that the system is dealing with the
randomness and vagueness of project planning.

3.5. Dynamic Adaptation via Deep Reinforcement Learning
Based on recent changes in DRL-based scheduling [13,

16, 22], the final stage employs a Deep Q-Network (DQN)

agent:

e The agent learns strategies by experimenting with a

project simulator and selecting the best outcomes for

long-term performance.

It changes the schedule promptly in the event of

operational setbacks like task delay, resource conflict, or

environmental changes.
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Such a feature of the adaptation system, being strong and
proactive, is constantly maintaining the schedule stability
amidst the changing and unpredictable environment.

3.6. Experimental Dataset

In order to test the effectiveness of the proposed hybrid
intelligent system, a well-structured synthetic dataset was
developed to simulate project management scenarios in the
real world. This synthetic dataset models the dynamic task
interactions, resource limitations, risk factors, and execution
uncertainties, which are common in industrial environments.
The dataset consists of 100 interdependent tasks that are
divided into four project categories: analysis, development,
testing, and deployment. Each task record in the dataset is
characterized by the main features necessary for training,
optimization, simulation, and adaptation stages. The dataset

schema is shown in Table 1.

Table 1. Schema and description of attributes in the synthetic project

dataset

Column Name

Description

Task ID Unique identifier for each task
Project_ID Project identifier
Task_Name Descriptive task name

Duration_ Estimated duration according to the

Estimated initial plan

Start_
Date Planned task start date

Planned
End_Date_ Planned task end date

Planned

Dependencies

Predecessor task(s) required to start

this task
Complexity . .

Level Estimated task complexity
Required_ i .
RESOUICES Number of person-days required
Risk_Score Assigned risk prcr)ﬁgﬁl)llty (O=low, 1=

Delay Actual delay recorded (used for
Observed supervised ML training)
Disruption_ True if a disruption occurred during

Flag task execution

Progress_%

Real-time execution progress

percentage
MonteCarlo_ Simulated variance under stochastic
Variation conditions
Labeé_IDeIay_ Delay classification
ass
Simulation_ Identifier of the stochastic simulation
ScenariolD scenario applied

The dataset acts as the system’s four core elements and
accordingly determines how each module works with the
specific data features. The Machine Learning (ML) module

utilizes features such as Delay Observed, Dependencies,
Risk_Score, and Label Delay Class to train predictive
models and perform classification tasks. The optimization
module uses Required_Resources, Dependencies, and
Complexity_Level not only to generate but also, through
iterations, refine feasible schedules under resource and
precedence constraints.

The simulation module uses MonteCarlo_Variation and
Disruption_Flag in order to assess schedule robustness over a
wide range of stochastic scenarios. Meanwhile, the DRL agent
changes its scheduling policy regularly by using real-time
inputs like Progress_%, disruption indicators, and simulation
feedback.

The synthetic dataset was constructed on the basis of
typical patterns seen in large-scale construction and IT
projects so that it is as close to the real as possible. The
experimental results utilizing this dataset demonstrate
significant advances in the prediction accuracy, schedule
robustness, and adaptability over the conventional baseline
methods [13, 23, 25, 26].

3.7. Sequence Diagram of System Execution

To understand the hybrid intelligent scheduling system
better, the authors present a UML sequence diagram that is
depicted in Figure 2. The diagram visually represents the
workflow of the system components, starting from the input
provided by the user and ending with the final adaptive
schedule output. Moreover, it schematically shows how the
different system components work together during their on-
the-spot decision-making process. In the end, the user receives
an adaptive and robust schedule from the system, which
completes the intelligent scheduling cycle. First, the user loads
both historical and real-time project data into the Shared Data
Repository, which is the primary source of the structure input.
The data is fed into the Prediction & Classification layer, using
SVM, Random Forest, and LSTM models, is the unit that not
only predicts delays but also estimates the durations of tasks.
The Scheduling Optimization component receives these
predictions and uses metaheuristic methods (GA and PSO) to
draft a first schedule.

The Uncertainty Modelling module is the place where
Monte Carlo simulations and fuzzy logic are applied to assess
the schedule’s trustworthiness under various uncertainty
scenarios. A robustness check leads to the schedule being re-
optimized if a re-optimization request occurs; thus, the
feedback loop with the optimization module is reopened to
draw up another more reliable plan.

The schedule is then sent to the Continuous Adaptation
layer, where the Deep Reinforcement Learning (DRL) agent
supervising the execution progress can make real-time
adjustments to the schedule, provided that the changes are due
to disruptions or real-time execution conditions.
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Fig. 2 System workflow from data input to adaptive scheduling

4. Results and Discussion

This section presents the testing process used to verify the
effectiveness of the hybrid intelligent scheduling system
proposed. It was stated in Section 3.6 that the system’s
evaluation was conducted through a synthetic dataset
specifically designed. The criteria of the system are based on

Figure 3 presents a visual comparison of the three models
based on their accuracy and F1-score. As shown, Random
Forest achieved the highest accuracy, while LSTM led in F1-
score, indicating its strength in detecting more complex delay
patterns.

the four main features of the system, i.e., the precision of m Accuracy = F1-Score
prediction, the value of the schedule optimization, the 100 896 89 89
robustness of the system in the case of uncertainty, and the - 87 85.2 g3
system’s adaptive reaction to changes in the environment. 80 - [
4.1. Prediction Performance (ML Module)
The Random Forest, Support Vector Machines (SVM), —~ 60 - -
and Long Short-Term Memory (LSTM), three supervised g\‘i
learning models, were trained with features like Risk_Score, @
Dependencies, Delay Observed, and Label Delay Class. 8 40 - —
Their performance in predicting task delay risk was measured @
using the metrics of classification accuracy and F1 score. 20
Table 2. Performance metrics of supervised learning models for project
delay risk prediction 0
Model AC((:;;? & Sléére Key Strength Random Forest SVM LSTM
Random 896 0.87 Best overall accuracy in Fig. 3 Performance metrics of s_upervise_d I_earning models for project
Forest ' ' delay classification delay risk prediction
High precision for . .
SVM 85.2 0.83 short-term delay These results illustrate a compromise between accuracy
categories and recall performangg. Randpm Forest, for example, when
Superior detection of used as a single classifier, achieved the best overall accuracy
LSTM 83.4 0.89 | medium and significant (89.6%). However, the LSTM model’s Fl-score (89.0%)
delays reveals the capability of the model for recognition of not only
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the popular but also the rare delay classes. On the other hand,



Issam TALKAM et al. / IJETT, 74(1), 142-151, 2026

SVM was a little bit lower in both metrics but fairly
demonstrated the classification without mistakes with fewer
false positives. LSTM is a suitable method for temporal risk
modeling because delay propagation depends on sequential
patterns, where such a model can recognize them easily.

4.2. Optimization Quality (GA-PSO Scheduling Engine)
The hybrid GA-PSO optimization module was assessed
based on three key scheduling metrics:

e Makespan reduction
e Resource load balancing
e  Precedence constraint compliance

Table 3. Comparison of scheduling performance metrics between
baseline heuristics and proposed GA-PSO hybrid optimization

Both GA and PSO independently contributed to the
enhancement of the performance metrics in all the cases when
they were compared to the baseline heuristics. GA alone
managed a 10.1% makespan reduction (from 138 to 124 days)
and a 27.8% reduction of the overload incidents (from 18 to
13), while PSO resulted in 11.6% and 33.3% decreases in
Makespan and overloads, respectively. Constraint compliance
has been significantly increased to 91.2% with GA and 93.7%
with PSO, compared to 84.6% in the baseline. The hybrid GA-
PSO method was more advantageous than any of the two
alone, with a 17.5% reduction in Makespan, only a few
overloads, and a 96.3% compliance rate. These improvements
are evidence that the hybrid approach effectively combines the
GA’s capability for deep exploration with the PSQO’s ability
for fast convergence. GA is the one that ensures an exhaustive
search of the scheduling space, whereas PSO is the one that

Metric Baseline GA | PSO | GA + PSO can strictly adjus_t candidate solutions to make them more
(Heuristics) | Only | Only | (Proposed) accurate and feasible.
Ma:/lfcer?p?:n 138 124 122 114 Multi-objective optimization is especially important in
: dynamic project environments where the availability of
(in days) Y proj Y
Resource resources and the dependencies of tasks may suddenly change.
Overload 18 13 12 9 Through the combination of two algorithms, the system
Incidents becomes more adaptable to the complexity of the problem
Precedence than the methods using either one of the heuristics or single-
Constraint 84.6% 91.2% | 93.7% 96.3% heuristic methods. Basically, it results in quicker turnaround
Compliance ' ' ' ' of projects, fewer scheduling conflicts, and higher operational
P stability.
Baseline ®mGA Only =PSO Only mGA+PSO
160
138
140 124 127
120 +—— 114
, 912 93.7 96.3
100 gig 92
(%]
$ 80
@«
> 60 ——
40 +——
20— 10 129
0 B
Avg. Makespan (days) Overload Incidents Constraint Compliance (%)

Fig. 4 Comparative performance of optimization strategies across key scheduling metrics

Table 4. Robustness evaluation metrics comparing non-optimized schedules and GA-PSO with simulation

Robustness Metric Without Optimization With GA+PSO + Simulation
Scenario Feasibility Rate (%) 49.3 70.1
Critical Path Sensitivity (A Days) 14.8 11.6
Fuzzy Risk Zone Classification Accuracy - 91.4%

4.3. Robustness Evaluation under Simulation
Three hundred Monte Carlo simulations were run per
schedule to check schedule robustness under uncertainty. Task

durations were randomly changed within £10% to +£30% using
MonteCarlo_Variation, and fuzzy logic was used considering
Complexity_Level and other qualitative attributes.
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Figure 5 illustrates the distribution of scenario feasibility
rates across the 500 Monte Carlo simulations. Without
optimization, the results show a wider spread and a lower
average feasibility of around 49%, indicating greater
instability. In contrast, the GA—PSO optimized schedules are
more concentrated around 70%, with less variation,
demonstrating greater reliability under uncertainty. In
practical terms, 70.1% of the optimized schedules remained
feasible in over 90% of simulated scenarios, compared to just
49.3% without optimization. Figure 6 presents a comparison
of the two methods in terms of the critical path sensitivity. The
critical path fluctuated more in the case of no optimization, as
the differences could reach even 25 days in some scenarios.
By means of the GA-PSO method, this fluctuation was
drastically reduced, as the majority of the values were within
the 10-14-day range. Such a decrease in the range of values is
a clear indication that the optimized schedules have become
less reactive to uncertainty and thus planning reliability has
been enhanced.
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Fig. 5 Statistical distribution of scenario feasibility rates across 500
monte carlo simulations
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Fig. 6 Box plot of critical path sensitivity under monte carlo simulation
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The GA-PSO + Simulation pipeline achieved a 91.4%
classification accuracy in fuzzy risk zone assignment, based
on qualitative and probabilistic attributes. This helped support
human interpretability in risk-prone conditions, especially for
ambiguous project phases.

4.4. Adaptive Behaviour of the DRL Agent

The Deep Q-Network (DQN) reinforcement learning
agent was trained over 100 rescheduling episodes using state
inputs, including Progress%, Disruption Flag, and Task
Dependencies.

Table 5. Comparison of performance metrics between static re-planning
and the proposed DRL -based adaptive scheduler

Performance Metric | S.aUC Re- DRL Agent
Planning (Proposed)
Average Recovery 3 4.2
Time :
Recovery Success
Rate (%) 72.8 90.3
Reward Convergence — After 60 Episodes
Average Delay o
Reduction (%) B 14.2%

Based on the criteria detailed in Table 5, Figure 7 offers a
visual comparison to emphasize the disparities between static
re-planning and the DRL-based method. The DRL agent was
far superior to the static methods in all the essential measures:
it recovered the interrupted project more often, substantially
decreased the delay of the project, and restored feasibility in
fewer iterations. Such a graphical representation serves to
confirm the agent’s capacity to adjust and interact
appropriately with interruptions in changeable project

situations.
m Static Re-Planning  m DRL Agent (Proposed)
100 90.3
80 -
wn 60 T
[«5)
=
S 40 -
20 - 14.2
- 4.2
0 T T T t
Recovery  Average Delay Average
Success Rate  Reduction (%) Recovery Time
(%) (Iterations)

Fig. 7 Adaptive rescheduling performance: Static re-planning vs. DRL
agent.

The DRL agent achieved a remarkable performance of
90% in restoring feasible schedules within five iterations of
training and was also able to effectively respond to diverse
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disruption scenarios such as resource unavailability and task
reordering. These results illustrate the DRL agent’s capability
to formulate adaptive recovery strategies through its
interaction with the environment. A static re-planning, which
always reacts in the same manner to disruptions, cannot be
directly compared to an agent that modifies its operations
based on the scenario context. The convergence at 60 episodes
indicates the efficiency of learning. At the same time, the
90.3% recovery success rate is a very strong point for its
practical application to be considered as a tool for project
continuity in a dynamic environment.

4.5. Discussion

The individual performance of each module, as presented
above, highlights the capabilities of each component. This
section merges these results to assess the overall functioning
of the system as a whole.

Table 6. Core contributions of each layer in the hybrid intelligent
framework

System Layer Primary Contribution
Machine Learning Anticipates delays and supports
(ML) informed pre-scheduling decisions
Metaheuristic Constructs efficient, constraint-
Optimizer compliant schedules
Simulation Enhances robustness against stochastic
Module variability
DRL Agent Learns to a_djust _plans in rgal—time
under disruptions reactively

The different layers of the system serve distinct but
essential roles: Machine Learning provides prediction,
metaheuristics generate good scheduling, simulation verifies
the stability, and deep reinforcement learning enables
adaptability. On its own, the proposed system forms a
modular, extensible, and intelligent scheduling architecture.
This system, which employs learning-based prediction,
probabilistic simulation, and autonomous control, is a robust
solution for unstable industrial environments such as
construction, IT  deployment, and manufacturing.
Nevertheless, a few limitations have to be admitted. To
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