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Abstract - This study presents a novel approach to lung cancer classification combining deep learning, feature extraction, and 

image processing. It enhances lung cancer images using advanced denoising techniques, Non-Local Means (NLM), Wavelet, 

and augments the dataset with Generative Adversarial Networks (GANs) to improve model generalization. The Region of Interest 

(ROI) is identified with an Adaptive Correlation-Enhanced Active Contour Model (ACE-ACM), and feature extraction using pre-

trained CNNs like VGGNet and ResNet. To identify key features of the hybrid optimization algorithm, Sparrow Customized Sea 

Lion Optimization (SLO) and Sparrow Search Algorithm (SSA). The classification utilizes DenseEnsembleNet, a combination of 
Optimized DenseNet and CNN, achieving a remarkable accuracy of 98.79%. By using a Python-based platform, the framework 

provides an innovative solution for accurate lung cancer diagnosis and efficient treatment planning. Provides an innovative 

solution for accurate lung cancer diagnosis and efficient treatment planning. 

Keywords - Adaptive Correlation Enhanced Active Contour Model, Lung cancer, DenseEnsembleNet, Denoising techniques, 

Generative Adversarial Networks, Region of Interest.

1. Introduction  
One of the most serious and dangerous illnesses in the 

world is lung cancer. The only way to treat lung cancer is to 

find it in the early stages. Several methods may be used to 

diagnose lung cancer, such as MRI, isotope, X-ray, and 

Computer Tomography (CT) [1, 2]. PET, CT, and X-ray chest 

radiography are the three popular imaging techniques; they are 

routinely used to identify various lung conditions. CT scans 

are used by doctors and radiologists to identify and diagnose 

diseases, describe the patterns and severity of illnesses, the 

morphologic extents of diseases, and gauge the clinical 

progression of diseases and how they react to medicines. As 

CT technology has evolved, the high-resolution CT test has 
emerged as the imaging method of choice for the recognition 

and detection of lung disorders [3-5]. The task of visually 

reading or assessing a large number of CT image slices is still 

difficult despite High-Resolution CT suggesting images of the 

lung with a continually growing anatomic solution. In contrast 

to the categorization of benign and malignant [6-8], the 

classification of the three forms of lung cancer using medical 

pictures is more apt to represent an incredibly fine image 

identification challenge due to distinct feature variations and 

potential malignant characteristics that must be taken into 

account. The affected region occupies a small percentage of 

the whole image, rendering the fine-grained characteristics 

that must be retrieved from images vulnerable to feature noise 

[9, 10]. The great majority of techniques now being used that 

are based on different DL models have shown a particular 

restriction in fine-grained settings. For the purpose of 

identifying and categorizing pulmonary diseases, the channel 
attention mechanism has been employed [11, 12]. The 

discussion of various attention tactics offers many viewpoints 

on the origins of noise identification. There are several efforts 

underway to produce computer-assisted methods for diagnosis 

and detection that will raise the standard of diagnosis for the 

categorization of lung cancer [13-15]. Computer-aided 

systems were created as a result of the need for trustworthy 

and impartial analyses. To extract characteristics for 

categorization and severity determination is the goal of this 

effort. This research introduces an innovative approach to 

accurately classify lung cancer, a critical task for effective 
treatment planning. By combining advanced image processing 

techniques such as denoising and segmentation with deep 

learning models like VGGNet and ResNet, intricate features 

are extracted from lung tumor images. A novel hybrid 

optimization algorithm further refines feature selection, 

reducing dimensionality and enhancing focus on crucial 

aspects. The proposed DenseEnsembleNet, a fusion of 
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optimized DenseNet and CNN, empowers the model to 

recognize complex patterns. Experimental results on 

benchmark datasets demonstrate the method's superiority over 

traditional approaches, offering promising potential to assist 

healthcare professionals in early-stage lung cancer diagnosis 
and treatment decision-making. “The main contribution of the 

paper is as follows”,  

To effectively extract the lung tumor region, the Adaptive 

Correlation Enhanced Active Contour Model (ACE-ACM) is 

used in the medical images using a segmentation algorithm. In 

this model, the cross-correlation-based entropy is calculated 

to improve the performance of the ACM model. To optimize 

the feature space and reduce dimensionality, we utilize an 

advanced feature selection algorithm called Sparrow 

Customized Sealion Optimization (ScLnO), which can 

include the advantages of both the Sea Lion Optimization 

(SLO) and Sparrow Search Algorithm (SSA). In this phase, 
Detection and tracking of prey by scroungers is improved 

using the SLO algorithm. The producer-scrounger interaction 

phase is also improved using the vocalization behavior of the 

SLO. To fine-tune the hyperparameters of the DenseNet 

model, the ScLnO algorithm is utilized. The optimized 

DenseNet model is used along with the CNN for the 

classification of lung cancer disease. The ScLnO algorithm is 

used to fine-tune the DenseNet model's hyperparameters, such 

as the number of layers, batch size, and learning rate. 

To improve the classification process, the Optimized 

DenseNet and the CNN models are used. The outputs of these 
two models are concatenated and gives the final classified 

lung cancer detection output. The document is constructed in 

the manner described below. Section 2 includes recent 

publications on lung cancer detection, Sections 3  provide 

experimental details, a description of the suggested approach, 

Section 4 provides a comparison of the outcomes, and Section 

5 gives the detailed conclusion. 

2. Literature Review 
This section discusses recent research publications on 

lung cancer detection. 

In 2022, Kasinathanand Jayakumar [16] have suggested a 

cloud-based system for the stage-based identification of lung 

tumors using deep learning. In addition to offering a way for 

classifying pulmonary illness phases, the study also offers a 

deep neural network and a cloud-based data collection system 

for recognizing and validating distinct lung cancer growth 

stages. The cloud-based Lung Cancer Detector and Stage 

Classifier, a hybrid PET/CT imaging technology offered by 
the suggested approach, is used to analyze lung tumors. A 

multilayer CNN for differentiating between lung cancer kinds 

has been created and tested using industry-accepted 

benchmark images. First, the suggested Cloud-LTDSC was 

used to create the active contour system for lung cancer 

segmentation. In 2021, Sujitha and Seenivasagam [17] used 

machine learning and a big data healthcare platform for stage 

classification of lung cancer. The architecture for the most 

successful categorization of photos and lung cancer stages was 

designed in that work using Apache Spark and a streamlining 
of machine learning techniques. The experiments use the 

threshold technique (T-BMSVM) to categorize tumors into 

benign and malignant tumors and identify the degree of 

cancer, respectively. They incorporate binary classification, 

multiclass categorization, and multiclass grouping. 

In 2020, Asuntha and Srinivasan [18] introduced a deep 

learning model for the categorization and detection of lung 

cancer. The scientists found the cancerous lung nodules using 

cutting-edge Deep learning algorithms. The best feature 

extraction techniques, such as the Scale Invariant Feature 

Transform, Histogram of Oriented Gradients (HoG), Zernike 

Moment, and Local Binary Pattern, are employed in that 
study. The Fuzzy Particle Swarm Optimization (FPSO) 

approach is used to choose the ideal feature following the 

extraction of textural, geometric, volumetric, and intensity 

data. The classification of these traits is subsequently done 

using deep learning. Using a groundbreaking FPSOCNN, the 

computational difficulty of CNNs is reduced. 

In 2021, Ibrahim et al. [19] recognized chest conditions, 

including COVID-19, pneumonia, and lung cancer, and 

suggested that a multi-classification system based on deep 

learning may be utilized. A multiple classification deep 

learning system for the diagnosis of COVID-19, pneumonia, 
and lung cancer was recommended in that study to be 

developed using a combination of chest x-ray and CT images. 

The combo was chosen because a chest X-ray was less 

beneficial in the early stages of the disease, whereas a chest 

CT scan was beneficial even before symptoms appeared and 

could precisely detect the aberrant characteristics that were 

visible in photos. Utilizing these two separate photo types will 

also increase the dataset and increase classification accuracy. 

There is currently no deep learning model that can distinguish 

between these illnesses. 

In 2021, Kumar and Bakariya [20] utilized deep learning 

to categorize malignant lung cancer. The author of that 
research recommends GoogLeNet and AlexNet as deep neural 

networks. A pretrained CNN was used in experiments on 

LIDC processing datasets. That work describes an automated 

technique for identifying lung nodules in areas of interest 

(ROI). A median filter, a Gaussian filter, a Gabor filter, and a 

watershed algorithm were added to the DICOM picture size 

512 512 to partition the lung sections. (Fully linked) Layers 

were used by AlexNet, and Pooling Layers were used by 

GoogleNet. 

In 2021, Nanglia et. al. [21] suggested a hybrid approach 

that uses SVM and neural networks to classify lung cancer. 
The focus of the current study was on the factual information 
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on the potential application of a hybrid Feed-Forward Back 

Propagation Neural Network for lung cancer diagnosis. 

Support Vector Machine (SVM) is used in this situation to 

develop a hybrid approach that further aids in lowering the 

computational complexity of the categorization. In light of the 
previously stated, a three-block system is proposed for 

categorization, with the first block handling dataset 

preliminary processing, the following block collecting 

characteristics using the SURF method, the third block 

optimizing using an algorithm based on genetics, and the last 

block executing classification using FFBPNN. 

In 2021, Marentakis et. al. [22] used radiomics and deep 

learning algorithms to determine that lung cancer histology 

can be determined from CT scans. By using various feature 

extraction and classification algorithms on pretreatment CT 

images, this study seeks to evaluate the possibility of NSCLC 

histological categorization into AC and SCC. The used picture 
dataset (102 patients) came from the TCIA, which was a 

collection of publicly accessible cancer imaging archives. The 

suggested method was founded on pretreatment CT imaging, 

which offers knowledge about the tumor's geographic 

heterogeneity as well as its overall picture features. As part of 

clinical practice prior to therapy, CT imaging does not add any 

further complication or delay.  

In 2022, Shafi et. al. [23] used a deep learning-based 

support vector network, an efficient method for detecting lung 

cancer from a CT scan. The SVM used in that work, which 

was deep learning capable, was proposed as a cancer detection 
model. The suggested Computer-Aided Design (CAD) model 

is used to identify the physical and pathological changes in the 

tissue layers of the cross-section of lung cancer tumors. When 

lung cancer was first discovered, the model was initially 

taught to detect it by evaluating and analyzing the preset 

profile traits in CT scans acquired from patients and control 

patients. Using CT pictures of individuals and control subjects 

who had not participated in the training phase, the model was 

then evaluated and verified. 

In 2023, Pandit et. al. [24] recommended a lung cancer 

categorization deep learning neural network. The suggested 

technique combines multispacer images in the pooling layer 
of a CNN, utilizing the Adam Algorithm for optimization to 

increase overall accuracy and diagnose lung cancer. Prior to 

down-sampling via max pooling, the CT images underwent 

pre-processing by being fed into a convolution filter. An 

autoencoder model based on a CNN was then used to extract 

features, and multispacer image reconstruction was employed 

to decrease error during image reconstruction, improving 

prediction accuracy for lung nodules. Finally, the SoftMax 

classifier was used to categorize the CT images using the 

reconstructed pictures as input. 

In 2020, Bicakci et. al. [25] suggested the molecular 
imaging-based sub-classification of lung cancer. 

Adenocarcinoma (ADC) and Squamous Cell Carcinoma 

(SqCC), two subtypes of NSCLC, were distinguished in that 

study using deep learning-based classification algorithms, 

which were thoroughly studied. The study included PET scans 

and tumor-containing slices from 94 individuals (88 males), 
of which 38 had ADC, and the remaining had SqCC. To 

determine how peritumoral regions in PET scans affect the 

subtype categorization of tumors, three trials were conducted. 

Each model was optimized using a variety of optimizers and 

regularization techniques. 

2.1. Problem Statement 

The research on lung cancer diagnosis is crucial for better 

outcomes. Current techniques achieve high levels of accuracy 

and reliability, leading to incorrect diagnoses and delayed 

actions. Early detection of lung cancer is essential for better 

outcomes. New image processing methods and feature 

extraction strategies are developed to improve medical 
imaging data quality, particularly CT scans and PET images. 

The proper categorization of lung cancer stages and subtypes 

is challenging, necessitating the creation of strong models that 

distinguish between complex disease presentations. Initiatives 

reduce computational complexity while maintaining 

diagnostic efficacy. Integrating data from various medical 

imaging modalities, such as chest X-rays and CT scans, 

enhances diagnosis accuracy. Cloud-based solutions and big 

data frameworks are being researched to handle the growing 

amount of medical imaging data. Machine learning and deep 

learning methods are essential for recognizing multifaceted 
data designs and drawing insightful conclusions. The ultimate 

goal is to develop diagnostic representations that integrate 

seamlessly into clinical practice, providing medical 

practitioners with precise and timely information for informed 

decision-making. This article aims to enhance lung cancer 

diagnosis and patient care by addressing gaps in the literature, 

developing a comprehensive model for distinguishing 

between COVID-19, pneumonia, and lung cancer, and 

exploring advanced techniques such as histology 

classification. 

3. Proposed Methodology 
Lung cancer classification is crucial for medical 

diagnostics and treatment planning. Accurate categorization 

methods are essential for predicting incidence and severity. 

This section demonstrates accurate classification and 

prediction using DL and Image Processing technologies. . 

Preprocessing images using wavelet and NLM denoising 

improves visual quality. GANs are used for data augmentation 
and modified Active Contour Models segment pictures for 

easier identification of the region of interest. Deep learning 

classification techniques are applied. A block diagram is 

provided for the suggested Lung Cancer detection 

methodology. The block design of the proposed lung cancer 

detection system is shown in Figure 1.  
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3.1. Preprocessing 

Lung cancer images undergo preprocessing to enhance 

picture quality and reduce noise. Advanced denoising 

techniques like NLM and wavelet denoising are used to 

preserve image details and improve analysis accuracy.  

The optimal performance criteria include a search 

window size of 21 x 21 pixels, patch dimensions of 7 by 7 

pixels, adaptive thresholding, and a threshold value of 0.1. 

These techniques effectively remove high-frequency noise 

from medical photos. 

Using NLM and wavelets, we can use multi-resolution 

analysis, which decomposes an image into different frequency 

components. In the high-frequency scale, noise tends to be 

concentrated, while important features of images are in the 

low frequency and provide high spatial localization. A wavelet 

can identify where specific frequency components are located 

in the image.  

This is important for preserving the edges and fine details 
of lung nodules while suppressing noise. Wavelets can adapt 

to different types of noise and image characteristics by 

adjusting parameters such as the wavelet type, thresholding 

method (soft threshold and hard threshold), and 

decomposition level. The medical image denoising method 

based on the wavelet transform is widely used. Traditional 

denoising methods can remove image noise, but they still 

ignore the details of image features, and it is difficult to 

capture the complete contour information.
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Fig. 1 Block design of the proposed lung cancer detection system

So, the denoised results may not be suitable for some 

applications that need high accuracy, such as in medical image 
processing, remote sensing, and so on. A filter named Non-

Local Mean (NLM) filter was constructed based on block 

similarity and global patch similarity, which significantly 

improved the effect of image denoising. The major importance 

of using NLM lies in finding similar patches (small regions) 

throughout the image and averaging pixel values from those 

similar patches. This helps remove noise without blurring 

important features. Principal Component Analysis (PCA) can 

blur images and remove important features. It is clear from the 

state-of-the-art that PCA can be explored further for image 

denoising, especially for low-resolution or high noise level 

images. N2N requires independent noisy images of the same 

scene, which can be difficult to acquire. After a thorough 
analysis and benchmarking, it is evident that the existing 

method of denoising techniques falls short in maintaining a 

balance between noise reduction and preserving crucial 

information from images. The Proposed model shows the use 

of NLM and wavelet methods to reduce noise with high 

accuracy, and shows that these methods are the best denoising 

methods among other methods. Soft and Hard thresholding 

approaches for denoising images using wavelets. Improved 

wavelet thresholding assisted in the noise reduction of the 

image. The software thresholding parameter provides the 

details of the coefficients that contain high-frequency 
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disturbances as well as certain signal details. The process of 

soft-thresholding is applied to denoise. Hardware thresholding 

parameter, applying threshold, the image is transformed using 

the wavelet transform to obtain a denoised set of wavelet 

coefficients. Specific numbers to adjust the wavelet hard 
threshold for that part of the medical scan. For instance, areas 

with high noise are more aggressive, and low noise areas have 

less aggression.  

3.1.1. NLM Denoising 

Non-Local Means (NLM) is a method that reduces noise 

and loss of significant picture information in lung cancer 

images. Pixel used similarity to compare areas and maintain 

similar features.  

The method selects areas around the Region of Interest 

(ROI) using a window size of 21 x 21 pixels and a patch size 

of 7 x 7 pixels. The adaptive thresholding with a threshold 

value of 0.1 balances noise reduction with finer features.  

The weight function used in image processing is based on 

the basic equation. The NLM noise reduction method aims to 

eliminate noise while minimizing the loss of fundamental 

information. Additionally, the given weight utilized during 

image processing increases with the degree of similarity. The 

NLM method's fundamental equation is represented as:  

𝑁𝐿𝑀|𝐼(𝑚| = ∑ 𝜔(𝑁𝑚 ,𝑁𝑛)𝐼(𝑛) (𝜔(𝑁𝑚 ,𝑁𝑛) =𝑛∈𝑁𝑚

1

𝑍(𝑚)
𝑒

−
𝑑

ℎ2) (1) 

Where 𝐼(𝑛) is the intensity of the noise portion of the nth 

pixel, I(m) is the intensity at the pixel m in the image, 𝑁𝑚Is 

the area around the𝑚𝑡ℎ pixel, 𝜔(𝑁𝑚 ,𝑁𝑛) is a function based 

on the weighted similarity (sum of the difference among the 

desired pixel and its neighbouring pixels), 𝑍(𝑚) is the 

normalization constant, and 𝑑 is the Euclidean distance.  

3.1.2. Wavelet Denoising 

Wavelet denoising is a technique used to train accurate 

prediction models for lung cancer detection. It involves three 

steps: decomposition, thresholding, and rebuilding. This 

method aims to eliminate high-frequency noise while 

preserving the lung cancer characteristics' general form and 
texture. It is a popular technique in time series denoising. The 

wavelet denoising approach involves three steps: 

 (1) Decomposition: Identify the wavelet basis function 

and the N decomposition layers. 

(2) Threshold processing: Choose a threshold function, 

then calculate each layer's components.  

(3) Reconstruction: By using the modified coefficients, 

reassemble the data. 

The soft threshold and hard threshold parameters of the 

threshold function are defined in Equation (2) and Equation 

(3), respectively. 

Soft threshold, 

𝑦𝑛𝑒𝑤 = {
𝑠𝑔𝑛(𝑦). (|𝑦| − 𝑇), |𝑦| ≥ 𝑇

0, |𝑦| < 𝑇 
 (2) 

Hard threshold, 

𝑦𝑛𝑒𝑤 = {
𝑦, |𝑦| ≥ 𝑇

0, |𝑦| < 𝑇 
 (3) 

Where 𝑦 is the wavelet coefficient, 𝑇 denotes the 

threshold, |𝑦| is the wavelet coefficient, and sgn(y) is the sign 

of y (positive or negative). The data will cause extra 

oscillation, and the hard threshold function will maintain the 

signal's peak characteristics. The wavelet coefficients do, 

however, maintain a higher level of overall continuity when 

using the soft threshold function, and the original signal's 

smoothness is also preserved. Consequently, the wavelet 

denoising approach uses a soft threshold function. 

3.2. Image Augmentation using a GAN Model 

To further enhance the dataset and improve model 

generalization, we employ DCGANs (Deep Convolutional 
Generative Adversarial Networks) for data augmentation. 

DCGANs produce synthetic pictures that are closely similar 

to real lung cancer images, diversifying the dataset and 

improving the categorization model's reliability. Deep 

Convolutional GAN for generating realistic medical images, 

especially for lung cancer detection. The discriminator 

distinguishes between original and produced images. The 

Adam optimizer was used for training, and IS and FID 

validated the model's performance. Domain specialists 

incorporated the produced photos into the dataset for further 

training. This includes the training parameters and how the 

DCGAN's performance was validated using metrics like 
Inception Score (IS) and Frechet Inception Distance (FID). 

The ability of DCGANs to recognize and comprehend patterns 

in the training data allows them to produce new data with 

comparable characteristics. A DCGAN, qualified on the 

collection of images, produces new pictures that seem truthful 

to a human observer. Generator and discriminator networks 

are both present in the DCGAN. The discriminator is given 

the capacity to discriminate between real samples and 

synthetic samples. Their purpose of min-max is represented 

by Equation (4) and uses the value function:  

 𝑉(𝐺, 𝐷):min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑤~𝑃𝑑(𝑤)[log𝐷(𝑤)] +

𝐸𝑦~𝑃𝑦(𝑦)[log(1 − 𝐷(𝐺(𝑦))] (4) 

Where y is the generated data samples produced by the 

generator G, 𝑤 is the unaffected data model taken after𝑃𝑑(𝑤), 

G and D are the generator and discriminator, 𝐷(𝐺(𝑦)) is the 

discriminator output for fake data generated by the G, and 𝑦 is 
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the random (noise) input taken from 𝑃𝑦(𝑦). The discriminator 

Loss function (𝐿𝐷) is a typical crossentropy loss function, 

similar to the double classifier given in Equation (5): 

𝐿𝐷 = −(𝑓 log(𝑝) + (1 − 𝑓) log(1 − 𝑝)) (5) 

Where 𝐿𝐷 is the loss of the discriminator, f is a true table, 

p is the predicted probability that the input is real, (1 −
𝑓) log(1 − 𝑝) and is the loss when the true label is 0 (fake 

data), and the model predicts the probability p. The results of 

the loss function were very heterogeneous, dependent on the 

sorts of contribution examples employed. A number 𝑝 

displays the likelihood of properly forecasting the precise and 

big models, even if f denotes the initial digit. The loss 

generator (𝐿𝐺)  seeks to produce as many random variable 

quantities as conceivable to maximize the loss function of the 

discriminator (𝐿𝐷). The ultimate purpose of the producer is 

articulated as 𝑓 log(𝐷(𝑦)). The failure of the originator, 

which is shown in Equation 6:  

(𝐿𝐷) = = −{(𝑓 log(𝐷(𝑤)) + (1 − 𝑓) log(1 −

𝐷𝑖𝑠(𝐺(𝑦)))}  (6) 

Where 𝐷(𝑤) is the chance of the discriminator assigning 

to the real picture w, D (𝐺(𝑦)) is the possibility that the 

discriminator allocates to the produced (Fake) image from the 

originator𝐺(𝑦), and  𝐺(𝑦) is the generated image from the 

generator based on input y.  While training, only one model's 

parameters are changed, not those of the second. The 

generator functions most effectively when the discriminator 

becomes perplexed and is unable to distinguish between true 

samples and fake ones. After the drill, the discriminator is 

changed so that it functions best aimed at the current 

generator. 

For training purposes, we used parameter values such as 

batch size, learning rate, beta1, epochs, image size, and the 

model's performance, which was validated using IS and FID. 
An IS is a higher Inception Score, which generally indicates 

better image quality and diversity.  

A FID is a lower FID score, generally indicating that the 

generated images are more similar to the real images and thus 

more realistic. The ability of DCGAN to reproduce and create 

synthetic images allows it to compare the visual similarity to 

a real image. A sample of a synthetic image generated using 

DCGAN is shown in Figure 2. The quality evaluation of the 

DCGAN is summarized in Table 1. 

 
Fig. 2 Sample of a synthetic image generated using DCGAN 

Table 1. Quality evaluation of DCGAN-generated CT images 

Metric Real CT Images DCGAN Generated Images 

Inception Score 2.85 2.71 

Frechnet Inception Distance - 32.5 

3.3. ROI Extraction using ACE-ACM 

The lung tumor regions, the Adaptive Correlation 

Enhanced Active Contour Model (ACE-ACM), are used to 

identify and segment lung tumor regions from medical 

images. This technique ensures that subsequent texture 

analysis focuses on relevant regions, improving classification 

accuracy in lung cancer diagnosis. By incorporating an 

adaptive local correlation map, ACE–ACM enhances the 

representation of tumor regions and suppresses background 

structures. The correlation-based term in the energy function 
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guides the contour toward true tumor boundaries, even in the 

presence of high noise, low contrast, and irregular nodule 

shapes. The ACE-ACM's contour-based methodology 

distinguishes and separates the tumor area from the 

surrounding area, making it suitable for medical imaging 
applications like object recognition and shape analysis. The 

study aims to isolate the ROI region from the rest, enhancing 

the accuracy of further texture analysis. The steps involved in 

the ACE-ACM are given below, 

Step 1: Compute the weight function 

The weight function of the pre-processed image is 

calculated using the adaptive weight function. The 

mathematical expression of the weight function is given in 

Equation (7) as, 

 

𝐸𝐶𝑜𝑛𝑡𝑜𝑢𝑟 = ∫(𝛼 ∗ 𝑤(𝑠) ∗ |∇|𝑠|2 − 𝛽 ∗ |∇2|(𝑠)| 𝑑𝑠 (7) 

Where 𝑤(𝑠) denotes the weight function, which is 

represented by, 

𝑤(𝑠) = 𝑤𝑏𝑎𝑠𝑒 + 𝑤𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ∗ |∇|(𝑠)| (8) 

Where 𝛼 is a scaling factor, ∇|𝑠|2 is the gradient of the 

squared intensity, 𝛽 is the scaling factor for the Laplacian 

term, |∇|𝑠|2| is Laplacian, smooths the contour,𝑤𝑏𝑎𝑠𝑒  

represents the base weight of the pre-processed image, and 

𝑤𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡  denotes the weight factor that increases the gradient 

magnitude |∇|(𝑠)|. 

Step 2: Compute the cross-correlation-based entropy 

After finding the weight function 𝐸𝐶𝑜𝑛𝑡𝑜𝑢𝑟, the 

crosscorrelation-based entropy (𝐻𝑐𝑟𝑒𝑠𝑠 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) is 

calculated using Equation (9) below, 

𝐻𝑐𝑟𝑒𝑠𝑠 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = −∫(𝑇(𝑠) ∗ log(𝐼𝑟(𝑠))𝑑𝑠 (9) 

Where 𝑇(𝑠) represents the template function that 

represents the expected appearance, 𝐼𝑟(𝑠) and denotes the 

image region around contour points. 

Step 3:Modified energy function computation 

The energy function 𝐸𝑡𝑜𝑡𝑎𝑙is calculated based on the 

contour value and the cross-correlation-based entropy value. 

Which is defined in Equation (10) as, 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐶𝑜𝑛𝑡𝑜𝑢𝑟 + 𝛾 ∗ 𝐻𝑐𝑟𝑒𝑠𝑠 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  (10) 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫(𝛼 ∗ 𝑤(𝑠) ∗ |∇|𝑠|2 − 𝛽 ∗ |∇2|(𝑠)| 𝑑𝑠 + 𝛾 ∗

(−∫(𝑇(𝑠) ∗ log(𝐼𝑟(𝑠))𝑑𝑠) (11) 

3.4. Feature Extraction 

From the segmented pictures, useful characteristics can 

be extracted by an advanced feature extraction method. 

Instead of relying solely on traditional approaches, we 

integrate deep learning-based feature extraction models, such 
as pre-trained models like VGGNet and ResNet. These models 

automatically learn and extract high-level features from lung 

cancer images, capturing intricate patterns and improving 

classification accuracy. 

3.4.1. VGG 16 

The ImageNet dataset was utilized to pre-train the 

VGG16 model, which is used to extract constraint 

characteristics. The VGG16 construction comprises three 

fully connected layers after the primary five blocks of 

convolutional layers. To maintain identical spatial dimensions 

as the layer preceding it, respectively, start the map in a 

convolutional coating using a 33 kernel through a step of 1 and 
a padding of 1. With the help of the imported convolutional 

layer's parameters, the bottleneck characteristics are retrieved. 

Each difficulty is shadowed by a ReLU activation, a three-

dimensional lowering by the max pooling technique. Max 

pooling layers employ 22 kernels with a pace of 2 and no 

padding to make sure every spatial measurement of the 

beginning map of the preceding layer is divided in half. After 

two linked coatings with 4,096 ReLU beginning units, the last 

1,000 fully associated softmax coatings are rummage-sale. 

The VGG16 model has some downsides, including a high 

assessment cost and high memory and storage needs. VGG16 
is then made up of 138 million or more parameters. The fully 

connected layers include 123 million occurrences of these 

traits.  

3.4.2. ResNet 

ResNet performs well in a diversity of requests, including 

speech acknowledgment, natural language dispensation, 

picture classification, image production, visual identification, 

and user prediction. Following two weight layers, the input 

value x's residual mapping is denoted by 𝐻(𝑥), and the 

fundamental mapping is denoted by 𝐹(𝑥), respectively. The 
residual unit converts the issue from matching the connection 

between 𝐻(𝑥) 𝑎𝑛𝑑 𝑥 to fitting the connection between 

𝐹(𝑥) 𝑎𝑛𝑑 𝑥 by employing a function of identity as a shortcut 

link. Two different benefits of the residual network over the 

standard CNN are discussed below. 

Easier to be Optimized   

ReLU is the activation function placed before the output 

layer of the residual unit, which frequently acts as an intrinsic 

value of 0 or an identity function. For learning, we combined 

many leftover units. If one assumes that the identity functions 

that activate the ReLU are,  

𝑥𝑙+1 = 𝑥𝑙 + 𝐹(𝑥𝑙 , {𝑊𝑙}) (12) 
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Where 𝑊𝑙 stands for the weights and 𝑥𝑙 stands for the 𝑙𝑡ℎ 

resnet unit's input. A direct forward propagated output (𝑥𝑙+1) 

and the residual mapping of the 𝑙𝑡ℎ resnet unit that has to be 

learnt is represented by 𝐹(𝑥𝑙 , {𝑊𝑙}). Following that definition, 

the residual network's forward propagation mechanism is, 

𝑥𝐿 = 𝑥𝑙 + ∑ 𝐹(𝑥𝑙 ,
𝐿−1
𝑖=𝑙 {𝑊𝑙}) (13) 

Where 𝑥𝐿 is the total output of the connected residual 

units of length 𝐿. On the other hand, a typical CNN's forward 

propagation procedure may be characterized as, 

𝑥𝐿 = 𝑥𝑙 ∏ 𝑊𝑖
𝐿−1
𝑖=𝑙  (14) 

In the formula, where Wi denotes the weights, 𝑥𝑙 and 𝑥𝐿 

stand for the input and output of the lth  𝐿1 convolutional 

layer, respectively. Equation (13) and Equation (14) may be 

compared to show that the residual network requires less 

computing power and is optimized more easily than the 

conventional CNN. 

A more effective approach to the gradient issue  

According to Equation (13), the backpropagation 

procedure may be used to represent the gradient of the residual 

network as 

𝜕𝐸

𝜕𝑥𝑙
=

𝜕𝐸

𝜕𝑥𝐿
(1 +

𝜕

𝜕𝑥𝐿
∑ 𝐹(𝑥𝑖 , {𝑊𝑙})

𝐿−1
𝑖=𝑙 ) (15) 

Where 𝐸 stands for the model's loss function. The 

gradient of a standard CNN may be determined by, 

𝜕𝐸

𝜕𝑥𝑙
=

𝜕𝐸

𝜕𝑥𝐿
∏ 𝑊𝑖

𝐿−1
𝑖=𝑙  (16) 

The traditional CNN is prone to gradient disappearance 

and explosion issues as the network gets deeper, while the 

ResNet may successfully address these issues, according to 

the comparison between Equation (15), and (16). 

3.5. Feature Selection using ScLnO 
To optimize the feature space and reduce dimensionality, 

we utilize an advanced feature selection algorithm called the 

ScLnO algorithm. The proposed ScLnO algorithm is the 

combination of the SLO and SSA, respectively. These 

techniques intelligently identify the most relevant and 

discriminative features, safeguarding the classification of 

typical attentions on the most useful aspects of lung cancer 

images. Various kinds of sparrows are often social birds. 

 The producer and scrounger are two separate species of 

house sparrows that are kept as pets. While the scroungers rely 

on the producers to provide them with food, the producers 
actively seek sources of food. In the meantime, the predatory 

birds in the flock employ the partners with high intakes as 

competition for their food sources to increase their predation 

level. The behavior of the sea Lion is hybridized with the 

sparrow to improve the strategies of the sparrow. 

Step 1: Initialization 

To find food in the simulation experiment, we utilize 
computer-generated sparrows. The following matrix is used to 

show where sparrows are located: 

𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1 … 𝑥1,𝑑 … 𝑥1,𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑖,1 … 𝑥𝑖,𝑑 … 𝑥𝑖,𝑚

⋮ ⋱ ⋮ ⋱ ⋮
𝑥𝑁,1 … 𝑥𝑁,𝑑 … 𝑥𝑁,𝑀]

 
 
 
 

𝑁×𝑚

 (17) 

where 𝑛 is the total number of sparrows, and 𝑑 represents 

the dimension of the parameters that have to be optimized. 

Step 2: Fitness computation 

The fitness of the optimization is computed by using the 

accuracy value. The mathematical expression for the fitness is 

given in Equation (18), 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 1/𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (18) 

Consequently, the following vector may be used to 

represent the fitness value for all sparrows: 

𝐹𝑋 =

[
 
 
 
 
𝑓(𝑥1,1 … 𝑥1,𝑑 … 𝑥1,𝑚)

⋮ ⋱ ⋮ ⋱ ⋮
𝑓(𝑥𝑖,1 … 𝑥𝑖,𝑑 … 𝑥𝑖,𝑚)

⋮ ⋱ ⋮ ⋱ ⋮
𝑓(𝑥𝑁,1 … 𝑥𝑁,𝑑 … 𝑥𝑁,𝑀)]

 
 
 
 

𝑁×𝑚

 (19) 

This shows the individual's level of fitness as measured 

by the length of each row in FX, while n here stands for the 

number of sparrows. When searching for food in the SSA, 
producers with higher fitness ratings are given preference. 

Furthermore, the producers are assumed to be the first 10% of 

the fitness solutions since they are in charge of directing the 

scroungers and seeking food. The other 40% of the fitness 

solution is classified as scroungers since they follow the 

producers' lead and create the majority of the population's 

food. In contrast to scroungers, producers have a greater range 

of options regarding where to seek food.  

Step 3: Sealion-based Detection and tracking of prey by 

scroungers. Using a uniform random distribution in the search 

space, SLO first creates N (the population's size) D-

dimensional solutions as shown below. Then, the producers 
locate the prey and attract other members to form the subgroup 

before organizing the net in accordance with the encircling 

process. The best current option-or the solution that comes 
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closest to becoming the best solution-is regarded as the prey. 

Equation (20) presents these behaviours. 

𝑋𝑖,𝑗
𝑛𝑒𝑤 = 𝑋𝑖,𝑗

𝑚𝑖𝑛 + 𝐸 ∗ 𝑃 ∗ (𝑋𝑖,𝑗
𝑚𝑎𝑥−𝑋𝑖,𝑗

𝑚𝑖𝑛) (20) 

Where 𝑖 = 1,2,… ,𝑁 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝐷. 𝑋𝑖,𝑗
𝑚𝑖𝑛  represents 

the minimum value of the 𝑖𝑡ℎ solution with 𝑗𝑡ℎ dimension, 

similarly, 𝑋𝑖,𝑗
𝑚𝑎𝑥 is the maximum value of the 𝑖𝑡ℎ solution with 

𝑗𝑡ℎ dimension, 𝐸 is the encircling factor that controls the step 

size of the movement. Then the parameter 𝑃 represents the 

promising area. 

Step 4: Producer-Scrounger interaction based on 

vocalization 

A Producer will summon other Scroungers in its group to 

come together and construct a net to catch the prey when it 
spots a gathering of its prey. The Producer is regarded as the 

group's leader and will direct the Scrounger group's actions 

and determine its behavior. The producers' instructions serve 

as the basis for the Scroungers' positional adjustments. The 

vocalization behavior of the SLO is hybrid with the interaction 

phase of the Producer-Scrounger. Vocalization plays a vital 

role in the interaction between producers and scroungers, 

facilitating communication and coordination of foraging 

activities. These behaviors are represented mathematically in 

Equation (21), 

𝑆𝑖𝑗
𝑛𝑒𝑤 = 𝑆𝑖𝑗 ∗ |

𝑉1(1+𝑉2)

𝑉2
| + 𝐺 ∗ (𝑋𝑖𝑗 − 𝑃𝑖𝑗) (21) 

Where 𝐺 is the guidance factor, 𝑆𝑖𝑗  which signifies the 

location of the scrounger, 𝑋𝑖𝑗  which denotes the situation of 

the producers. The values of 𝑉1 𝑎𝑛𝑑 𝑉2 are given in Equation 

(22) and Equation (23), respectively. 

 
𝑉1 = sin 𝜃 (22) 

𝑉2 = sin𝜙 (23) 

Where𝜃 is the angle of voice reflection, 𝜙 is the angle of 

voice refraction. In our research, 𝑟 𝑖𝑠 a randomly generated 

number between [0, 1],  𝜃 = 2𝑟, and 𝜙 =  2(1 − 𝑟). 

 
Step 5: Attacking phase (Circling, updating position 

founded on the disordered map). 

The producer hunts the bait ball of prey by starting at the 

boundaries and pursuing it. Constructed on a tent-like, 

disordered map, the position of the circling is updated. The 

fundamental solution, the current optimal solution, is used to 

create the tent chaotic sequence. The ideal solution in the 

series is then utilized to update the position of the food supply, 

forcing it to depart from the local optimal. In Equation (24), 

the mathematical expression is represented as, 

𝑋𝑖𝑗 = 𝑋𝑏𝑒𝑠𝑡 + cos(2𝜋𝑚) ∗ |𝑋𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑏𝑒𝑠𝑡| (24) 

Where 𝑚 is the tent chaotic map,  𝑋𝑏𝑒𝑠𝑡  is the best 

solution. and 𝑋𝑔 𝑏𝑒𝑠𝑡  is the global best solution. 

Step 6: Position update of the Scrounger  

Certain scroungers pay more attention to the producers. 

They leave their present place as soon as they learn that the 

producer has discovered excellent food and begin fighting for 

it. They rapidly obtain the food created if they are successful; 

if not, the laws are still followed. The method for changing the 

location of the scrounger is provided in Equation (25) below: 

𝑋𝑖𝑗
𝑡+1 = {

𝑄. exp (
𝑥𝑤𝑜𝑟𝑠𝑡

𝑡 −𝑋𝑖𝑗
𝑡

𝑖2
) 𝑖𝑓𝑖 > 𝑛/2

𝑋𝑃
𝑡+1 + |𝑋𝑖,𝑗

𝑡 −𝑋𝑃
𝑡+1|. 𝐴+ . 𝐿, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (25) 

Where 𝑋𝑃 denotes the producer's ideal position. 𝑥𝑤𝑜𝑟𝑠𝑡
𝑡  

designates the world's worst location at the moment. Each 

member in the 1,d matrix 𝐴 is given a random number between 

-1 and 1, and 𝐴+ =𝐴𝑇(𝐴𝐴𝑇)−1 . The 𝑖𝑡ℎ scrounger with the 

lowest fitness grade has a higher chance of going hungry when 

𝑖 >  𝑛/2. 

Step 7: Except for the so far developed best solution. 

Step 8: Return the best resolution 

Step 9: Terminate condition 

Algorithm 1:Pseudocode of ScLnO algorithm 

Step 1: Initialization 

X[N][m] = Initialize Sparrows  PositionMatrix() // 

Equation (17) 

Step 2: Fitness Computation 

F_X[N][m] = CalculateFitness Matrix(X) // Equation (18), 

Equation (19) 

Step 3: Detection & Tracking of Prey by Scroungers 

Initialize Solutions(X) // Equation (20) 

Step 4: Producer-Scrounger Interaction based on 

Vocalization 

Update Scrounger Positions(X) // Equation (21) 
Step 5: Attacking Phase (Updating Position based on Tent 

Chaotic Map) 

Update Producer Positions(X) // Equation (24) 

Step 6: Position Update of the Scrounger 

Update Scrounger Positions Based on Conditions(X) // 

Equation (25) 

Step 7: Save the Best Solution So Far 

Save Best Solution(X) 

Step 8: Return the Best Solution 

Return Best Solution(X) 

Step 9: Terminate Condition 
if Termination ConditionMet() then 

Terminate Simulation() 
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After performing the feature assortment task, the selected 

optimal features were used for the DenseEnsembleNet 

classifier for categorizing disease images. For this 

classification purpose, the hyperparameters of the DenseNet 

model are fine-tuned using the ScLnO algorithm. 

3.6. Lung Cancer Classification using DenseEnsembleNet 

This DenseEnsembleNet is the combination of the 

optimized DenseNet and CNN. DenseNet models facilitate 

feature reuse and gradient flow, enabling effective learning 

and representation of complex patterns in lung cancer images. 

We fine-tune the DenseNet model using advanced 

optimization algorithms, which optimize the network's 

weights and improve the overall classification performance. 

The architecture of the DenseEnsembleNet is shown in Figure 

3.  

Features extracted from images from ScLnO were passed 

to DenseEnsembleNet(OptimizedDenseNet + CNN). Once 

the image enters the novelty net (DenseEnsembleNet), the 

novelty net consists of DenseNet and CNN. DenseNet will 

receive the feature extraction image, and the CNN also 
receives the same image. DenseNet was started to fine-tune 

the image properties and provide the output feature extraction 

image, and at the same time, Convolutional Neural Networks 

were used to find the pattern, and the image was extracted with 

spatial resolution features, and provide an output of the feature 

extracted image. Both the output image was passed through 

the concatenate layer. The combination helps to ensure that 

the detection and classification of lung types perform 

extraordinarily. The hyperparameter configuration and its 

justification are given in Table 2. 

 

Table 2. Hyper parameter configuration and justification 

Hyper Parameter Value Used Justification 

Learning Rate 0.001 Stable Convergence for dense architecture 

Batch size 128 Efficient Training 

Optimizer Adam Optimizer For smooth Convergence 

Number of dense blocks 4 Balanced Depth 

Growth rate 32 Strong feature reuse 

Dropout 0.2 Prevents Overfiting 

3.6.1. Optimized DenseNet 

The DenseNet consists of convolutional layers, dense 

layers (completely linked layers), maxpool layers, and 

convolutional layers. The architecture of the perfect is 

activated with ReLU throughout, and the top layer is activated 

with SoftMax.  

The convolutional layers restore the properties of the 

picture while the maxpool layers lower the dimensionality of 

the input.  

The fully associated layers come after the initial flattened 

coating in the stack. One input array is sent to the compression 

layer, which performs as an ANN. The hyperparameters of the 

DenseNet model, like Number of layers, Batch size, and 

Learning rate, are fine-tuned using the ScLnO algorithm.  

Figure 4 provides illustrative examples showcasing the 

sequential analysis of two distinct sample images, each 

representing a specific scenario in lung cancer detection.  

The first image in the sequence corresponds to a healthy 

lung, while the second image portrays a lung affected by 

cancerous growth. Each of these images undergoes a step-by-
step process to elucidate the identification process 

comprehensively.

Selected 

features 

from the 

ScLnO

Optimized 

denseNet

CNN

Concatenate 

layer

Dense 

layer 1

Dense 

layer 2

Fully 

Connected 

(FC) layer 

1

Fully 

Connected 

(FC) layer 

2

Lung cancer 

detected

Lung cancer 

not detected

Lung cancer types

 
Fig. 3 Layered architecture of the DenseEnsembleNet 
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Original Image Grey image NLM Denoising
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Fig. 4 Input image at each stage

4. Result and Discussion 
4.1. Performance Metrics 

The calculation formulas for performance metrics are 

provided below. 

Sensitivity 

Simply divide the entire positives by the number of true 

optimistic predictions to get the warmth number. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (40) 

Specificity 

By precisely separating the numbering of anticipated 

negative results by the entire amount of rejections, one may 

determine the specificity of a forecast. 

Specificity =
TN

TN+FP
 (41) 

Accuracy 

The correctness is determined by dividing the amount of 

successfully sorted data by the total amount of data in the 

stream. The definition of the degree of precision is, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (42) 

Precision 

It is a whole quantity of honest values that are suitably 

taken into deliberation during the organization stage, utilizing 

all samples used in the classification technique.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (43) 

Recall 

The recall rate is a measure of how many real examples 

were used to classify the training data when every sample from 

the same group was used.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (44) 

F- Measure 

 Parametric methods for the F-measure, a special 

instance of 𝐹𝛽 with 𝛽 = 1, aiming to improve the sensitivity 

and efficiency of these methods when the assumptions are 

correct. 

𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (45) 

Negative Prediction Value (NPV) 

NPV designates the efficiency of an analytic test or 

similar measurable metric. 
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𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 (46) 

Matthew’s correlation coefficient (MCC) 

The two-by-two dual factor correlation measurement, 

occasionally mentioned as MCC, is shown in the 

equation below, 

𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑃+𝐹𝑃)
 (47) 

False Positive Ratio (FPR) 

The amount of negative events divided by the total 

number of undesirable occurrences is inadvertently converted 

into positive results. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (48) 

False Negative Ratio (FNR) 

FNR, often recognized as "miss rate," indicates the 

possibility that an actual positive will not be detected by the 

test. 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
 (49) 

Additionally, the component-wise performance analysis 

has been done to ensure the novelty of the research work and 

is submitted in Table 3. 

Table 3. Component-wise performance analysis of the proposed method 

Model Version Accuracy 

Full Model 98.5 

Without DCGAN 92.5 

Without ACE-ACM 89.4 

CNN 85.6 

 

This next section compares the suggested method's 

outcomes to those from the currently used approaches. In this 

work, there are two types of datasets used. Dataset 1 is used to 

predict whether lung cancer is present or not, and dataset 2 is 

used to predict the type of lung cancer. The detailed 

description of the two datasets is given below. Dataset 1The 

IQ-OTH/NCCD lung cancer dataset(2023) [26] is taken as the 

input image, and the PYTHON platform is employed for 

implementation.  

The IQ-OTH/NCCD lung cancer dataset, which includes 
CT scans from both lung cancer patients and healthy 

participants, was gathered from specialized hospitals over the 

course of three months in 2019. The dataset consists of 1190 

CT scan shares from 110 examples that have been secret as 

kind, mean, or standard deviation by medical professionals. 

Siemens SOMATOM scanners were used to acquire the scans, 

and a precise CT procedure was followed. Implementation of 

privacy safeguards was approved by the institutional review 

board. Each case includes many chest slices, and the dataset 

represents the variety of occupations and demographics in 

Iraq, offering a thorough resource for lung cancer research. 

The whole amount of data is divided into two groups, termed 

training and testing.  

The remaining 30% of the data is utilised for testing, with 

the remaining 70% being used for training. The performance 

metrics are used for the evaluation of Dataset 2. The second 

dataset is the ChestCT-Scan images Dataset (2023) [27]. Data 

are used in three different ways: 70% for training, 20% for 

testing, and 10% for other purposes. The dataset for the chest 

cancer detection project consists of medical images in JPG or 

PNG format, rather than the DICOM format, to align with the 

necessities of the machine learning model. It encompasses 

images related to three distinct chest cancer types, namely 
large cell carcinoma, Adenocarcinoma, and Squamous cell 

carcinoma. Additionally, there is a folder containing images 

representing normal chest cells. The dataset has been 

meticulously collected and cleaned from various sources, 

ensuring its suitability for keeping fit and evaluating the CNN-

based design for chest cancer arrangement and diagnosis. 

Overall comparison of the proposed lung cancer detection 

model (ScLnO+ DenseEnsembleNet) is associated with the 

existing methods like SVM, SLO, SSA DenseEnsembleNet, 

and the proposed classifier (Pro-classifier). The comparison is 

shown in Tables 4 and 5. 

 

Table 4. Overall assessment of the proposed lung cancer detection model (Dataset 1)

Metrics CNN SVM DenseEnsembleNet SLO SSA Proposed 

Accuracy 0.979 0.856 0.978 0.945 0.923 0.987 

Precision 0.969 0.848 0.978 0.918 0.884 0.974 

Sensitivity 0.969 0.823 0.962 0.918 0.884 0.97 

Specificity 0.979 0.826 0.982 0.959 0.942 0.989 

F-Measure 0.969 0.823 0.978 0.918 0.884 0.987 

MCC 0.954 0.812 0.968 0.877 0.827 0.981 

NPV 0.984 0.809 0.989 0.959 0.942 0.993 

FPR 0.015 0.062 0.010 0.040 0.057 0.006 

FNR 0.030 0.092 0.021 0.081 0.115 0.012 
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Table 5. Overall assessment of the proposed lung cancer classification model (Dataset 2) 

Performance metrics CNN SVM DenseEnsembleNet SLO SSA Proposed 

Accuracy 0.977 0.850 0.985 0.955 0.913 0.988 

Precision 0.966 0.775 0.978 0.933 0.869 0.985 

Sensitivity 0.966 0.775 0.978 0.933 0.869 0.984 

Specificity 0.983 0.887 0.989 0.966 0.934 0.989 

F-Measure 0.966 0.775 0.978 0.933 0.869 0.984 

MCC 0.9500 0.6636 0.9682 0.9000 0.804 0.985 

NPV 0.983 0.887 0.984 0.966 0.934 0.985 

FPR 0.016 0.112 0.010 0.033 0.06 0.003 

FNR 0.033 0.224 0.021 0.066 0.130 0.006 

4.2. Statistical Performance Analysis 
Thorough statistical research was carried out to guarantee 

the robustness and dependability of the suggested lung cancer 

classification framework. In order to capture performance 

variability across various data splits, the model's performance 

was assessed using 5-fold cross-validation. The findings are 

shown in terms of mean and standard deviation(SD). It is 

discussed in Table 6. 

Table 6. Statistical validation of results 

Metric Mean % SD % Confidence Interval % Statistical Significance 

Accuracy 98.5 ±0.6 [97.4, 98.9] P<0.01 

Precision 97.5 ±0.8 [95.9, 98.9] P<0.01 

Sensitivity 98.8 ±0.5 [97.8, 98.7] P<0.01 

Specificity 98.2 ±0.7 [96.8, 98.7] P<0.01 

F-Measure 98.0 ±0.6 [96.8, 99.1] P<0.05 

5. Conclusion  
Accurate lung cancer classification is crucial for effective 

management planning and positive patient outcomes due to its 
prevalence and life-threatening nature. The study introduces a 

groundbreaking methodology that integrates advanced 

technologies in deep learning, feature extraction, and image 

processing. Our approach utilizes advanced denoising 

techniques and GANs for dataset augmentation, enhancing 

image quality, and improving model generalization. The 

ACE-ACM and ScLnO hybrid optimization algorithms 

enhance ROI identification, feature extraction, and analysis 

processes by intelligently identifying key features. The 

classification stage utilizes the DenseEnsembleNet, a 

combination of Optimized DenseNet and CNN, resulting in 

exceptional accuracy. The innovative framework has the 

potential to revolutionize lung cancer diagnosis with a 

remarkable 98.7% - 98.8% accuracy rate, surpassing existing 

techniques. The integration of advanced technologies in lung 

cancer classification has led to a robust and promising 

solution, enhancing medical diagnostics and patient care. The 

suggested approach could help radiologists make decisions by 

aiding in the early identification of lung cancer from CT scans. 
The use of ensemble-based learning improves resilience by 

lowering model variance; nonetheless, applicability to 

previously unreported clinical data cannot be completely 

assured without external multi-centre validation. Despite the 

performance of the proposed framework, it is limited to the 

publicly available dataset. 
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