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Abstract - This study compares energy theft detection methods using qualitative analysis techniques and a Support Vector
Machine (SVM) model. With a precision of 97.86%, a recall of 99.93%, an F1-score of 98.88%, and an accuracy of 97.94%, the
findings show that SVM performed well across all key evaluation metrics. However, qualitative analysis revealed an average
consistency of 80% across these indicators, indicating a higher risk of misclassification and lower reliability. The results
demonstrate that, compared to traditional qualitative methods, SVM provides better detection accuracy, reduces false alarms,
and ensures comprehensive identification of theft cases. When compared to other related works on an overall basis, the results
were superior. These findings highlight the potential of machine learning models, particularly SVM, as a scalable and
dependable approach to preventing electricity theft in modern power grids.
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1. Introduction

A stable power system is essential to the social well-being
and economic development of modern countries [1].
Nonetheless, one of the most significant issues utilities face
worldwide is electricity theft. This concept, among other
things, increases technical losses, degrades the supply,
reduces efficiency, and results in large revenue losses. Energy
theft is estimated to cost a significant amount of money
annually, with developing countries being disproportionately
affected due to inadequate monitoring, insufficient
enforcement, and underdeveloped technological infrastructure

[2].

To mitigate these issues, researchers have developed
several methods for detecting power system theft. Traditional
methods, such as meter audits and physical inspections, take a
lot of time and often fail to identify sophisticated energy-
stealing strategies [3]. Advances in digital metering,
communication networks, and data analytics have enabled
more intelligent, automated, and efficient detection
techniques. Advanced Metering Infrastructure (AMI),
machine learning algorithms, data-driven anomaly detection
systems, and smart meters have shown great potential in
identifying unusual usage patterns and more accurately
discovering theft. Additionally, cutting-edge strategies for
avoiding electricity theft include Internet of Things (loT)-
based monitoring systems, wireless sensor networks, and
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blockchain for secure transactions [4]. Despite a number of
mitigation strategies, including smart metering, supervisory
control systems, and regulatory enforcement, energy theft
detection and prevention remain inadequate [5]. Traditional
statistical approaches and rule-based methods often fail to
cope with the complexity of consumer behavior, evolving
theft techniques, and the large volume of consumption data in
modern grids [6].

This work presents a comparative analysis of the energy
theft detection using Support Vector Machine (SVM) and
Quantitative analysis.

2. Literature Review

Energy theft, a major component of Non-Technical
Losses (NTLs), continues to undermine the operational
efficiency, financial viability, and long-term sustainability of
electricity distribution networks. With the rapid penetration of
smart meters and Advanced Metering Infrastructures (AMI),
recent research has shifted towards data-driven and intelligent
analytics for detecting anomalies in consumption patterns.
This section synthesizes contemporary literature, connecting
methodologies, findings, and limitations to reveal the evolving
landscape of energy theft detection and highlight critical
research gaps. By contrasting statistical indicators, Artificial
Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference
Systems (ANFIS), and clustering approaches like k-means,
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the work by [7] offered a thorough evaluation of Al techniques
utilized in distribution networks. The analysis showed that Al
methods outperformed traditional statistical guidelines.
Similarly, [8] used an Al-powered method to identify
electricity theft in a Nigerian distribution network. Despite
these encouraging findings, it may be less generalizable to
restrict the model to client recharge patterns rather than whole
consumption profiles.

Also, [9] suggested a Denoising Diffusion Probabilistic
Model (DDPM)-based ensemble method that reconstructed
baseline consumption to detect irregularities. By combining
reconstruction-based anomaly detection with forecasting error
metrics, their ensemble method improved detection
performance, particularly for stealthy and intermittent theft
behaviors. In a related development, the study by [10]
proposed a hybrid algorithm combining usage-pattern analysis
and contextual features to detect non-technical losses in smart
grids, demonstrating improved detection accuracy.

The study was found to lack generalized unsupervised
solutions and large false positives across datasets. The work
by [11] provided a global, holistic review of non-technical
electricity losses, highlighting that large users often contribute
more to losses. The study is largely conceptual and literature-
based, lacking empirical case studies or quantitative modeling
to assess the effectiveness of proposed interventions.
Similarly, [12] presented a three-stage algorithm using smart
meter data to estimate power and energy losses in distribution
networks, combining topology recognition and load-flow
analysis. The work was tested only on a small rural network.

A deep learning-based hybrid model for detecting
electricity theft was carried out by [13], and it achieved good
accuracy by tackling feature complexity and class imbalance.
On the other hand, [14] suggested a hybrid Random Forest
framework that improved anomaly detection and feature
selection in smart-meter data. Both models require large, high-
quality datasets and significant computational resources. An
entropy-based metric that combines data from several sources
to detect tampered or manipulated electrical meters was
presented in [15]. The method showed good anomaly
detection, although it could need rich, multi-source data. Also,
a context-aware and pattern-based approach to detecting
electricity theft is presented in [16]. The study by [17]
proposed an Al-based model using real distribution-grid data
enriched with engineered statistical and temporal features.
The findings highlight the importance of combining raw
consumption with temporal and contextual features to
improve theft detection. Despite improved accuracy,
collecting extensive feature sets is resource-intensive and
difficult to implement in real-time.

Despite substantial progress in applying machine learning
techniques to energy theft detection, several critical areas need
to be addressed. Previous research has mostly concentrated on
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the use of certain algorithms without methodically contrasting
how well they function under different data conditions.
Furthermore, heuristic-based quantitative analysis is the
foundation of contemporary methodologies; nevertheless, the
integration of these quantitative techniques with machine
learning classifiers has not been fully investigated.

2.1. Contribution of the Study

The work provides a unique perspective on the efficacy
of theft detection by integrating SVM with statistical and
quantitative techniques.

Using real-world consumer load profiles, the study
assesses each method's accuracy, precision, recall, and
computing efficiency.

SVM provides robust classification capabilities for
distinguishing normal and abnormal consumption
patterns.

The study offers recommendations for utilities to choose
the best method for theft detection by comparing the two
approaches.

The detection architecture for various approaches is
shown in Section 2, and the methodology is shown in Section
3 of the remaining text. The results and comments are
presented in Section 4, and the work is concluded in Section
5.

2.2. Detection Architecture for Different Approaches

The linkages between the different methods for detecting
NTLs are established in this review. The techniques are
categorized based on their detection mode and architecture.
While AMI-based NAN approaches and hardware-based
techniques are arranged under architecture-driven topologies,
machine learning-based techniques are further divided into
those that use sequential data, non-sequential data, and
synthetic data. The general link between various detection
techniques is shown in Figure 1 [18].

One of these five primary categories—synthetic data
detection, sequential data detection, non-sequential data
detection, neighborhood area networks, and 10T and
hardware-based approaches—can be wused to identify
electricity theft.

2.2.1. Synthetic Data Detection

Synthetic data-based methods are becoming more and
more popular in Electricity Theft Detection (ETD). This
approach uses artificially created datasets to train and verify
machine learning models. By simulating both normal (benign)
and fraudulent (anomalous) customer behavior, synthetic
datasets allow academics and utility suppliers to assess ETD
models without depending on real consumption data. Al
models are trained and tested using performance evaluation
measures, including precision, recall, F1-score, and the AUC-
ROC curve, once the data is generated and classified as either
benign or fraudulent [18].
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Fig. 1 Architecture of various detection scenarios [2]

2.2.2. Sequential Data Detection

Sequential data detection in ETD uses time-series
analysis of power usage statistics to find anomalous patterns
that can point to fraud. This technique separates anomalies
from regular usage by using temporal correlations in the data.
Since sequential data mostly consists of time-dependent
features, Recurrent Neural Networks (RNNs) are widely
employed to explain it. Following the required preprocessing,
these RNN models are trained, and their efficacy is assessed
using standard assessment criteria [19].

2.2.3. Non-Sequential Data Detection

Non-sequential data detection is the process of examining
stationary or non-temporal data to identify anomalies that may
indicate electricity theft. They primarily rely on time-series
consumption patterns. This strategy focuses on features that
are independent of the timing or sequence of data items. The
process often begins with data gathering and preprocessing of
non-temporal data, such as customer profiles, location data,
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payment history, and equipment features. Preprocessing
standardizes category variables, corrects missing values, and
transforms qualitative traits into quantitative formats suitable
for analysis [20].

2.2.4. NAN-based Approaches

A Neighborhood Area Network (NAN) is composed of
multiple customers connected to a local distribution network
that is continuously monitored for irregularities. The Master
Meter Method is a popular technique that measures the total
energy provided to the NAN by installing a master meter on
the low-voltage side of the distribution transformer. The
aggregated consumption data gathered from each smart meter
in the network is then compared by utilities with this reading.

A constant adjustment factor is added to the overall
utilization to account for technical losses. Beyond this
correction, any notable differences are seen as possible signs
of non-technical losses, including electricity theft [21].
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2.2.5. 10T and Hardware-Based Approaches

Two of the biggest NTL issues in power networks are
meter tampering and electricity theft. Both hardware-based
and Internet of Things (loT)-enabled solutions have been
developed to address these problems and improve detection.
loT techniques use networked sensors and gadgets to track
energy consumption trends in real time. Microcontroller-
equipped sensor nodes are positioned at strategic locations
across the distribution network, such as customer connection
points and the supply end of a distribution pole [22].
Hardware-based theft detection strategies focus on employing
specialized devices to monitor and manage electricity usage in
order to identify and prevent illegal consumption. One well-
known example is the integration of smart metering systems
with Advanced Metering Infrastructure (AMI). A significant
advantage of hardware-based methods is their greater
precision, which is achieved by direct measurement and
control [23].

3. Materials and Methods

The proposed method employs a Support Vector Machine
(SVM) classifier to identify electricity theft by analyzing
customer consumption data collected from smart meters. The
approach combines data preprocessing, feature extraction, and
supervised learning to distinguish between legitimate energy
usage and suspicious or fraudulent consumption patterns, as
shown in Figure 2.

Start

¥

Data collection — hourly consumption reading

$

Data processing — cleaning, normalization and
balancing

s 4

Feature extraction — load profile, statistical,
behavioral, and technical features

L 2

SVM Classifier — Decision function

h 2
Stop

Fig. 2 Proposed method to detect the power theft using SVM

In Figure 2, the algorithm of machine learning begins
with fetching the data from the data acquisition. Once the data
is collected, it will go into the preprocessing. In this case, the
data will be separated into test and training data. The trained
data is the data that often appears or repeatedly appears during
the data acquisition. The test data is different from the training
data, plus some of the data behaves like trained data.

The trained data will go into the feature extraction, which
uses many types of algorithms. This is important to confirm
that the extracted data is the desired data. After the data has
been extracted, it will be sent to the SVM algorithm for
classification. Here, the trained data will mix with the tested
data, and the SVM will group these two data types into a
regression plot. Finally, the SVM will count the total number
of data points, including those in the hyperplane, and hence
produce +1 or -1 classification. The results of +1 and -1 will
lead to the computation of accuracy, recall, precision,
specificity, and F-measure as shown in Equations (1)- (4).

Number of correction predictions

Accuracy = — (1)
Total number of predictions made
. . True positives
Precision = — — (2)
True positives+False positives
True positives
Recall = ©)]

True positives+False negatives

2XPrecsionXRecall
F1 Score = Z—recsionxiecas (4)

Precision+Recall

This paper presents the method of developing a system
that can detect the illegal usage of electrical energy based on
a 50 MVA distribution transformer in the substation. The 50
MVA distribution transformer is connected to 500 residents
via a 1 kV bus, where most of the residents have active power
loads instead of reactive power loads. There is an energy meter
installed in the 50 MVA transformer to record the energy
consumption by the total electrical loads.

The data collected from the energy meter is 5000 points.
Among 5000 points of data, 2500 points are collected in the
past three months, and the other 2500 points are current data
points for about three months. Thus, the total months of
collecting the data is 6 months. It is important to collect the
past three months' data for comparison with the current three-
month data. The characteristics of the data are the energy
consumption in KWh. The data is then fed into the developed
SVM algorithm for analysis on illegal use of energy.

The final analysis is the accuracy and precision of the
data. To confirm the prediction is correct, the research uses a
qualitative approach to collect the data from the engineer and
technician who look after the 50 MVA transformer. The
qualitative approach used is thematic analysis, where
interviews are conducted to collect the data.
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3.1. Data Collection

To collect the data, a 50 MVA transformer is selected
with an energy meter installed. Figure 3 shows the 50 MVA
transformer with an energy meter installed at the side. Such a
transformer is a 115 kV to 38.5 kV step-down three-phase 50
Hz transformer.

Fig. 3 Energy meter built in the transformer to monitor total energy
consumed by the consumers

The transformer is located in the substation and is
connected to a bus bar, ready to distribute energy to more than
1,000 people. Under normal operation of the transformer, the
energy consumption is approximately 50,000 kwh for a
population of about 1,000. Since there is no development
around the distribution area, the energy consumption remains
below 50,000 kWh. On the other hand, if there is a sudden
high energy consumption that occurs (meaning the energy
usage is more than 5,000 kwh) for about three months
continuously, and if there is no development around the area,
then this might have two possibilities that cause high energy
consumption. One is consumers installed with a high-power
capacity of load, or consumers illegally using energy. Thus,
the data collected will be grouped for analysis and
classification as follows:

Class 1 of data: no change of energy consumption or little
change, which is not more than 50,000 kWh

Class 2 of data: Change of 50,000 kWh energy
consumption within a short time, but not more than one
month

Class 3 of data: A Change of 50,000 kWh energy
consumption has occurred over more than 3 months,
where the energy consumption is suddenly higher without
seeing any new population increase or development
around the area continuously

Class 4 of data: Change of 50,000 kWh energy
consumption happens more than 3 months, where the
energy consumption is suddenly higher, with the evidence
that a new population increase due to development has
been found in the area.
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Classes 1, 2, and 4 data refer to no normal data, where no
illegal use of electricity was found. On the other hand, Class 4
data considers illegal use of data. Classes 1, 2, and 4 will be
assigned as positive data, whereas Class 3 will be grouped as
negative data. It may be skeptical about how to collect 5000
points of data in bulk.

The answer to this is to observe the energy consumption
data changes every 10 minutes. Every 10 minutes, collect 100
data points of energy consumption. Thus, for 5,000 data
points, it will take 500 minutes, which is 8.3 hours. The
collection of the data does not necessarily have to be
continuous, but it can take some gaps and continue for the next
few minutes or the next day. As long as 8.3 hours are fulfilled,
the data should be 5,000 points. If collecting the data is not
continuous for 8.3 hours, that means the data collection is
randomly chosen from time to time. The data collection will
refer to one transformer with an energy meter installed on it.

Since this study employs MATLAB to develop the SVM
algorithm, the dataset must be normalized before generating
the regression function and plotting the results. The
normalization process involves scaling down the high kWh
values (dividing by 10,000) to obtain unitless data, enabling
proper classification and visualization within the regression
model. To validate the accuracy of the results, a qualitative
approach is applied through interviews with local engineers
regarding illegal electricity usage. The interview responses are
then examined using thematic analysis, with the identified
themes presented in Table 1.

Table 1. Thematic topics for the interview to collect the data to verify
the data analyzed by the SVM

Theme 1: Theme 2: The Theme 3:
Awareness of significance of Overall
illegal use of energy data electricity
electricity changed usage
This theme is This theme is to This theme
proposed to collect | find out whether | aims to know
information about | the fluctuation of | in general how
awareness of illegal | meter readings the illegal use
use of energy. The will give of energy
purpose of this significant reflects the
theme is to find out information energy
whether, in the past | about the illegal suppliers and
or currently, the use of energy. what the
engineers have The theme also | factors are that
detected illegal use urges the cause some
of electricity. The responders to consumers to
theme further show how to use electricity
explores how the identify illegal illegally.
engineers or usage of energy
electricity suppliers from the
know someone has fluctuation of
illegally used the meter readings.
energy.
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4. Results and Discussion
4.1. Analysis and Decision Boundaries

Figures 4 and 5 show the decision boundary of the data
before and after optimization. The decision boundary for the
regression plot is to check the number of positive data points
and negative data points that appear in the regression region.
From the optimized results, the data is shifted to the right
instead of being shifted down, as seen in Figure 5. After
optimization, the positive data still have many in quantity
compared to the negative data or FN. Note that the FN or
negative data indicates a wrong result of interpretation by the
classifier. The data does not mean that there is illegal use of
energy in the region. According to the engineers in charge of
the transformer, due to the large amount of energy values
being recorded by the energy meter, if a small amount of
energy is being illegally used, the system cannot detect it, or
the meter cannot show it. For example, if the normal energy
recorded is 1000 kWh, and if out of 1000 kWh, 0.5 kWh is
being illegally used, then this 0.5 kWh is not significant
because 1000 kWh >> 0.5 kWh. As a matter of fact, detecting
energy theft at the distribution transformer can only detect
large illegal energy usage by the users. Figure 6 illustrates the
results of SVM processing the data versus the errors. As seen
in Figure 6, when the iteration of the SVM increases to process
the data, the magnitude of errors will decrease. The errors are
due to the wrong interpretation of the energy data, and some
of the data overlap or are repeated several times at the same
time of detection. Because of that, the data has to be sent for a
few iterations or training to reduce the error and remove the
redundancy of the data. As can be seen in the results, when the
instances are larger than 100, the iteration will stop and reduce
the error to zero. Under this situation, the output of the data
plotted in the regression will show less, and the data are
significant for classifying whether there is a theft or not. The
next section will show the computation of accuracy, F-score,
recall, and precision from the optimized data.
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4.2. Analysis of the Overall Performance

Before computing the recall, F1-score, accuracy, and
precision, it is important to describe the data set applied for
the classification using SVM. Table 2 shows the description
of the dataset before classification using SVM, while Figure 7
shows the confusion matrix results after SVM classification.

Table 2. Description of the dataset for classification

Description Vvalues
1 June 2024 - 31
Temporal range of data December 2024
Dataset file size 10 MB (5000 data
points)

A normal consumer consuming
electricity
Customer illegally steals electricity
(suspect, but no evidence)
Total customers

4573 (91.5%)

427 (8.54%)
5000

0.995
0.99
0.985
[%0]
E
S 098
0.975 I I
0.97
Precision F1-score Accuracy Recall
Parameter

Confusion Matrix

Actual Negative

Actual Positive

Predicted Negative Predicted Positive

Predicted Class
Fig. 7 Confusion matrix results

Based on the results in Figure 7, the precision, recall, F1-
score, and accuracy are computed and shown in Equations (5)

- (8).

4573

Precision = presrpy 97.86% (5)
4573
Recall = m = 99.93% (6)
F1 Score = 2X32786X09%% _ 98 889, @
0.9786+0.9993
Accuracy = 3273 97.94% (8)

5000

The results in Figure 8 analyze the SVM classification
outcomes; it is seen that the accuracy of the SVM to detect no
theft of electricity is 0.9794 or 97.94%. The recall, on the other
hand, is 99.93%. The values of precision and accuracy are
almost the same and fall within the range 97%. In general, the
results show that there is no stealing of electricity.

Fig. 8 Results of SVM classification

4.3. Interview Results to Support the Results of SVM

The interview findings from the 50 MVA transformer
substation are shown in this section. There were 10 technicians
and engineers under interview, and the themes of the interview
are shown in the Thematic table in Table 1. Table 3 displays
the interview findings.

Table 3. Results of interviews

Themes Frequency
Awareness of illegal use of electricity 2
Significance of energy data 5
Overall electricity usage 3

From the interview results, it is seen that many
respondents did not agree that there is an illegal use of
electricity that can be viewed from the 50 MVA transformer
in the substation. Many had agreed that to detect the illegal use
of electricity, the system should be installed in each of the
consumers' premises or built into the energy meter.

The results shown in Table 4 clearly highlight that SVM
outperforms qualitative analysis across all evaluation metrics.
The most significant advantage is in recall (99.3%), which
means SVM ensures theft cases are rarely missed. While
qualitative analysis provides around 80% consistency, it lacks
the accuracy of the machine learning model. The overall
results supported by the interview results can be seen in Table
4, while the comparative analysis is shown in Figure 9.

Table 4. Overall results of the research

Parameters SVM Qualitative analysis
Precision 0.9786 0.8 (80%)
F1-score 0.9860 0.8 (80%)
Accuracy 0.9794 0.8 (80%)

Recall 0.9930 0.8 (80%)
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Parameter

1.2 Also, the results of this study were compared with related
works of other literature, as shown in Table 5.

The results show that the proposed SVM method
performed better than the compared literature works for
Recall, F1-score, and Accuracy, while for Precision, it ranked
second.

5. Conclusion

In this work, a comparative analysis based on SVM and
qualitative techniques for energy theft detection is presented.
The results showed that the SVM performed better than the
qualitative analysis in detecting energy theft. Precision was

Precision  Fl-score  Accuracy Recall 97.86%, recall was 99.93%, F1-score was 98.88%, and
mSVM = Supported by Qualitative analysis accuracy was 97.94%. Overall, the SVM attained more

0.

[ee)

0.

»

0.

SN

0.

N

o

—— " e dependability, guaranteeing maximum theft detection
10- 9 LOMPArative analysis coverage and fewer false alarms.

Table 5. Comparison with related works

Ref. Precision | Recall | Fl-score | Accuracy However, qualitative analysis showed little consistency,

24 97.50% | 95.00% | 94.00% 93.33% averaging around 80% across all parameters. Consequently,

25 98.75% | 95.45% | 97.07% 97.01% the findings verify that SVM offers a more reliable and

27 26.57% 1 90.78% | 88.62% R8.45% qualitative evaluations. The future work should enlarge the

dataset with more varied consumption patterns, seasonal
28 90.00% | 87.00% | 94.00% | 89.00% ption p

]
2 6% 93.00% | 97.00% | 93.70% 95.90% stronger method for detecting energy theft than conventional
]
]
]

fluctuations, and larger client bases. Also, real-time
[29 99.90% | 75.70% | 85.10% 94.10%

- - - - deployment with smart meters and loT-based monitoring
[30] 89.00% | 86.00% | 84.00% 86.00% systems should be explored to assess practical applicability

Proposed | 97.86% | 99.93% | 98.88% 97.94% under dynamic grid conditions.
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