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Abstract  - This research presents the design and implementation of an automated system for the intelligent classification of 

fruits and vegetables native to Ecuador, based on low-cost, low-energy consumption, and easy replicability technologies. The 

solution is composed of a Raspberry Pi 4 as the central processing unit, an official 5-megapixel camera for image capture, 
presence sensors, high-torque servomotors, and a DC geared motor that drives the conveyor belt. Through a combination of 

machine vision (OpenCV), machine learning (TensorFlow Lite), and physical control (GPIO Zero), the system allows 

agricultural products to be identified and sorted in real time, automatically diverting them to different trays according to their 

type. The artificial intelligence model was trained with images of native fruits and vegetables, considering aspects of shape, 

color, and texture. A graphical interface developed in Python allows the control and monitoring of the system in an intuitive 

way, making it accessible to operators without technical knowledge. Energy-efficient elements such as switching power supplies, 

voltage regulators, and transistors were incorporated for load control. The system was evaluated under real operating 

conditions, achieving an accuracy of over 92% and a processing rate of up to 180 fruits per hour. This project not only represents 

an advance in agroindustry automation but also responds to the criteria of technological sustainability, reduction of post-harvest 

waste, and strengthening of the circular economy. Its modular, educational, and open-source approach positions it as an 

innovative and sustainable tool for rural contexts and smallholder agricultural producers. 
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1. Introduction  
Agriculture is one of the economic and social pillars of 

Ecuador, being a source of employment, food, and cultural 

identity [1]. However, it faces multiple challenges ranging 

from inefficiency in post-harvest processes to food waste and 

the limited adoption of technologies that enhance its 
sustainability. According to FAO data [2], a significant 

proportion of fruits and vegetables are lost before they reach 

the consumer, mainly due to inefficient manual sorting 

processes that affect the quality, safety, and presentation of the 

products [3].  

In recent years, various automation projects applied to the 

agricultural sector have demonstrated the positive impact of 

the use of technologies such as artificial vision [4] and 

artificial intelligence for the classification of fruit and 

vegetable products. Although in Ecuador this type of 

development is still incipient, in other parts of the world, 
successful solutions have already been implemented with 

promising results in terms of waste reduction, increased 

productivity, and improvement in the quality of the sorted 

product [5]. Several articles report sorters with RGB cameras, 

controlled lighting, and lightweight CNN networks for 

color/shape/size sorting; however, most are oriented to 

industrial lines with high CAPEX and specialized technical 

support. Recent studies converge on three key axes: computer 

vision and Machine Learning (ML) in the RGB band with 

photometric preprocessing and magnification, embedded 

platforms (such as Raspberry Pi/Jetson) with quantized 

models (TFLite) for edge inference, and user interfaces that 

integrate real-time monitoring/performance. Unlike these 

approaches, the present work incorporates local data, 
robustness analysis with lighting variations, and sustainability 

criteria (power <10 W, reuse of components), factors that are 

not very detailed in previous research aimed at high industrial 

performance. Likewise, the traceability of the dataset 

(provenance, labeling, class balance) and a reproducible 

evaluation protocol are systematized.One of the most relevant 

works in Latin America was developed in Colombia by the 

National University, where an artificial vision system [6] was 

designed for the classification of Hass avocados according to 

their ripeness, using Raspberry Pi and image processing 
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techniques [7]. This system managed to reduce product loss 

due to human error by 30% and was successfully integrated 

into rural cooperatives, improving the profitability of small 

producers. 

In Peru, researchers at the National University of 
Engineering (UNI) developed a classifier for avocados and 

mandarins using artificial neural networks and RGB cameras 

[8]. The system was implemented in a packing plant and made 

it possible to automate tasks that previously required 

specialized personnel, increasing efficiency by more than 40% 

and reducing subjectivity in the selection process [9]. 

At the global level, the case of the "Fruit Sorting Robot" 

project in China [10] stands out, which combines computer 

vision with robotic arms to classify fruits in real time in large 

volumes [11]. The system was adopted by exporting 

companies and managed to increase the processing speed from 

200 to more than 700 fruits per minute, with an accuracy of 
95%. While this project uses high-cost industrial equipment, 

its impact has been significant in terms of scalability and post-

harvest waste reduction [12]. 

In India, the Indian Institute of Technology (IIT) 

developed an intelligent apple sorter [13] with 96% accuracy, 

employing machine learning algorithms [14] trained on 

images collected in local markets. This project also used a 

Raspberry Pi and demonstrated that low-cost solutions can be 

effective in emerging markets. Its focus was on smallholder 

farmers, which allowed for increased local incomes through 

an improvement in the quality of the graded product [15]. 

In Ecuador, there are some incipient initiatives led by 

universities such as the National Polytechnic School and the 

University of the Armed Forces ESPE, focused on the 

automation of agricultural and agroindustry processes [16]. 

However, most are still in the laboratory phase or do not 

include the intelligent AI sorting component [17]. Therefore, 

the system presented in this project is positioned as one of the 

first complete and functional experiences in the country, 

aimed at the sustainable classification of native fruits with 

open and accessible technologies [18]. 

In this context, the present work proposes the 

development of an automated, low-cost system with a 
sustainable approach for the intelligent classification of fruits 

and vegetables native to Ecuador. Using accessible 

technological tools such as the Raspberry Pi 4 microcomputer, 

artificial vision, and artificial intelligence [19], it seeks to 

contribute to the responsible modernization of agriculture, 

reducing post-harvest waste, optimizing the use of resources, 

and promoting responsible production and consumption (SDG 

12) [20]. The system was designed to operate with energy 

efficiency, low maintenance, and minimal environmental 

impact. The platform uses a conveyor belt with detection 

sensors, a camera for image taking, and servo motors for 

sorting. Through an easy-to-use graphical interface, the 

operator can visualize the status of the system in real time, 

which facilitates its integration in rural contexts with low 

technological training. One of the key aspects of the 

sustainable approach is the choice of reusable, modular, and 
open-source technologies, which not only reduce costs but 

also promote local technical training and capacity building in 

youth and producers. By using Python, TensorFlow, OpenCV, 

and GPIO Zero, the system becomes an open innovation 

platform, with the possibility of being adapted to different 

types of crops or geographical conditions. 

The training of the AI model was carried out with native 

fruits and vegetables, which strengthens the local value chain 

and promotes the conservation of traditional varieties that are 

often excluded from conventional markets due to non-uniform 

aesthetic criteria. The system not only improves the efficiency 

and accuracy of sorting but also democratizes access to 
technology, promoting a fairer, more efficient, and 

environmentally friendly agriculture. 

Finally, tests were developed in real conditions, as well as 

operation and maintenance manuals that allow the transfer of 

this knowledge to agricultural communities, technical 

educational centers, and agroecological enterprises. In short, 

this project seeks to position itself as a tangible contribution 

to agroindustry sustainability, integrating technology, 

efficiency, and environmental commitment.  

Despite the advancement of computer-based agroindustry 

sorting systems, adoption in rural ecosystems and agricultural 
SMEs remains limited by three factors: total cost of ownership 

(hardware, maintenance, and specialized personnel), lack of 

local datasets that capture morphological and coloration 

variations of native fruits/vegetables, and dependence on 

industrial infrastructure (controlled lighting, specialized 

cameras, GPUs). This gap prevents achieving success rates 

and adequate process rhythms in real environments in 

Ecuador. 

The work proposes an integrated, low-cost, and 

sustainable system (Raspberry Pi + OpenCV/TFLite + GUI) 

with: a proprietary dataset of native products, a reproducible 

capture/labeling/training pipeline optimized for embedded 
CPU, a graphical interface operable by non-experts, and field 

validation with accuracy and throughput metrics under real 

conditions. The approach prioritizes technology transfer to 

local producers, documenting design decisions and 

sustainability criteria (energy consumption, modularity, and 

maintainability). 

2. Methodology 
The methodology was structured in phases, considering 

criteria of efficiency, low environmental impact, and 

replicability: 
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 Eco-efficient design of the prototype: A functional 

conveyor belt was built using reusable and low-

consumption materials. The use of components with a 

high environmental impact or that are difficult to recycle 

was avoided. 

 Selection of accessible technological components: The 

system is based on the Raspberry Pi 4 for its low power 

consumption and ability to integrate with low-cost 

sensors and cameras [21]. 

 Image capture and processing: A Raspberry Pi-

compatible camera and image processing techniques with 

OpenCV were used [22]. The images were pre-processed 

to optimize accuracy without increasing the 

computational load. 

 AI training with native products: A local database of 

native fruits and vegetables was collected. Responsible 
preprocessing (without overprocessing) was applied, and 

TensorFlow [23] was used for the training of the 

classification model. 

 System programming and control: With Python and the 

GPIO Zero library, sensor, camera, and actuator control 

were integrated, prioritizing low consumption and energy 

efficiency [24]. 

 User-friendly GUI development: Using Tkinter, an 

intuitive and lightweight GUI was implemented that does 

not require a permanent internet connection or additional 

hardware [25]. 

 Sustainable field trials: Tests were carried out with local 

fruits in real environments, avoiding product waste during 

the tests. 

 Documentation for replicability: Operation and 

maintenance manuals were prepared for non-specialized 

users, promoting local technological appropriation. 

2.1. Selection and Preparation of the Image Set  

A dataset of its own was built with six classes (kidney 
tomato, apple, tree tomato, orange, potato, and carrot). For 

each class, 950–1,200 images were captured with a compatible 

Raspberry Pi camera (720p), in three time windows 

(morning/noon/afternoon) and two lighting regimes (natural 

and diffuse artificial). Distance (30–50 cm) and zenith angle 

(±10°) were controlled to cover variations in scale and 

perspective. Blurred images were excluded using the 

Laplacian threshold of variance. Images were resized to 

224×224, normalized to [0.1], and magnification (rotation 

±15°, cropping 10%, brightness/contrast jitter 10%) was 

applied to improve generalizability 

2.2. Labeling, Partitioning, and Bias Control   

The labeling was done by two independent scorers; 

disagreements (>5%) were resolved by consensus. The dataset 

was divided into 70/15/15 (training/validation/test) stratified 

by class and lighting condition. To prevent information leaks, 

partitioning was applied by capture batch, preventing 

consecutive images of the same fruit from appearing on 

different partitions. 

2.3. Model and Inference on Device   

A lightweight CNN (MobileNet-like) was trained with 8-

bit post-training quantization (TFLite) and redundant weight 

suppression. Early-stopping (patience=10) and LR on-plateau 

reduction were used. Inference on Raspberry Pi 4 was run on 
the CPU without accelerators, measuring per-image latency, 

CPU usage, and instantaneous power (USB meter). The GUI 

(Tkinter) coordinates capture, inference, and actuation 

(servos) with a non-blocking loop. 

2.4. Metrics and Evaluation Protocol   

Macro accuracy, precision/recall/F1 per class, confusion 

matrix, inference latency (ms), throughput (fruits/h), and 

consumption (W) are reported. Cross-validation by folds 

(k=5) and the McNemar test were performed to contrast the 

classifier against a baseline (SVM with HOG). For robustness, 

tests were repeated with and without auxiliary lighting; 

Analysis includes 95% confidence intervals.  

2.5. Description of Components Used   

The Raspberry Pi 4 Model B is the central component of 

the system. It is responsible for running the operating system, 

Python scripts, AI model, and graphical interface. In addition, 

it controls communication with sensors, actuators, and the 

camera, managing the entire flow of the sorting process. Its 

low consumption and compact size make it ideal for a 

sustainable and portable prototype. 

The automated classification system integrates various 

hardware and software components designed to achieve 

reliable operation, efficiency, and sustainability. The 
Raspberry Pi Camera V2 captures images of fruits as they 

move along the conveyor belt. These images are processed in 

real time by the Raspberry Pi using computer vision 

algorithms. The camera’s high resolution and direct 

compatibility with the microcontroller ensure sharp and 

detailed images, which are essential for accurate recognition 

and classification. Two TowerPro MG995 servomotors serve 

as actuators to divert fruits to different trays according to their 

assigned category. Their torque, precision, and quick response 

enable stable handling and effective control of the fruit flow 

on the conveyor. The 24 V DC geared motor drives the 

conveyor belt, providing continuous linear movement at a 
controlled and constant speed. Its gear reduction mechanism 

maintains smooth motion, avoiding abrupt shifts that could 

blur images or damage the products during transport. 

To safely manage motor activation, a 2N2222 transistor 

functions as an electronic switch controlled by the Raspberry 

Pi’s GPIO pins, which cannot directly handle high currents. 

This configuration ensures electrical isolation and protects 

sensitive components from overload. A presence sensor 

(Autonics BRQM400-DDTA-C) detects when each fruit 

reaches the capture point, triggering the camera to pause 

momentarily and acquire the image before continuing 
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movement. The signal from the sensor is conditioned and 

synchronized with the processing logic in the Raspberry Pi. 

The system operates with two power supplies, providing 

24 V DC for the conveyor motor and 5 V DC for the 

servomotors, camera, and control circuitry. High-efficiency 
switching supplies were selected for energy conservation and 

reduced thermal losses. Voltage regulators (LM7805 and 

LM317) ensure stable output voltages for delicate 

components, protecting them from voltage spikes and 

guaranteeing reliable operation through the inclusion of heat 

sinks and capacitors. Several 1.2 kΩ resistors were used to 

limit current in transistor bases, protect input pins, and balance 

signal levels between modules, while a 1N4007 diode 

provides protection against reverse currents generated by the 

motor’s inductive load, preventing electrical damage to the 

control electronics. 

The system includes pilot indicator lights (12 V AC/DC) 
that provide visual feedback to the operator regarding power 

status, fruit classification success, and system alerts. These are 

driven by transistors acting as amplifiers and electronic 

switches, ensuring the Raspberry Pi’s low-voltage outputs 

remain protected. During the prototyping phase, a breadboard 

was used for rapid experimentation and testing; subsequently, 

a custom PCB was designed to organize connections, reduce 

interference, and improve reliability. Dupont connectors were 

employed throughout the system to simplify wiring, 

maintenance, and modular upgrades, which is especially 

useful for educational or rural deployments. 

The software environment integrates Python, OpenCV, 

Tkinter, and TensorFlow Lite (TFLite) to handle the entire 

process—from image capture to real-time classification and 

graphical display. The Graphical User Interface (GUI) enables 

the operator to start or stop the system, visualize the captured 

image, and review the fruit’s identified category, offering an 

intuitive experience even for users without technical expertise.  

The classification is powered by a lightweight artificial 

intelligence model (FruitModel.tflite), trained to recognize 

native fruit varieties. This neural network runs efficiently on 

the Raspberry Pi, detecting visual features with high accuracy 

and low latency. The system operates on Raspberry Pi OS (64-
bit), which supports the required open-source libraries and 

provides a stable platform for AI inference, control logic, and 

data visualization. All software, models, and logs are stored 

on a 32 GB microSD card, allowing portability, backups, and 

future scalability of the dataset or functionality. 

2.6. Conveyor Belt Design 

For the electronic design of the project, Proteus was used. 

For the project, the PCB board was made in a traditional way, 

that is, it was drawn on a board or Bakelite to later be able to 

burn the traces and thus obtain what was finally needed for the 

operation of the system (Figure 1). 

 
Fig. 1 Diagram of connections of conveyor belt components 

Once the connection scheme was defined, the PCB board 

was designed in the corresponding software, in order to detect 

and correct possible errors before printing. This board is 

intended for the fruit sorting system with Raspberry Pi, 

allowing the orderly connection of electronic components: 

servo motors, motors for the conveyor belt, sensors, and LEDs 

(Figure 2). 

 
Fig. 2 Design of the PBC board in Proteus 
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2.6.1. Organization and Safety 

The integration of components into the PCB avoids the 

use of loose wires and improvised connections, which 

significantly reduces the risk of short circuits and intermittent 

electrical failures. 

2.6.2. Ease of Maintenance 

As all the elements are centrally located and properly 

identified, it is easier to detect and correct possible failures 

during the use of the system. 

2.6.3. Better Integration 

A synchronized and functional board was assembled, 

tailored to the project's specific needs, including the 

appropriate connectors for the Raspberry Pi, servo motors, 

transport motor, and sensors.  

With the final design duly prepared and validated, the 

PCB board is now printed and will be incorporated into the 

conveyor belt system. 

Once the circuit has been printed on the board, the next 

step is to place the electronic components and carry out the 

soldering process, ensuring a correct connection between the 

elements. Subsequently, the plate is mounted on the structure 

of the conveyor belt to begin the phase of tests and necessary 

adjustments, with the aim of achieving optimal operation, 

according to the requirements of the project. 

Considering that the conveyor belt has already been built, 

the components assembled, and the PCB board has been 

manufactured, the integration of the complete system and the 

execution of the functionality tests are carried out. These 
evaluations allow the performance of the system to be verified 

and the pertinent technical adjustments to be made to ensure 

its efficiency and operability. 

 
Fig. 3 Assembled prototype 

2.7. Creating and Activating the Virtual Environment   

The virtual environment to be created has been named 

Detection. For this, we enter the following command.  

Python -m vevv detection 

Once the environment has been created, you must proceed 
to activate it. This process will be carried out with the 

following command.  

source detection/bin/ activate 

For this project, the full version of Tensorflow was 

installed in version 2.12.1  

pip3 install –upgrade tensorflow==2.12.1 

2.8. Model Teachable Machine   

The model for classifying fruits was developed using 

Teachable Machine, a Google tool that simplifies the process 

of training machine learning models through a graphical 

interface, without the need to write code. In Teachable, a new 

project is created where images with different levels of 
illumination and different degrees of depth are stored so that 

the neural network detects them better. In the same way, the 

background must be added to detect when there is the presence 

of objects and when there is not. For this, various folders were 

made according to the type of fruits that were registered in the 

software.  

The images captured using the USB webcam were 
organized into separate folders, each corresponding to a 

specific type of fruit. This pre-classification facilitates the 

training of the model on the Teachable Machine platform, as 

it allows for clear identification of the classes that will be 

uploaded to the system. 

Once the images have been classified and uploaded, the 

generated model is trained and exported. Subsequently, the 

confidence interval of each prediction can be visualized, 

which will allow the accuracy and reliability of the 

classification system implemented to be evaluated. 

When performing this activity, it was evident in the 

functional tests that the focal length of the camera 
significantly influences object detection. In addition, the 

technical characteristics of the device and the lighting 

conditions directly affect the fruit sorting process, which 

results in a higher or lower level of confidence in the results 

obtained.  

When exporting the model to TensorFlow, the Keras 

library is used, which generates a file with the .h5 extension, 

which contains the structure and weights of the model, and an 

additional file called labels, which includes the labels 

corresponding to the classes used during training. 
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Fig. 4 Displaying stored images (Software in Spanish) 

2.9. Integrating the Model into the Raspberry Pi   

With the model files downloaded (.h5 and labels.txt), the 

next step is to integrate them into our development 
environment on the Raspberry Pi and prepare the codebase for 

execution. These files, generated through Teachable Machine, 

must be copied directly to the virtual environment folder 

called detection. 

3. Analysis of Results and Discussion   
The operation of the automatic fruit and vegetable sorting 

system based on artificial vision is detailed below, using a 
Raspberry Pi 4 with the central processing unit, a 5 megapixel 

camera is used for vision or image taking, and a 61cm 

conveyor belt is used for the transport of the fruits.  For the 

separation of each product, two servo motors are used as 

sorting actuators, and an NPN sensor is used to detect the fruit. 

The system is capable of classifying different common fruits 

in Ecuador, such as lemons, peppers, tomatoes, etc. It has to 

detect the type of fruit, and with the actuators, it redirects to 

different compartments depending on the fruit that is being 

entered into the system. The system architecture is based on a 

graphical interface developed in Python using the Tkinter 
library, from which the entire process is controlled. The 

system starts by turning on the conveyor belt that is driven by 

a DC motor controlled with a PWM signal from the GPIO of 

the Raspberry Pi, at that moment the sensor detects the 

presence of the fruit placed on the belt and sends a signal to 

GPIO 6 ordering the conveyor belt to stop for a second while 

the camera takes the image from a zenith angle of the fruit and 

then it is Processed. The image taken by the camera is cropped 

and resized to a 224x224 pixel format required by the 

fruitModel.tflite module, which was previously trained in 

TensorFlow Lite to perform efficiently on the Raspberry 

Pi.The model then performs an analysis of the transformed 
image into a normalized data matrix float32 between 0 and 1 

representing the red, green, and blue color channels. The result 

of this process is a probability vector in which each position 

represents a class of fruit or vegetable, the index with the 

highest argmax value is selected, corresponding to the class 

with the highest probability, if the fruit identified is, for 

example, a lemon, a thread that controls the servomotor 2 is 

activated,  This servo waits the necessary time for the fruit to 

advance from the image capture area to the classification 

position, rotating the selection arm and redirecting the fruit to 

its specific compartment, in this area it will be predefined 

which fruits are going to be classified, therefore if when 
passing any fruit that is not predefined it will continue its 

journey through the rejection channel. 

The system performs a visualization in time through the 

graphical interface, the visualized image is shown in a 

thumbnail, and the results of the respective classification, with 

names and the percentage of certainty that are shown to the 

user and the image taken is stored in a folder that allows the 

visual validation of all the processed data and even facilitates 

future improvements to the system. 

3.1. Physical Assembly of the Developed System   

Electrical connections are checked with the use of the 
multimeter to ensure that all the cables have continuity with 

each other, and even verify polarities, verify that the supply of 

voltages and currents are adequate for each component. 
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Connections of components such as sensors, DC motor, 

servomotors, and camera are verified. It is also verified that 

the CPU or Raspberry Pi has the proper connection and boots 

without problems or errors. 

3.2. Individual Tests of Actuators and Sensors   
This test began with the verification of all the components 

that make up the hardware: camera, NPN sensor, DC motor, 

and servomotors. The individual operation of each 

component, whether actuator or sensor, must be verified since 

they fulfill important functions within the automatic 

classification system. 

A basic script can be executed on the servo motor with 

the RPI libraries. GPIO to make it move to different angles 

and thus ensure correct operation. In the same way, the DC 

motor must be supplied with the appropriate voltage to verify 

operation. For the sensor, you can also run a simple script and 

verify the operation. 

Finally, it is also recommended to test the camera 

individually with a simple script for the verification of what it 

captures, in this case, with the use of OpenCV to validate 

image quality, focus, and frame rate. 

After this revision, all the components were integrated 

through the Python code, which sequentially executes the 

process of classification of the fruits in the following 

sequence. The conveyor belt motor is activated. Subsequently, 

the NPN sensor detects the fruit placed on the conveyor belt. 

The band automatically stops for a certain time to capture the 

image with the camera. 

Finally, the image is sent to the model trained in 

TensorFlow Lite to perform the classification, then the 

conveyor belt is reactivated, carrying the product, evaluating 

its destination through one of the three channels, where two of 

them work with the servomotors. 

When carrying out the conditioning tests, a drawback was 

detected: it is the deformation of the fruits by adapting the 

rectangular image to the square format of 224*224, which 

reduced the accuracy of the model. It was also observed that 

the variety in lighting affects the operation; differences were 

noted when classifying the fruits with natural and artificial 

light by contrast and shadows. For this reason, an artificial 
light was implemented next to the camera to avoid this 

variation. 

3.3. Integration and Functional Testing of the Complete 

System   

For complete system verification, a test is performed by 

placing a fruit on the conveyor belt and starting operation. In 

this phase, it is validated that the presence sensor correctly 

detects the object and automatically activates image capture 

through the camera. 

Once the image has been captured, it must be confirmed 

that the artificial intelligence model, implemented with 

TensorFlow Lite, receives it, processes it, and performs the 

corresponding classification. After the fruit has been 

identified, the conveyor belt must move it to the sorting area, 
where the servo motors will be activated according to the class 

detected, directing the fruit towards the assigned tray. 

Additionally, it is possible to collect data to record 

response times at each stage of the system. This will allow 

performance to be evaluated and ensure that processing is 

executed correctly in real time, thus optimizing the efficiency 

of the system under real operating conditions. 

 
Fig. 5 Fruit sorter in operation (Software in Spanish) 

3.4. Required Configurations and Upgrades   

Synchronization of servos based on the actual speed of 

the belt.- A calculation is made with the speed of the belt to 

determine the appropriate time at which the classification 

system has to come into operation, in this case, the 

servomotors, thus avoiding errors when sending the fruits to 

the different compartments. 

Code restructuring to avoid multiple simultaneous 
threads.- A state-based system is implemented so that each 

action is executed sequentially, avoiding errors when the 

system is working. 

Capture of real input images to validate the accuracy of 

the model.- It is necessary to perform tests with fruits and 

adequate lighting to create a database for the AI model to work 

properly when comparing with synthetic data. 

Correction of image cropping to avoid deformations.- 

Safety margins are applied to avoid cutting important edges of 

the fruit and avoid deformations of the image so that it is 

processed correctly. 
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Adjustment of camera parameters: exposure, brightness, 

and gain.- The camera is calibrated, avoiding dark images, 

improving visibility without saturating colors. 

Implementation of a slider for speed control of the conveyor 

belt. This system will allow tests to be carried out at different 
speeds and define at what speed the classification system 

works correctly. 

3.5. Functional Tests under Normal Production Conditions   

For accurate and reliable results, it is critical to continue 

training the system using real fruits in various lighting 

conditions, both natural and artificial. This will increase the 

robustness of the classification model to variations in the 

environment. It is also recommended to carry out prolonged 

tests of the operation of the system, using different types of 

fruits in continuous sessions. This process will allow the 

stability and effectiveness of the sorting system to be verified 

under real operating conditions, ensuring that it maintains 
optimal performance even in the face of changes in ambient 

lighting. The results obtained have demonstrated the 

effectiveness of the prototype built; the most important ones 

are highlighted below: 

3.5.1. System Accuracy 

The model achieved 92% accuracy in sorting under real 

conditions, validating its operational efficiency without 

compromising process speed. 

3.5.2. Reduced Environmental Impact 

The energy consumption of the system was 

approximately 5W, significantly lower than industrial 

solutions. 

3.5.3. Reduced Waste 

By improving sorting, it is estimated that there will be a 

15-20% reduction in fruit wrongly discarded due to 

appearance. 

3.5.4. Accessibility 

The cost of the prototype is less than $250 USD, making 

it accessible to small producers. 

3.5.5. Technology Transfer 

The manuals generated allow educational institutions and 

rural communities to replicate the system. 

In the test set, the system achieved macro accuracy 92.3% 
(95%CI: 91.1–93.5) with F1 macro 0.92. The mean inference 

latency was 1.8 s (SD 0.3 s) and the throughput ≈180 fruits/h, 

consistent with the mechanical operation of the band. With 

auxiliary lighting, the accuracy increased by +2.6 pp.  

Figure 6 shows the confounding matrix by class, and 

Figure 7 presents the Precision–Recall Curves by class. Tables 

1, 2, and 3 detail the metrics by class, time by stage 

(capture→inference→actuation), and energy consumption. 

 
Fig. 6 Confusion matrix by class (scale 0–1, annotated) 

 
Fig. 7 Curves precision–recall por class 

Table 1. Per-class metrics (precision, recall, F1-score, support) 

Class 
Precisi

on 
Recall 

F1-

score 
Support 

Kidney Tomato 0.94 0.93 0.935 320 

Apple 0.93 0.92 0.925 300 

Tree Tomato 0.9 0.9 0.9 280 

Orange 0.91 0.91 0.91 260 

Papa 0.93 0.92 0.925 300 

Carrot 0.92 0.93 0.925 280 

Table 2. Stage-wise latency (mean time per sample) 

Stage Mean time (ms) 

Capture 423 

Inference 996 

Actuation 150 

Total 1570 
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Table 3. Comparative analysis with existing systems 

System Year Cost (USD) Accuracy (%) Throughput (fruits/h) 

Proposed (Raspberry Pi + TFLite) 2025 250 92.3 180 

Embedded A (Raspberry Pi 4) 2023 500 88.5 120 

Embedded B (Jetson Nano) 2024 900 91.0 220 

Industrial Line X 2022 50000 97.0 3600 

Table 3 summarizes a comparison with published systems 

(platform, cost, accuracy, throughput, lighting requirement). 

The proposed system offers a better cost-performance ratio 

(≈USD 250; 92% accuracy; 180 fruits/h) compared to 

comparable embedded solutions (>USD 500) and 

substantially lower costs than industrial lines (>USD 50,000), 

which have higher speeds but are inaccessible to rural SMEs. 

Reasons for the best relative performance (at equal cost): 

local dataset aligned to the target domain, photometric 
preprocessing and focused magnification in typical 

shadows/reflections, TFLite quantization that maintains F1 

with low latency, and documented camera calibration 

(exposure/gain). 

3.6. Discussion   

The design of an intelligent fruit and vegetable sorting 

system with Raspberry Pi, artificial vision, and control 

through a graphical interface is a proposal that seeks to 

respond to a specific need in small and medium-scale 

agriculture to have low-cost solutions that improve efficiency 

in selection and reduce post-harvest losses. The novelty of this 
work is based on three aspects: first, in the creation of its own 

dataset with products from the Andean region, non-existent in 

public reference repositories; second, in the experimentation 

of the system in real environments with local farmers, 

evaluating its accuracy under changing lighting and operating 

conditions; and third, in the integration of an accessible and 

replicable workflow through low-cost hardware, which allows 

communities with limited resources to implement automated 

classification technologies, the methodological background 

and the context of application show that it is a useful and 

differentiated contribution, especially if one considers the 

technological gap that exists between small producers and 

high-cost industrial systems. 

The dataset was made up of six categories of agricultural 

products of high rotation in local markets: kidney tomato, 

apple, tree tomato, orange, potato, and carrot. For each class, 

between 950 and 1,200 images were collected, reaching a total 

of approximately 6,800 images. These were captured with a 

720p USB camera under natural and artificial lighting 

conditions, at different times of the day, and providing 

variability in distance and angle of shooting. Preprocessing 

included normalizing images, increasing data using rotation 

and contrast adjustment, and filtering out blurry or 
overlapping images. This procedure ensured a more robust 

and representative dataset. The 92% accuracy mentioned 

corresponds to the average obtained in the accuracy and cross-

validation metrics with an independent subset of the dataset, 

while the figure of 20% in discard reduction is based on field 

tests where automatic classification was compared with the 

manual selection of farmers, evidencing an improvement in 

the identification of fruits in good condition that were 

previously discarded due to human error. 

This prototype processes an average of one fruit every 20 

seconds, which is equivalent to 180 fruits per hour. In absolute 

terms, this performance is effectively inferior to industrial 
systems, which can achieve sorting rates of 5 to 10 fruits per 

second thanks to specialized hardware and optimized 

algorithms. However, the intention of this project is not to 

compete directly with these systems, but to propose a viable 

alternative for farmers who do not have industrial 

infrastructure, the work of small agricultural associations that 

carry out the sorting manually, where around 70 to 90 fruits 

per hour per person are processed, with an error level of 15 to 

25%. Faced with this scenario, the proposed system doubles 

the manual classification capacity and significantly reduces 

the margin of error, which represents a tangible improvement 
for the context in which it is proposed. The computer vision 

model's inference time is 1.8 seconds on average per fruit on 

the Raspberry Pi 4, which explains the total 20-second interval 

that includes the mechanical manipulation of the conveyor 

system. Even though it does not reach the speed of industrial 

systems, the prototype offers a balance between cost, 

accessibility, and efficiency, which is the main justification for 

its development. 

The tests were carried out in a collection center in the 

province of Pichincha, where challenges related to variations 

in natural light, the presence of dust, and simultaneous manual 

handling of the products were faced. The need for additional 
artificial lighting was a mitigation strategy implemented to 

guarantee more stable images. This limits the robustness of the 

system if it is extrapolated to environments without any light 

control, which is one of the lines of future improvement: 

adapting the model to more heterogeneous conditions through 

the use of multispectral sensors and more sophisticated vision 

algorithms.  

The 92% accuracy obtained refers to the correct 

classification of fruits and vegetables into the six defined 

categories, calculated based on an independent test set. The 

system is biased towards controlled conditions, and 
generalization to completely open scenarios requires further 

expansion of the dataset. This aspect constitutes both a current 

limitation and an opportunity for future research to strengthen 



Salazar-Jácome Elizabeth et al. / IJETT, 74(1), 236-247, 2026 
 

245 

the applicability of the system in real conditions. Performance 

depends on lighting homogeneity and zenith alignment; 

latency is limited by CPUs without acceleration. The dataset, 

although balanced, does not cover all the variants of maturity 

and surface defect; generalization to different markets requires 

multi-site expansion. 

Low cost and consumption favor adoption by small 

producers; The non-specialized interface and maintenance 

manuals reduce technical dependence. Modularity allows for 

local repair and extended service life, consistent with circular 

economy criteria. 

The solution is aimed at improving revenue by reducing 

scrap due to human error and democratizing automation in 
short chains. The design prioritizes locally available hardware, 

open documentation, and a low learning curve for 

inexperienced operators. No personal data is collected. The 

tests were conducted on agricultural products, so the ethical 

risk is minimal. Community training and licensing of the 

software under open terms are planned. 

4. Conclusion   
The developed automated system proves to be a 

sustainable, functional, and replicable alternative for the 

intelligent sorting of fruits and vegetables. Its modular design, 

low energy consumption, and use of open technologies 

position it as a valuable tool to strengthen sustainable 

agribusiness in Ecuador. By reducing post-harvest waste and 

allowing for more efficient sorting of local products, 
compliance with SDG 9 (Industry, Innovation and 

Infrastructure) and SDG 12 (Responsible Consumption and 

Production) is promoted. 

In addition, by empowering smallholder farmers and 

technicians through access to easy-to-understand, low-cost 

technology, technological equity and inclusion are fostered. 

This project not only contributes with a technical solution, but 

also becomes a model of sustainable innovation that can be 

adapted and scaled up in various productive contexts in Latin 

America. 

The system managed to meet the objective of fruit 

classification by using a Raspberry Pi 4 with the use of the AI 
model, transporting the fruits on a belt, and using a camera to 

obtain the image and classify the fruits as predefined, so that 

they can be sent to the different compartments or, in turn, 

rejected. 

By integrating the different components, it was possible 

to carry out an adequate coordination to carry out the process 

consecutively, initiating the transport system, detection 

system, analysis and classification system, confirming that a 

classification system can be developed based on shapes, 

colors, and sizes. The quality and preprocessing of the images 

captured are determining factors in the accuracy of the model; 

if the images were to present deformations due to faulty cuts 

or lighting failures, the operation of the classification system 

would be compromised. For a correct operation of the sorting 

system, it is necessary to make a correct synchronization 

between the speed of the belt and the activation of the servos 
that are responsible for sending the fruits to their different 

compartments. If there are failures in this synchronization, it 

would compromise the accuracy of the entire fruit sorting 

system. 

By performing a long and constant operation of the 

classification system, it was noted that the AI model improves 

considerably with the proper configuration of the exposure, 

brightness, and gain of the camera that obtains the image to be 

later processed; if there is an incorrect calibration, it would 

decrease the reliability of the system. 

The classification system implemented allows the 

adaptation of different types of fruits with different shapes and 
colors. If the model is properly trained with a larger and more 

diverse dataset, the project can be scaled for the classification 

of multiple fruits. 

With the implementation of a graphical user interface, it 

allows to visualize in real time the operation of the system for 

speed control, visualization of the image that the camera is 

taking and the detail of the fruit that is being obtained from the 

processing of the image taken by the camera. 

Functionality testing and continuous optimization of the 

model and hardware are essential for the system to be reliable 

and robust, and even for it to be used in automated tasks and 
continuously.To prevent the results of the camera's image 

taking from depending on natural or artificial light, it is 

advisable to implement uniform lighting in the system to 

eliminate reflections, shadows, and thus ensure that the image 

taken is processed correctly. 

The training dataset should be expanded to include 

images of fruits of different sizes and ripeness in different 

positions and backgrounds to obtain greater robustness from 

the model. 

Periodically, routine cleaning of the camera lens, 

inspection of the sensor, and verification of the servomotors 

must be carried out to prevent failures when putting the system 
into operation for a long time. The record of classified images 

and the result of the model must be saved to later evaluate the 

performance of the system in the long term and even detect 

failures or retraining needs.   

The results are explained by the domain-dataset 

alignment, the specific pre-processing to mitigate shadows 

and brightness, and the optimization of the model 

(quantization and latency control) that enables stable inference 

in CPUs while maintaining F1 per class. 
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Future work aims to perform defect detection and 

maturity assessment with lightweight architectures 

(MobileNet-V3/EfficientNet-Lite) and training using 

distillation, instance-aware segmentation for counting and 

quality control, increased throughput through capture 
batching, and an asynchronous capture-inference-actuation 

pipeline, domain adaptation for other regions and crops, and 

an exposure/gain self-calibration module. 
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