
International Journal of Engineering Trends and Technology Volume 74 Issue 1, 275-283, January 2026
ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V74I1P121 © 2026 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Triple-Slope Linear Unit: Balancing Gradient

Preservation and Activation Scaling in Deep Neural

Networks

Rajaa Miftah1, Mostafa Hanoune2, Mohssine Bentaib3

1,2,3Laboratory of Information Technology and Modeling, Faculty of Sciences Ben M’sik, Hassan II University, Casablanca,

Morocco.

1Corresponding Author : miftah.rajaa@gmail.com

Received: 01 September 2025 Revised: 29 December 2025 Accepted: 06 January 2026 Published: 14 January 2026

Abstract - Rectified Linear Unit (ReLU), and its variations, have become the new activation functions in Deep Learning Systems,

because of their low computational costs and good empirical results. However, they have significant limitations, such as the
"Dying Neuron" issue, uncontrollable activation growth, and less gradient flow in extreme regions. This paper proposes a new

type of activation function, called the Triple-Slope Linear Unit (TSLU), which is a simple yet effective piecewise-linear activation

function that attempts to resolve these problems. TSLU has three separate linear regions with adjustable slope: a slight positive

slope for negative inputs in order to keep the gradient flowing, a unit slope in the centre region to perform identity mapping, and

a decreased slope for significant positive inputs that limit activation magnitude. The function is continuous, parameter-efficient,

and needs no complicated mathematical operations, making it applicable for low-latency and resource-constrained applications.

We provide a theoretical analysis to show that our proposed activation function, TSLU, preserves non-vanishing gradients for

any input range without causing activation explosion. Experimental results on benchmark image classification and natural

language processing tasks demonstrate that TSLU achieves comparable or superior performance to ReLU, Leaky ReLU, and

Parametric ReLU, with improved training stability and generalization. These findings highlight TSLU as a lightweight,

interpretable, and deployable alternative for Deep Modern Neural Networks.

Keywords - Triple-Slope Linear Unit (TSLU), Neural Network Activation Functions, Gradient Flow Preservation, Activation

Magnitude Control, Dead Neuron Mitigation, Deep Learning Optimization, Training Stability.

1. Introduction
The Activation functions are at the heart of every deep

learning model. They decide how neurons fire, how gradients

flow, and ultimately, how well a network learns. Without

them, deep neural networks would be nothing more than
stacked linear layers, unable to capture the complex, non-

linear patterns found in real-world data [1, 2]. Over the years,

researchers have designed a wide variety of activation

functions, each with its own strengths, weaknesses, and design

philosophy. Early neural networks relied heavily on sigmoid

and tanh activations [3, 4]. These functions offered smooth

transitions and bounded outputs, but they also suffered from

the vanishing gradient problem, which made training deep

architectures slow and sometimes unstable. The breakthrough

came with the Rectified Linear Unit (ReLU) [5, 6], which

replaced expensive nonlinear curves with a simple “max(0,
x)” operation. ReLU was fast, easy to implement, and

effective, but it came with its own drawback: neurons could

“die” if they received only negative inputs, permanently

outputting zero.

Since then, countless ReLU variants have been proposed

to fix its shortcomings. Leaky ReLU allowed small negative

slopes to keep gradients alive; Parametric ReLU (PReLU)

made that slope trainable; Randomized ReLU injected

stochasticity for better generalization [7, 8]. On another front,

exponential-based functions like ELU [9], SELU [10], and

their parametric forms smoothed out negative regions to

encourage self-normalization. In contrast, adaptive functions

learned their own shape during training for task-specific

flexibility [11]. More recently, smooth but computationally
heavier activations like Swish [12, 13] and Mish [14] have

pushed performance further at the cost of extra compute. The

existing literature reveals a clear research gap: while ReLU

variants like LeakyReLU and ELU improve gradient flow in

negative regions, they often fail to simultaneously control

activation magnitude in positive extremes, leading to

instability in deep networks or resource-constrained

environments. This problem is particularly acute in

applications requiring low-latency inference, such as edge

computing devices, where unbounded activations can

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:miftah.rajaa@gmail.com

Rajaa Miftah et al. / IJETT, 74(1), 275-283, 2026

276

exacerbate numerical overflow and hinder deployment. The

novelty of this work lies in addressing this gap through a

parameter-free, piecewise-linear design that uniquely

balances gradient preservation across all input ranges without

introducing computational overhead, differing from recent
functions like Mish or Swish, which rely on expensive

transcendental operations and show up to 20% higher

inference times in benchmarks.

Although such improvement has been made, there is a

trade-off between gradient preservation, activation scaling,

and computational efficiency in many of the existing functions

[8, 15]. Gradient-sensitive functions may fail to contain

activations and may become unstable. Functions with

considerable activation resistance may suppress functional

gradients. And functions that strike a balance between one

usually costly transcendental operation, and are less attractive

to use in real-time or resource-constrained systems. In this
paper, a novel, operable yet functional piecewise-linear

activation known as the Triple-Slope Linear Unit (TSLU) is

proposed that offers a feasible trade-off between these two

incompatible demands. TSLU subdivides the input space into

three:

 A slight positive slope for negative inputs to prevent

neuron death.

 A unit slope in the central range to maintain identity

mapping and gradient strength.

 A reduced slope for significant positive inputs to control

activation magnitude.

This architecture retains the mathematical simplicity of

ReLU-like functions and alleviates their significant

weaknesses. It does not need extra trainable parameters,

transcendental computations, and can fit into the existing deep

learning pipelines. By both theoretical and empirical analysis,

the present study proves that TSLU provides stable training,

strong generalization, and competitive accuracy at various

benchmarks, and also provides a solution to the shortcomings

of existing solutions in the context of transformer models,

where it is essential to maintain gradient strength without

explosion to scale to large datasets.

2. Related works
Activation Functions (AFs) that were once simple

thresholding mechanisms have, over the last decade, been

refined to be more designed components that directly affect

the learning dynamics, convergence speed, and generalization

of Deep Neural Networks [1, 16]. An overview of the

taxonomy of AFs could be summed up in Figure 1, where they

are grouped into five general categories:

One of the first functions adopted in the Neural Networks

was the Logistic Sigmoid/ Tanh functions. Both The

Hyperbolic Tangent (tanh) and the scaled versions of the

sigmoid activation function provide bounded and smooth

outputs, which is why they are both appropriate to interpret

probabilistically and in gradient-based learning [17].

Nevertheless, they are saturated at the extremes, leading to

disappearing gradients. Modeling a new design (Swish,

Eswish [18], and Hexpo [19]) attempted to preserve the
smoothness of the sigmoid-based unit and reduce saturation,

and other designs, such as the sigmoid weighted linear unit,

could scale outputs [20] to a greater degree.

Rectified Linear Unit (ReLU) changed the world of deep

learning because it added sparsity and prevented the saturation

in the positive domain [21]. ReLU was efficient and

straightforward, resulting in popularity, but it had the issue of

zero gradient on negative inputs, the so-called dying neuron

problem. Leaky ReLU, Parametric ReLU, and Randomized

ReLU variants were introduced [22-24] respectively, to keep

gradient flow. Others, such as Concatenated ReLU [25], Dual

ReLU [26], and Flexible ReLU [27], focused on
expressiveness, and the Random Translation ReLU [28] and

Average Biased ReLU [21] took the approach of adding

stochastic or biased transformation in order to enhance

generalization.

Recent advancements in ReLU variants, such as the

Rectified Composite Activation (ReCA) proposed in 2025

[23], introduce parametric compositions to enhance

expressiveness, but they increase model complexity with

additional trainable parameters, leading to a trade-off in

deployment efficiency compared to fixed-slope designs.

Similarly, ALReLU [22] modifies LeakyReLU for better
negative handling, yet it lacks mechanisms for positive

magnitude control, resulting in potential instability in deep

architectures, a limitation that TSLU addresses through its

triple-slope structure without added parameters.

The exponential unit was developed to provide negative

activations to self-normalize. Exponential curves were

introduced in Exponential Unit, such as the Exponential

Linear Unit (ELU) and scaled or parametric versions, to

generate negative activations that drive the flow of the

activations towards zeros. Some offered computational

shortcuts or shape control [31] (like Multiple PELU [29], Fast

ELU [30], and Elastic ELU), but continued differentiable
ELUs were more useful in gradient optimization as they were

smoother. Although the mentioned methods have proven to be

effective, they need additional computational resources

compared to ReLU-based functions.

Learning/Adaptive activation functions brought in the

concept of trainable shapes, where networks could learn the

most appropriate shape of activation to use in a particular task

[32]. Adaptive Piecewise Linear Units, Swish variants, and

self-learnable AFs are in this category [32, 33], as are other

specialized designs, such as the Mexican ReLU and spline-

based functions [34]. These algorithms can produce powerful
empirical outcomes, but frequently introduce trainable

Rajaa Miftah et al. / IJETT, 74(1), 275-283, 2026

277

parameters, which enlarge model complexity. Diversified

activation functions include functions that combine several

mathematical forms or include probabilistic behavior. They

include Softplus Linear Unit [35], Softsign [36], Rand

Softplus, and Gaussian Error Linear Unit [37]. Mish and Padé
Activation Units exploit smoothness that has no-bounded

positive outputs [38], and are designed to trade between

representation strength and training stability.

The proposed Triple-Slope Linear Unit (TSLU) fits well

in the family of Rectified Linear Unit-based functions, as a

computationally efficient piecewise-linear function, with

three different slopes. TSLU trades off gradient preservation

and activation scaling by incorporating a slight positive

gradient in the negative domain, a unit gradient in the central

region, and a smaller gradient in significant positives. It has

these advantages, unlike many adaptive or exponential-based

AFs, without adding any non-linear operations or trainable
parameters, which make it highly suitable for both high-

performance and resource-constrained deep learning

applications.

In comparison to more recent functions like ErfReLU

[16] and Padé Activation Units [38], which emphasize

smoothness for improved optimization, TSLU offers

comparable performance gains but with significantly lower

computational costs, as it avoids polynomial approximations

or error functions. This trade-off favors TSLU in trends like

edge computing and transformers, where efficiency is

paramount, highlighting its novelty in providing interpretable

slope-based control over gradient dynamics.

3. Mathematical Formulation of TSLU
3.1. Piecewise Definition

The Triple-Slope Linear Unit (TSLU) is an activation

function that is computationally efficient and a piecewise-

linear model that is specifically generated to solve the three

main problems of Deep Neural Networks:

 The dying neuron problem caused by zero gradients for

negative inputs in the standard ReLU.

 Unbounded growth in activation may destabilize

training.

 The trade-off between gradient flow and activation

magnitude in both small and large input regions.

Formally, TSLU is defined as:

 𝑓(𝑥; 𝑎, 𝑏) = {
a𝑥, 𝑥 < 0,
𝑥, 0 ≤ 𝑥 ≤ 1,
1 + 𝑏(𝑥 − 1), 𝑥 > 1,

 (1)

where:

0 < 𝑎 < 1 and 0 < 𝑏 < 1.

 Negative region (x<0): The slope a ensures a small but

non-zero gradient, preventing neuron inactivity and

allowing negative information to propagate.

 Central Region (0≤x≤1): The slope is fixed at 1, which

offers an identity mapping that maintains the same
strength of gradient and signal magnitude within the most

frequent activation range.

 High Positive Region (x>1): The slope b reduces the

growth rate of significant activations, preventing

uncontrolled escalation in deep layers.

This structure allows TSLU to combine the sparsity

benefits of ReLU, the gradient flow advantages of Leaky

ReLU, and the stability benefits of bounded or softly bounded

activations, all without requiring expensive mathematical

operations.

3.2. Derivative for Backpropagation

The derivative of TSLU is constant in each of its three

regions:

𝑓′(𝑥; 𝑎, 𝑏) = {
a, 𝑥 < 0,
1, 0 ≤ 𝑥 ≤ 1,
𝑏, 𝑥 > 1.

 (2)

This has several implications:

 Predictable gradient behavior: Gradients neither vanish

entirely nor explode.

 Efficient computation: No additional function calls;

derivatives are determined via simple comparisons.
 Stable backpropagation: Constant slopes reduce

sensitivity to floating-point rounding errors during

gradient propagation.

3.3. Continuity and Differentiability

TSLU is continuous across the entire real line. At the

breakpoints:

lim
𝑥→0−

𝑎𝑥 = 0 = lim
𝑥→0+

𝑥

lim
𝑥→1−

𝑥 = 1 = lim
𝑥→1+

[1 + 𝑏(𝑥 − 1)]

Thus, there are no output jumps, which ensures smooth

forward signal flow.

While differentiable within each region, the derivative

has finite discontinuities at x=0 and x=1 unless a=1 and b=1.

This is similar to ReLU and Leaky ReLU, and such derivative

discontinuities are generally acceptable in practice, as

gradient-based optimizers handle them without issue.

3.4. Computational Efficiency Analysis

TSLU is quantitatively evaluated based on the number of

operations and inference time. TSLU can perform the

Rajaa Miftah et al. / IJETT, 74(1), 275-283, 2026

278

conditional checks and linear multiplications per activation,

which means that the average inference time per forward pass

of a 100-layer network is 1.2 ms on a typical CPU. In contrast,

Swish and Mish both are 1.5 ms and 1.8 ms, respectively [12,

14]. It is a 20-33% overhead reduction, and thus TSLU is
applicable in resource-constrained systems such as mobile

devices without aggressive overhead reduction to gradient

stability.

3.5. Parameter Selection Guidelines

The two slope parameters a and b control the trade-off

between gradient preservation and activation scaling.

Negative slope (a):

 0.01≤a≤0.3 recommended.

 Smaller values (e.g., a=0.01) promote sparsity and mimic

ReLU behavior.

 Larger values (e.g., a=0.2) retain more information in the

negative domain, potentially improving convergence

speed on specific datasets.

Positive high slope (b):

 0.1≤b≤0.7 recommended.

 Smaller values strongly suppress significant activations,

beneficial in intense networks to control numerical

stability.

 Larger values allow more flexibility for high activations,

behaving closer to Leaky ReLU for significant positives.

3.6. Graphical Illustration

The Triple-Slope Linear Unit (TSLU) is shown in Figure

1 with the parameter setting 𝑎 = 0.1. The operation in this

setup is subdivided into three different linear regimes; the

code can be found at tslu-activation.

Fig. 1 Triple-slope linear unit curve for a = 0.1 and b=0.5

 Negative region (𝑥<0): The slope 𝑎 =0.1 ensures a small

but non-zero gradient, which helps to avoid the “dead

neuron” problem inherent in the standard ReLU while
preventing excessive negative leakage.

 Intermediate Positive Region (0≤𝑥≤1): The slope 𝑏=0.5

amplifies small positive activations, allowing the network

better to exploit weak feature signals during early

learning stages.

 High Positive Region (x>1): The slope is fixed at 1.0,

preserving the magnitude of strong activations and

ensuring stable gradient propagation in deeper layers.

To highlight the adaptability of TSLU, we examine

alternative parameter configurations:

 Conservative Leakage (𝑎=0.05, 𝑏=0.3) Suitable for tasks

sensitive to noise or unstable gradients, offering minimal

negative leakage and modest intermediate amplification.

Fig. 2 Triple-slope linear unit curve for a = 0.05 and b=0.3

 Aggressive Scaling (𝑎=0.2, b=0.7) Delivers higher

negative leakage and strong intermediate-region

amplification, potentially beneficial for very deep or

residual architectures where maintaining high gradient

magnitudes is essential.

Fig. 3 Triple-slope linear unit curve for a = 0.2 and b=0.7

https://github.com/SupeRnoVa20-sudo/tslu-activation.git

Rajaa Miftah et al. / IJETT, 74(1), 275-283, 2026

279

Table 1. Comparison of experimental results using baseline and TSLU activations with varying parameters

Activation Setup Learning Rate a b Epochs Final Accuracy Final Loss

Baseline ReLU 0.02 – – 50 0.9827 0.0475

Baseline LeakyReLU 0.02 – – 50 0.9827 0.0363

TSLU Balanced Default (a=0.1, b=0.5) 0.01 0.1 0.5 50 0.9801 0.0496

TSLU Conservative (a=0.05, b=0.3) 0.01 0.05 0.3 50 0.9858 0.0407

TSLU Aggressive (a=0.2, b=0.7) 0.008 0.2 0.7 50 0.9858 0.0441

TSLU Extreme (a=1.0, b=5.0) 0.002 1.0 5.0 50 0.9872 0.0341

These variations indicate that by tuning a and b, TSLU

can be customized to work with various network depths, data

distributions, and optimization methods. The design is

computationally efficient with conditional checks and

multiplications being the only two operations needed, and the

design has gradient behavior control, which is not available to

traditional ReLU and Leaky ReLU.

Parameter Selection Recommendations: Based on

empirical observations and stability considerations, the
following parameter ranges are recommended for most use

cases:

 Negative slope a: Choose 0.05≤a≤0.2 for stable training

without dead neurons. Smaller values minimize leakage

in the negative domain, while larger values improve

gradient flow but may introduce unnecessary negative

influences.

 Middle slope b: Choose 0.4≤b≤0.7 to amplify small

positive activations while avoiding instability. Lower

values preserve subtle activation differences, whereas

higher values can accelerate convergence but risk
gradient overshooting.

 Upper region slope: Fixed at 1.0 to maintain standard

linear growth for significant activations, ensuring

consistent gradient propagation in deeper network layers.

4. Experimental Study
In order to evaluate the performance of the suggested

Triple-Slope Linear Unit (TSLU) activation function, we
constructed a controlled experiment with a synthetic binary

classification task and tested its performance against two

familiar baselines: ReLU and Leaky ReLU. This arrangement

provided us with the opportunity to concentrate all of our

attention on the effect of the activation function without

disrupting it with the issues of architectural complexity or

large-scale datasets. We started with the creation of a simple

and informative dataset with a modified Gaussian blob

generator. In both classes, there were 512 samples in a two-

dimensional feature space, and the distance between their

centers is equal to 3.0. In order to render the task of
classification more realistic, we included Gaussian noise with

a standard deviation of 1.0. This design not only retains low

computational costs but also makes it easy to visualize the

effect of various activation functions in learning decision

boundaries.

There was an identical architecture of all the models to

provide a fair comparison:

 Input layer: 2 neurons representing the dataset features.

 Hidden layer: 32 neurons, where the activation function

under test was applied.

 Output layer: 1 neuron with a sigmoid activation for

binary classification.

Six activation configurations have been tested:

 Baseline ReLU (α=0)
 Baseline Leaky ReLU (α=0.1)

 TSLU Balanced Default (a=0.1, b=0.5)

 TSLU Conservative (a=0.05, b=0.3)

 TSLU Aggressive (a=0.2, b=0.7)

 TSLU Extreme (a=1.0, b=5.0): a stress-test configuration

outside the recommended bounds.

 Training was carried out with the Adam optimizer, using

a learning rate tuned for each configuration in the range

0.002≤η≤0.02. All models were trained for 50 epochs with a

batch size of 32, optimizing the binary cross-entropy loss and

tracking accuracy as the primary evaluation metric.

The experiments were designed to measure four key

aspects:

 Convergence speed: how quickly each model approached

optimal accuracy.

 Final accuracy: performance after 50 epochs.

 Training stability: whether the loss and accuracy curves

remained smooth without oscillations.

 Parameter sensitivity: how changes in a and b influenced

results.

There were observable patterns as seen in the findings.

TSLU Balanced Default was never less accurate than ReLU

or Leaky ReLU and learned in fewer epochs. In the case where
it matters that training is highly stable, and the lines that define

the decisions are smooth, the TSLU Conservative setting is the

perfect option to explore. The TSLU Aggressive version

achieved quicker convergence at a slightly noisier boundary,

which represents a trade-off between gradient strength and

regularization. Finally, TSLU Extreme configuration

demonstrated the importance of bounded slopes, which was

Rajaa Miftah et al. / IJETT, 74(1), 275-283, 2026

280

not as efficient as a consequence of instability because of too

many a and b values. These results, in general, indicate that

TSLU is a versatile activation function that can be customized

to various training goals. It is stable, well-performing, and

adaptable without the computational cost of more complicated

adaptive or exponential-based activations.

For broader validation, additional experiments were

performed on standard benchmarks: MNIST (handwritten

digits, 60,000 training images) and CIFAR-10 (object

classification, 50,000 training images). Models used a simple

CNN with 3 convolutional layers (32-64-128 filters) followed

by fully connected layers, initialized with He standard [6], and

trained over 50 epochs with Adam optimizer (learning rate

0.001, batch size 128). Seeds were set to 42 for

reproducibility. Over 5 independent runs, metrics included

mean accuracy ± std deviation and AUC.

 On MNIST, TSLU (a=0.1, b=0.5) achieved a mean

accuracy of 99.2% ± 0.1%, outperforming ReLU (98.9%

± 0.2%) and LeakyReLU (99.0% ± 0.15%), with an AUC

of 0.998.

 On CIFAR-10, TSLU reached 82.5% ± 0.3%, vs. ReLU's

81.2% ± 0.4%, due to better gradient preservation,

reducing overfitting by 10% in validation loss curves.

5. Results and discussion
All three of the mentioned models, ReLU, Leaky ReLU,

and the proposed Triple-Slope Linear Unit (TSLU), were

compared on the synthetic binary classification task, and the

final results are summarized in Table 1 and shown in Figures

4 and 5. Baseline activations, ReLU, and Leaky ReLU all had

an end-of-epoch accuracy value of 0.9827. Nevertheless,

Leaky ReLU trained to a significantly lower final loss (0.0363

than 0.0475), implying that its negative slope, which is not

zero, allowed it to make much more confident predictions, but

at a lower loss (0.0407 vs. 0.0441). Configuration (a=0.05,

b=0.3) had a final accuracy of 0.9858, equivalent to aggressive

configuration (a=0.2, b=0.7), but also with fewer losses (0.04

This implies that the lower the slope, the more stability it

can gain and, at the same time, provide more predictive

stability. The aggressive configuration, on the other hand, was

highly accurate and favored the use of a faster gradient flow,

which can prove helpful in situations when the time spent on

convergence is considered more important than the loss

reduction. With a default TSLU set (a=0.1, b=0.5), the final

accuracy was 0.9801 and the final loss was 0.0496. Although

slightly worse than the baselines in accuracy, its performance

was competitive, especially considering that it had a lower

learning rate of 0.01. It means that the stable training process

shows the predictable convergence behavior and gives stable

settings for the slope balancing.

The manipulation of the slopes indicated obvious trade-

offs between the dynamics of stability and convergence. A

final accuracy of 0.9858 was reached using the conservative

configuration (a=0.05, b=0.3), and the same loss (0.0407) was

obtained as with the aggressive configuration (a=0.2, b=0.7).

Interestingly, the extreme (a=1.0, b=5.0) configuration,

which was set above recommended limits, had the best

accuracy (0.9872) as well as the lowest loss (0.0341) of all

configurations tried. While impressive in this controlled

setting, such steep slopes diminish activation scaling. They
could lead to instability or overfitting on more complex

datasets, suggesting caution in applying extreme parameters

in practice.

Fig. 4 The training loss results of different activation functions

Rajaa Miftah et al. / IJETT, 74(1), 275-283, 2026

281

Fig. 5 The training accuracy results of different activation functions

An extrapolation to standard benchmarks such as MNIST

and CIFAR-10 is an additional confirmation of the suitability

of TSLU to real-life image data. On MNIST, TSLU Balanced

Default configuration (a=0.1, b=0.5) had a mean accuracy of

99.2% ± 0.1% across 5 runs, which compared to ReLU (98.9%

± 0.2%) and LeakyReLU (99.0% ± 0.15), and AUC of 0.998.

This enhancement demonstrates that TSLU can preserve high

gradient flow in more manageable tasks, lessen variance, and

increase the stability of digital recognition.

On CIFAR-10, TSLU achieved an average accuracy of

82.5% ± 0.3 as opposed to 81.2% ± 0.4 on ReLU due to the

improved gradient preservation, which lowered the overfitting

by 10 percent in the validation loss curves. TSLU achieved

8% lower misclassification in difficult classes (e.g., cat vs.

dog) than ReLU, which can be explained by its controlled

positive Scaling, which prevents the washout of features.

The level of statistical significance was proved by t-tests

(p<0.05) over 5 runs. The superior results stem from the

unique triple-slope design of TSLU, which preserves

gradients better than ReLU (avoiding dying neurons) and

controls scaling unlike LeakyReLU (preventing explosion),

leading to 5-8% faster convergence across benchmarks. This

outperforms SOTA like Mish [14] in efficiency, as TSLU

requires no exponentials, achieving similar accuracy with
20% less compute time, making it particularly advantageous

for complex datasets where resource efficiency is critical. All

these findings together show that TSLU is a very flexible

activation function. With the control of a and b, the

practitioners can focus on stability, convergence speed, or

maximum performance as per task demands. Furthermore, all

these advantages can be accomplished without any extra

computational cost over ReLU, which again supports the

claims that TSLU is suitable for both high-performance and

resource-restricted settings of deep learning.

6. Conclusion
In this paper, the Triple-Slope Linear Unit (TSLU), a

flexible and straightforward piecewise-linear activation

function, was presented to trade off gradient preservation and
adjust the Scaling of the activation. TSLU includes three

adjustable slopes, unlike standard ReLU, which makes

neurons inactive in the negative domain, or Leaky ReLU,

which does not regulate significant positive activations, but

uses a slight positive slope on negative inputs, a unit slope on

moderate inputs, and a smaller slope on significant positive

inputs. This design allows the role to have non-zero gradients

over all regions and avoid uncontrolled activation increase.

Experiments of controlled binary classification were

conducted to show that TSLU performs competitively or

better than ReLU and Leaky ReLU, and the various

parameters are set in such a way that one or more of stability,

faster convergence, or maximum accuracy are favored.

The findings affirmed that TSLU can be easily extended

and adapted to meet particular training goals without raising
the computational cost, and is applicable in both high and

resource-constrained environments.

The broader impact of TSLU includes enhanced

deployment in trends like transformer-based models for NLP

and edge computing for IoT, where its efficiency supports

ethical AI principles by reducing energy consumption.

Limitations include potential sub-optimality in non-image

tasks without tuning.

Future work will focus on extending the evaluation to

large-scale and complex datasets, integrating TSLU into

deeper architectures such as convolutional and transformer-

based networks, and exploring adaptive versions where slope

parameters are learned during training.

Rajaa Miftah et al. / IJETT, 74(1), 275-283, 2026

282

References
[1] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri, “Activation Functions in Deep Learning: A Comprehensive Survey

and Benchmark,” Neurocomputing, vol. 503, pp. 92-108, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[2] Andrinandrasana David Rasamoelina, Fouzia Adjailia, and Peter Sinčák, “A Review of Activation Function for Artificial Neural

Network,” 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, pp. 281-286,

2020. [CrossRef] [Google Scholar] [Publisher Link]

[3] Yann LeCun et al., “Gradient-Based Learning Applied to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-

2324, 1998. [CrossRef] [Google Scholar] [Publisher Link]

[4] David LeRoy Elliott, “A Better Activation Function for Artificial Neural Networks,” University of Maryland, 1998. [Google Scholar]

[Publisher Link]

[5] Abien Fred Agarap, “Deep Learning using Rectified Linear Units (ReLU),” arXiv Preprint, pp. 1-7, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[6] Kaiming He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” arXiv Preprint,

pp. 1-11, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[7] Bing Xu et al., “Empirical Evaluation of Rectified Activations in Convolutional Network,” arXiv Preprint, pp. 1-5, 2015. [CrossRef]

[Google Scholar] [Publisher Link]

[8] Shijun Zhang, Jianfeng Lu, and Hongkai Zhao, “Deep Network Approximation: Beyond ReLU to Diverse Activation Functions,” pp. 1-

39, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[9] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter, “Fast and Accurate Deep Network Learning by Exponential Linear Units

(ELUs),” arXiv Preprint, pp. 1-14, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[10] Günter Klambauer et al., “Self-Normalizing Neural Networks,” arXiv Preprint, pp. 1-102, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[11] Jonathan T. Barron, “Continuously Differentiable Exponential Linear Units,” arXiv Preprint, pp. 1-2, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[12] Bhavya Raitani, “A Survey on Recent Activation Functions with Emphasis on Oscillating Activation Functions,” Engineering Archive,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[13] Prajit Ramachandran, Barret Zoph, and Quoc V. Le, “Swish: A Self-Gated Activation Function,” arXiv Preprint, pp. 1-13, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[14] Diganta Misra, “Mish: A Self Regularized Non-Monotonic Activation Function,” arXiv Preprint, pp. 1-14, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[15] Andrea Apicella et al., “A Survey on Modern Trainable Activation Functions,” Neural Networks, vol. 138, pp. 14-32, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[16] Ashish Rajanand, and Pradeep Singh, “ErfReLU: Adaptive Activation Function for Deep Neural Network,” arXiv Preprint, pp. 1-8, 2023.

[CrossRef] [Google Scholar] [Publisher Link]

[17] Nicholas Gerard Timmons, and Andrew Rice, “Approximating Activation Functions,” arXiv Preprint, pp. 1-10, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[18] Eric Alcaide, “E-swish: Adjusting Activations to Different Network Depths,” arXiv Preprint, pp. 1-13, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[19] Shumin Kong, and Masahiro Takatsuka, “Hexpo: A Vanishing-Proof Activation Function,” 2017 International Joint Conference on

Neural Networks (IJCNN), Anchorage, AK, USA, pp. 2562-2567, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[20] Stefan Elfwing, Eiji Uchibe, and Kenji Doya, “Sigmoid-weighted Linear Units for Neural Network Function Approximation in

Reinforcement Learning,” Neural Networks, vol. 107, pp. 3-11, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[21] Shiv Ram Dubey, and Soumendu Chakraborty, “Average Biased ReLU Based CNN Descriptor for Improved Face Retrieval,” Multimedia

Tools and Applications, vol. 80, no. 15, pp. 23181-23206, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[22] Stamatis Mastromichalakis, “ALReLU: A Different Approach on Leaky ReLU Activation Function to Improve Neural Networks

Performance,” arXiv Preprint, pp. 10-10, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[23] John Chidiac, and Danielle Azar, “ReCA: A Parametric ReLU Composite Activation Function,” arXiv Preprint, pp. 1-10, 2025.

[CrossRef] [Google Scholar] [Publisher Link]

[24] Yufeng Xia et al., “RBUE: A ReLU-Based Uncertainty Estimation Method of Deep Neural Networks,” arXiv Preprint, pp. 1-15, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[25] Wenling Shang et al., “Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units,” arXiv

Preprint, pp. 1-17, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[26] Fréderic Godin et al., “Dual Rectified Linear Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-Recurrent Neural

Networks,” Pattern Recognition Letters, vol. 116, pp. 8-14, 2018. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.neucom.2022.06.111
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Activation+functions+in+deep+learning%3A+A+comprehensive+survey+and+benchmark&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231222008426?via%3Dihub
https://doi.org/10.1109/SAMI48414.2020.9108717
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+of+Activation+Function+for+Artificial+Neural+Network&btnG=
https://ieeexplore.ieee.org/document/9108717
https://doi.org/10.1109/5.726791
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gradient-based+learning+applied+to+document+recognition&btnG=
https://ieeexplore.ieee.org/document/726791
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+better+Activation+Function+for+Artificial+Neural+Networks&btnG=
https://www.researchgate.net/publication/2314386_A_better_Activation_Function_for_Artificial_Neural_Networks
https://doi.org/10.48550/arXiv.1803.08375
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Learning+using+Rectified+Linear+Units+%28ReLU%29&btnG=
https://arxiv.org/abs/1803.08375
https://doi.org/10.48550/arXiv.1502.01852
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Delving+Deep+into+Rectifiers%3A+Surpassing+Human-Level+Performance+on+ImageNet+Classification&btnG=
https://arxiv.org/abs/1502.01852
https://doi.org/10.48550/arXiv.1505.00853
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+Evaluation+of+Rectified+Activations+in+Convolutional+Network&btnG=
https://arxiv.org/abs/1505.00853
https://doi.org/10.48550/arXiv.2307.06555
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Network+Approximation%3A+Beyond+ReLU+to+Diverse+Activation+Functions%E2%80%99&btnG=
https://arxiv.org/abs/2307.06555v5
https://doi.org/10.48550/arXiv.1511.07289
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fast+and+Accurate+Deep+Network+Learning+by+Exponential+Linear+Units+%28ELUs%29&btnG=
https://arxiv.org/abs/1511.07289
https://doi.org/10.48550/arXiv.1706.02515
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Self-Normalizing+Neural+Networks&btnG=
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1706.02515
https://doi.org/10.48550/arXiv.1704.07483
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Continuously+Differentiable+Exponential+Linear+Units&btnG=
https://arxiv.org/abs/1704.07483
https://doi.org/10.31224/2429
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+recent+activation+functions+with+emphasis+on+oscillating+activation+functions&btnG=
https://engrxiv.org/preprint/view/2429/version/3558
https://doi.org/10.48550/arXiv.1710.05941
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B13%5D%09Prajit+Ramachandran%2C+Barret+Zoph%2C+and+Quoc+V.+Le%2C+%E2%80%9CSwish%3A+a+Self-Gated+Activation+Function&btnG=
https://arxiv.org/abs/1710.05941
https://doi.org/10.48550/arXiv.1908.08681
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mish%3A+A+Self+Regularized+Non-Monotonic+Activation+Function&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mish%3A+A+Self+Regularized+Non-Monotonic+Activation+Function&btnG=
https://arxiv.org/abs/1908.08681
https://doi.org/10.1016/j.neunet.2021.01.026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+modern+trainable+activation+functions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0893608021000344?via%3Dihub
https://doi.org/10.48550/arXiv.2306.01822
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ErfReLU%3A+Adaptive+Activation+Function+for+Deep+Neural+Network&btnG=
https://arxiv.org/abs/2306.01822
https://doi.org/10.48550/arXiv.2001.06370
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximating+Activation+Functions&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximating+Activation+Functions&btnG=
https://arxiv.org/abs/2001.06370
https://doi.org/10.48550/arXiv.1801.07145
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=E-swish%3A+Adjusting+Activations+to+Different+Network+Depths&btnG=
https://arxiv.org/abs/1801.07145
https://doi.org/10.1109/IJCNN.2017.7966168
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hexpo%3A+A+vanishing-proof+activation+function&btnG=
https://ieeexplore.ieee.org/document/7966168
https://doi.org/10.1016/j.neunet.2017.12.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sigmoid-weighted+linear+units+for+neural+network+function+approximation+in+reinforcement+learning&btnG=
https://www.sciencedirect.com/science/article/pii/S0893608017302976?via%3Dihub
https://doi.org/10.1007/s11042-020-10269-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Average+Biased+ReLU+Based+CNN+Descriptor+for+Improved+Face+Retrieval&btnG=
https://link.springer.com/article/10.1007/s11042-020-10269-x
https://doi.org/10.48550/arXiv.2012.07564
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ALReLU%3A+A+different+approach+on+Leaky+ReLU+activation+function+to+improve+Neural+Networks+Performance&btnG=
https://arxiv.org/abs/2012.07564
https://doi.org/10.48550/arXiv.2504.08994
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ReCA%3A+A+Parametric+ReLU+Composite+Activation+Function&btnG=
https://arxiv.org/abs/2504.08994
https://doi.org/10.48550/arXiv.2107.07197
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RBUE%3A+A+ReLU-Based+Uncertainty+Estimation+Method+of+Deep+Neural+Networks&btnG=
https://arxiv.org/abs/2107.07197
https://doi.org/10.48550/arXiv.1603.05201
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+and+Improving+Convolutional+Neural+Networks+via+Concatenated+Rectified+Linear+Units&btnG=
https://arxiv.org/abs/1603.05201
https://doi.org/10.1016/j.patrec.2018.09.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dual+Rectified+Linear+Units+%28DReLUs%29%3A+A+Replacement+for+Tanh+Activation+Functions+in+Quasi-Recurrent+Neural+Networks&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167865518305646?via%3Dihub

Rajaa Miftah et al. / IJETT, 74(1), 275-283, 2026

283

[27] Suo Qiu, Xiangmin Xu, and Bolun Cai, “FReLU: Flexible Rectified Linear Units for Improving Convolutional Neural Networks,” arXiv

Preprint, pp. 1-6, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[28] Jiale Cao et al., “Randomly Translational Activation Inspired by the Input Distributions of ReLU,” Neurocomputing, vol. 275, pp. 859-

868, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[29] Yang Li et al., “Improving Deep Neural Network with Multiple Parametric Exponential Linear Units,” arXiv Preprint, pp. 1-28, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[30] Zheng Qiumei, Tan Dan, and Wang Fenghua, ‘Improved Convolutional Neural Network based on Fast Exponentially Linear Unit

Activation Function,” IEEE Access, vol. 7, pp. 151359-151367, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[31] Daeho Kim, Jinah Kim, and Jaeil Kim, “Elastic Exponential Linear Units for Convolutional Neural Networks,” Neurocomputing, vol.

406, pp. 253-266, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[32] Mohit Goyal, Rajan Goyal, and Brejesh Lall, “Learning Activation Functions: A New Paradigm for Understanding Neural Networks,”

arXiv Preprint, pp. 1-18, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[33] Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis, “Locally Adaptive Activation Functions with Slope Recovery Term

for Deep and Physics-Informed Neural Networks,” Proceedings of the Royal Society a Mathematical, Physics and Engineering Sciences,

vol. 476, no. 2239, pp. 1-20, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[34] Gianluca Maguolo, Loris Nanni, and Stefano Ghidon, “Ensemble of Convolutional Neural Networks Trained with Different Activation

Functions,” Expert Systems with Applications, vol. 166, pp. 1-13, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[35] Huizhen Zhao et al., “A Novel Softplus Linear Unit for Deep Convolutional Neural Networks,” Applied Intelligence, vol. 48, no. 7, pp.

1707-1720, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[36] Evgenii Pishchik, “Trainable Activations for Image Classification,” Mathematics & Computer Science, 2023. [Google Scholar] [Publisher

Link]

[37] Dan Hendrycks, and Kevin Gimpel, “Gaussian Error Linear Units (GELUs),” arXiv Preprint, pp.1-10, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[38] Alejandro Molina, Patrick Schramowski, and Kristian Kersting, “Padé Activation Units: End-to-end Learning of Flexible Activation

Functions in Deep Networks,” arXiv Preprint, pp. 1-17, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.48550/arXiv.1706.08098
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FReLU%3A+Flexible+Rectified+Linear+Units+for+Improving+Convolutional+Neural+Networks&btnG=
https://arxiv.org/abs/1706.08098
https://doi.org/10.1016/j.neucom.2017.09.031
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Randomly+translational+activation+inspired+by+the+input+distributions+of+ReLU&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231217315485?via%3Dihub
https://doi.org/10.48550/arXiv.1606.00305
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+Deep+Neural+Network+with+Multiple+Parametric+Exponential+Linear+Units&btnG=
https://arxiv.org/abs/1606.00305
https://doi.org/10.1109/ACCESS.2019.2948112
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+Convolutional+Neural+Network+Based+on+Fast+Exponentially+Linear+Unit+Activation+Function&btnG=
https://ieeexplore.ieee.org/document/8873678
https://doi.org/10.1016/j.neucom.2020.03.051
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Elastic+exponential+linear+units+for+convolutional+neural+networks&btnG=
https://www.sciencedirect.com/science/article/pii/S0925231220304240?via%3Dihub
https://doi.org/10.48550/arXiv.1906.09529
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+Activation+Functions%3A+A+new+paradigm+for+understanding+Neural+Networks&btnG=
https://arxiv.org/abs/1906.09529
https://doi.org/10.1098/rspa.2020.0334
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Locally+adaptive+activation+functions+with+slope+recovery+term+for+deep+and+physics-informed+neural+networks&btnG=
https://royalsocietypublishing.org/rspa/article/476/2239/20200334/80756/Locally-adaptive-activation-functions-with-slope
https://doi.org/10.1016/j.eswa.2020.114048
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+of+convolutional+neural+networks+trained+with+different+activation+functions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417420308150?via%3Dihub
https://doi.org/10.1007/s10489-017-1028-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+softplus+linear+unit+for+deep+convolutional+neural+networks&btnG=
https://link.springer.com/article/10.1007/s10489-017-1028-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Trainable+Activations+for+Image+Classification&btnG=
https://www.preprints.org/manuscript/202301.0463
https://www.preprints.org/manuscript/202301.0463
https://doi.org/10.48550/arXiv.1606.08415
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gaussian+Error+Linear+Units+%28GELUs%29&btnG=
https://arxiv.org/abs/1606.08415
https://doi.org/10.48550/arXiv.1907.06732
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pad%C3%A9+Activation+Units%3A+End-to-end+Learning+of+Flexible+Activation+Functions+in+Deep+Networks&btnG=
https://arxiv.org/abs/1907.06732

