International Journal of Engineering Trends and Technology
ISSN: 2231-5381 / https://doi.org/10.14445/22315381/1JETT-V7411P121

Volume 74 Issue 1, 275-283, January 2026
© 2026 Seventh Sense Research Group®

Original Article

Triple-Slope Linear Unit: Balancing Gradient
Preservation and Activation Scaling in Deep Neural
Networks

Rajaa Miftah®, Mostafa Hanoune?, Mohssine Bentaib®

1231 aboratory of Information Technology and Modeling, Faculty of Sciences Ben M ’sik, Hassan II University, Casablanca,
Morocco.

Corresponding Author : miftah.rajaa@gmail.com

Received: 01 September 2025 Revised: 29 December 2025 Accepted: 06 January 2026 Published: 14 January 2026
Abstract - Rectified Linear Unit (ReLU), and its variations, have become the new activation functions in Deep Learning Systems,
because of their low computational costs and good empirical results. However, they have significant limitations, such as the
"Dying Neuron" issue, uncontrollable activation growth, and less gradient flow in extreme regions. This paper proposes a new
type of activation function, called the Triple-Slope Linear Unit (TSLU), which is a simple yet effective piecewise-linear activation
function that attempts to resolve these problems. TSLU has three separate linear regions with adjustable slope: a slight positive
slope for negative inputs in order to keep the gradient flowing, a unit slope in the centre region to perform identity mapping, and
a decreased slope for significant positive inputs that limit activation magnitude. The function is continuous, parameter-efficient,
and needs no complicated mathematical operations, making it applicable for low-latency and resource-constrained applications.
We provide a theoretical analysis to show that our proposed activation function, TSLU, preserves non-vanishing gradients for
any input range without causing activation explosion. Experimental results on benchmark image classification and natural
language processing tasks demonstrate that TSLU achieves comparable or superior performance to ReLU, Leaky RelLU, and
Parametric ReLU, with improved training stability and generalization. These findings highlight TSLU as a lightweight,

interpretable, and deployable alternative for Deep Modern Neural Networks.

Keywords - Triple-Slope Linear Unit (TSLU), Neural Network Activation Functions, Gradient Flow Preservation, Activation

Magnitude Control, Dead Neuron Mitigation, Deep Learning Optimization, Training Stability.

1. Introduction

The Activation functions are at the heart of every deep
learning model. They decide how neurons fire, how gradients
flow, and ultimately, how well a network learns. Without
them, deep neural networks would be nothing more than
stacked linear layers, unable to capture the complex, non-
linear patterns found in real-world data [1, 2]. Over the years,
researchers have designed a wide variety of activation
functions, each with its own strengths, weaknesses, and design
philosophy. Early neural networks relied heavily on sigmoid
and tanh activations [3, 4]. These functions offered smooth
transitions and bounded outputs, but they also suffered from
the vanishing gradient problem, which made training deep
architectures slow and sometimes unstable. The breakthrough
came with the Rectified Linear Unit (ReLU) [5, 6], which
replaced expensive nonlinear curves with a simple “max(0,
x)” operation. ReLU was fast, easy to implement, and
effective, but it came with its own drawback: neurons could
“die” if they received only negative inputs, permanently
outputting zero.

0[S]O)

Since then, countless ReLLU variants have been proposed
to fix its shortcomings. Leaky ReL.U allowed small negative
slopes to keep gradients alive; Parametric ReLU (PReLU)
made that slope trainable; Randomized ReLU injected
stochasticity for better generalization [7, 8]. On another front,
exponential-based functions like ELU [9], SELU [10], and
their parametric forms smoothed out negative regions to
encourage self-normalization. In contrast, adaptive functions
learned their own shape during training for task-specific
flexibility [11]. More recently, smooth but computationally
heavier activations like Swish [12, 13] and Mish [14] have
pushed performance further at the cost of extra compute. The
existing literature reveals a clear research gap: while ReLU
variants like LeakyReL U and ELU improve gradient flow in
negative regions, they often fail to simultaneously control
activation magnitude in positive extremes, leading to
instability in deep networks or resource-constrained
environments. This problem is particularly acute in
applications requiring low-latency inference, such as edge
computing devices, where unbounded activations can

e | his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:miftah.rajaa@gmail.com

Rajaa Miftahet al. / IJETT, 74(1), 275-283, 2026

exacerbate numerical overflow and hinder deployment. The
novelty of this work lies in addressing this gap through a
parameter-free, piecewise-linear design that uniquely
balances gradient preservation across all input ranges without
introducing computational overhead, differing from recent
functions like Mish or Swish, which rely on expensive
transcendental operations and show up to 20% higher
inference times in benchmarks.

Although such improvement has been made, there is a
trade-off between gradient preservation, activation scaling,
and computational efficiency in many of the existing functions
[8, 15]. Gradient-sensitive functions may fail to contain
activations and may become unstable. Functions with
considerable activation resistance may suppress functional
gradients. And functions that strike a balance between one
usually costly transcendental operation, and are less attractive
to use in real-time or resource-constrained systems. In this
paper, a novel, operable yet functional piecewise-linear
activation known as the Triple-Slope Linear Unit (TSLU) is
proposed that offers a feasible trade-off between these two
incompatible demands. TSLU subdivides the input space into
three:

A slight positive slope for negative inputs to prevent
neuron death.

A unit slope in the central range to maintain identity
mapping and gradient strength.

A reduced slope for significant positive inputs to control
activation magnitude.

This architecture retains the mathematical simplicity of
ReLU-like functions and alleviates their significant
weaknesses. It does not need extra trainable parameters,
transcendental computations, and can fit into the existing deep
learning pipelines. By both theoretical and empirical analysis,
the present study proves that TSLU provides stable training,
strong generalization, and competitive accuracy at various
benchmarks, and also provides a solution to the shortcomings
of existing solutions in the context of transformer models,
where it is essential to maintain gradient strength without
explosion to scale to large datasets.

2. Related works

Activation Functions (AFs) that were once simple
thresholding mechanisms have, over the last decade, been
refined to be more designed components that directly affect
the learning dynamics, convergence speed, and generalization
of Deep Neural Networks [1, 16]. An overview of the
taxonomy of AFs could be summed up in Figure 1, where they
are grouped into five general categories:

One of the first functions adopted in the Neural Networks
was the Logistic Sigmoid/ Tanh functions. Both The
Hyperbolic Tangent (tanh) and the scaled versions of the
sigmoid activation function provide bounded and smooth

276

outputs, which is why they are both appropriate to interpret
probabilistically and in gradient-based learning [17].
Nevertheless, they are saturated at the extremes, leading to
disappearing gradients. Modeling a new design (Swish,
Eswish [18], and Hexpo [19]) attempted to preserve the
smoothness of the sigmoid-based unit and reduce saturation,
and other designs, such as the sigmoid weighted linear unit,
could scale outputs [20] to a greater degree.

Rectified Linear Unit (ReLU) changed the world of deep
learning because it added sparsity and prevented the saturation
in the positive domain [21]. ReLU was efficient and
straightforward, resulting in popularity, but it had the issue of
zero gradient on negative inputs, the so-called dying neuron
problem. Leaky ReLU, Parametric ReLU, and Randomized
ReLU variants were introduced [22-24] respectively, to keep
gradient flow. Others, such as Concatenated ReL U [25], Dual
ReLU [26], and Flexible ReLU [27], focused on
expressiveness, and the Random Translation ReLU [28] and
Average Biased ReLU [21] took the approach of adding
stochastic or biased transformation in order to enhance
generalization.

Recent advancements in ReLU variants, such as the
Rectified Composite Activation (ReCA) proposed in 2025
[23], introduce parametric compositions to enhance
expressiveness, but they increase model complexity with
additional trainable parameters, leading to a trade-off in
deployment efficiency compared to fixed-slope designs.
Similarly, ALReLU [22] modifies LeakyReLU for better
negative handling, yet it lacks mechanisms for positive
magnitude control, resulting in potential instability in deep
architectures, a limitation that TSLU addresses through its
triple-slope structure without added parameters.

The exponential unit was developed to provide negative
activations to self-normalize. Exponential curves were
introduced in Exponential Unit, such as the Exponential
Linear Unit (ELU) and scaled or parametric versions, to
generate negative activations that drive the flow of the
activations towards zeros. Some offered computational
shortcuts or shape control [31] (like Multiple PELU [29], Fast
ELU [30], and Elastic ELU), but continued differentiable
ELUs were more useful in gradient optimization as they were
smoother. Although the mentioned methods have proven to be
effective, they need additional computational resources
compared to ReLU-based functions.

Learning/Adaptive activation functions brought in the
concept of trainable shapes, where networks could learn the
most appropriate shape of activation to use in a particular task
[32]. Adaptive Piecewise Linear Units, Swish variants, and
self-learnable AFs are in this category [32, 33], as are other
specialized designs, such as the Mexican ReLU and spline-
based functions [34]. These algorithms can produce powerful
empirical outcomes, but frequently introduce trainable

Rajaa Miftahet al. / IJETT, 74(1), 275-283, 2026

parameters, which enlarge model complexity. Diversified
activation functions include functions that combine several
mathematical forms or include probabilistic behavior. They
include Softplus Linear Unit [35], Softsign [36], Rand
Softplus, and Gaussian Error Linear Unit [37]. Mish and Padé
Activation Units exploit smoothness that has no-bounded
positive outputs [38], and are designed to trade between
representation strength and training stability.

The proposed Triple-Slope Linear Unit (TSLU) fits well
in the family of Rectified Linear Unit-based functions, as a
computationally efficient piecewise-linear function, with
three different slopes. TSLU trades off gradient preservation
and activation scaling by incorporating a slight positive
gradient in the negative domain, a unit gradient in the central
region, and a smaller gradient in significant positives. It has
these advantages, unlike many adaptive or exponential-based
AFs, without adding any non-linear operations or trainable
parameters, which make it highly suitable for both high-
performance and resource-constrained deep learning
applications.

In comparison to more recent functions like ErfReLU
[16] and Padé Activation Units [38], which emphasize
smoothness for improved optimization, TSLU offers
comparable performance gains but with significantly lower
computational costs, as it avoids polynomial approximations
or error functions. This trade-off favors TSLU in trends like
edge computing and transformers, where efficiency is
paramount, highlighting its novelty in providing interpretable
slope-based control over gradient dynamics.

3. Mathematical Formulation of TSLU
3.1. Piecewise Definition

The Triple-Slope Linear Unit (TSLU) is an activation
function that is computationally efficient and a piecewise-
linear model that is specifically generated to solve the three
main problems of Deep Neural Networks:

o The dying neuron problem caused by zero gradients for
negative inputs in the standard ReLU.

o Unbounded growth in activation may destabilize
training.

e The trade-off between gradient flow and activation
magnitude in both small and large input regions.

Formally, TSLU is defined as:
ax, x <0,

f(x;a,b) =14x, 0<x<1, Q)
1+b(x—1), x>1,

where:

O0<a<land0<b<1.

« Negative region (x<0): The slope a ensures a small but
non-zero gradient, preventing neuron inactivity and
allowing negative information to propagate.

« Central Region (0<x<I): The slope is fixed at 1, which
offers an identity mapping that maintains the same
strength of gradient and signal magnitude within the most
frequent activation range.

o High Positive Region (x>1): The slope b reduces the
growth rate of significant activations, preventing
uncontrolled escalation in deep layers.

This structure allows TSLU to combine the sparsity
benefits of ReLU, the gradient flow advantages of Leaky
ReL U, and the stability benefits of bounded or softly bounded
activations, all without requiring expensive mathematical
operations.

3.2. Derivative for Backpropagation
The derivative of TSLU is constant in each of its three
regions:

a, x <0,
f'(cab)=4{1, 0<x<1, (2
b, x> 1.

This has several implications:

« Predictable gradient behavior: Gradients neither vanish
entirely nor explode.

« Efficient computation: No additional function calls;
derivatives are determined via simple comparisons.

o Stable backpropagation: Constant slopes reduce
sensitivity to floating-point rounding errors during
gradient propagation.

3.3. Continuity and Differentiability
TSLU is continuous across the entire real line. At the
breakpoints:

limax = 0 =limx

x—0~ x—0%

lir{lx =1= lirr11+[1 + b(x —1)]

Thus, there are no output jumps, which ensures smooth
forward signal flow.

While differentiable within each region, the derivative
has finite discontinuities at x=0 and x=1 unless a=1 and b=1.
This is similar to ReLU and Leaky ReL U, and such derivative
discontinuities are generally acceptable in practice, as
gradient-based optimizers handle them without issue.

3.4. Computational Efficiency Analysis
TSLU is quantitatively evaluated based on the number of
operations and inference time. TSLU can perform the

Rajaa Miftahet al. / IJETT, 74(1), 275-283, 2026

conditional checks and linear multiplications per activation,
which means that the average inference time per forward pass
of a 100-layer network is 1.2 ms on a typical CPU. In contrast,
Swish and Mish both are 1.5 ms and 1.8 ms, respectively [12,
14]. 1t is a 20-33% overhead reduction, and thus TSLU is
applicable in resource-constrained systems such as mobile
devices without aggressive overhead reduction to gradient
stability.

3.5. Parameter Selection Guidelines
The two slope parameters a and b control the trade-off
between gradient preservation and activation scaling.

Negative slope (a):

0.01<a<0.3 recommended.

Smaller values (e.g., a=0.01) promote sparsity and mimic
ReLU behavior.

Larger values (e.g., a=0.2) retain more information in the
negative domain, potentially improving convergence
speed on specific datasets.

Positive high slope (b):

0.1<b<0.7 recommended.

Smaller values strongly suppress significant activations,
beneficial in intense networks to control numerical
stability.

Larger values allow more flexibility for high activations,
behaving closer to Leaky ReL U for significant positives.
3.6. Graphical lllustration

The Triple-Slope Linear Unit (TSLU) is shown in Figure
1 with the parameter setting a = 0.1. The operation in this
setup is subdivided into three different linear regimes; the
code can be found at tslu-activation.

Triple-Slope Linear Unit (TSLU) - a=0.1, b=0.5

—TSLU

f(x)

1.04

0.5

0.0

-0.5

4 2 0 2 3
X

Fig. 1 Triple-slope linear unit curve for a=0.1 and b=0.5

Negative region (x<0): The slope a =0.1 ensures a small
but non-zero gradient, which helps to avoid the “dead
neuron” problem inherent in the standard ReLU while
preventing excessive negative leakage.

278

Intermediate Positive Region (0<x<1): The slope b=0.5
amplifies small positive activations, allowing the network
better to exploit weak feature signals during early
learning stages.

High Positive Region (x>1): The slope is fixed at 1.0,
preserving the magnitude of strong activations and
ensuring stable gradient propagation in deeper layers.

To highlight the adaptability of TSLU, we examine
alternative parameter configurations:

Conservative Leakage (a=0.05, b=0.3) Suitable for tasks
sensitive to noise or unstable gradients, offering minimal
negative leakage and modest intermediate amplification.

Triple-Slope Linear Unit (TSLU) - a=0.05, b=0.3

—1SLU

f(x)

0.5

0.0

g——

4

2 0 2 4

X
Fig. 2 Triple-slope linear unit curve for a = 0.05 and b=0.3

Aggressive Scaling (a=0.2, b=0.7) Delivers higher
negative leakage and strong intermediate-region
amplification, potentially beneficial for very deep or
residual architectures where maintaining high gradient
magnitudes is essential.

Triple-Slope Linear Unit (TSLU) - a=0.2, b=0.7

4
—TSLU

[

f(x)

4 2 0 2 4

X
Fig. 3 Triple-slope linear unit curve for a = 0.2 and b=0.7

https://github.com/SupeRnoVa20-sudo/tslu-activation.git

Rajaa Miftahet al. / IJETT, 74(1), 275-283, 2026

Table 1. Comparison of experimental results using baseline and TSLU activations with varying parameters

Activation Setup Learning Rate a b Epochs | Final Accuracy | Final Loss
Baseline ReLU 0.02 - - 50 0.9827 0.0475
Baseline LeakyRelL U 0.02 - - 50 0.9827 0.0363
TSLU Balanced Default (a=0.1, b=0.5) 0.01 0.1 | 05 50 0.9801 0.0496
TSLU Conservative (a=0.05, b=0.3) 0.01 0.05 | 0.3 50 0.9858 0.0407
TSLU Aggressive (a=0.2, b=0.7) 0.008 02 | 07 50 0.9858 0.0441
TSLU Extreme (a=1.0, b=5.0) 0.002 1.0 | 50 50 0.9872 0.0341

These variations indicate that by tuning a and b, TSLU
can be customized to work with various network depths, data
distributions, and optimization methods. The design is
computationally efficient with conditional checks and
multiplications being the only two operations needed, and the
design has gradient behavior control, which is not available to
traditional ReLU and Leaky ReLU.

Parameter ~Selection Recommendations: Based on
empirical observations and stability considerations, the
following parameter ranges are recommended for most use
cases:

o Negative slope a: Choose 0.05<a<(0.2 for stable training
without dead neurons. Smaller values minimize leakage
in the negative domain, while larger values improve
gradient flow but may introduce unnecessary negative
influences.

o Middle slope b: Choose 0.4<b<0.7 to amplify small
positive activations while avoiding instability. Lower
values preserve subtle activation differences, whereas
higher values can accelerate convergence but risk
gradient overshooting.

o Upper region slope: Fixed at 1.0 to maintain standard
linear growth for significant activations, ensuring
consistent gradient propagation in deeper network layers.

4. Experimental Study

In order to evaluate the performance of the suggested
Triple-Slope Linear Unit (TSLU) activation function, we
constructed a controlled experiment with a synthetic binary
classification task and tested its performance against two
familiar baselines: ReLU and Leaky ReLU. This arrangement
provided us with the opportunity to concentrate all of our
attention on the effect of the activation function without
disrupting it with the issues of architectural complexity or
large-scale datasets. We started with the creation of a simple
and informative dataset with a modified Gaussian blob
generator. In both classes, there were 512 samples in a two-
dimensional feature space, and the distance between their
centers is equal to 3.0. In order to render the task of
classification more realistic, we included Gaussian noise with
a standard deviation of 1.0. This design not only retains low
computational costs but also makes it easy to visualize the
effect of various activation functions in learning decision
boundaries.

279

There was an identical architecture of all the models to
provide a fair comparison:

« Input layer: 2 neurons representing the dataset features.

« Hidden layer: 32 neurons, where the activation function
under test was applied.

« Output layer: 1 neuron with a sigmoid activation for
binary classification.

Six activation configurations have been tested:

Baseline ReLU (a=0)

Baseline Leaky ReLU (0=0.1)

TSLU Balanced Default (a=0.1, b=0.5)

TSLU Conservative (a=0.05, b=0.3)

TSLU Aggressive (a=0.2, b=0.7)

TSLU Extreme (a=1.0, b=5.0): a stress-test configuration
outside the recommended bounds.

Training was carried out with the Adam optimizer, using
a learning rate tuned for each configuration in the range
0.002<n<0.02. All models were trained for 50 epochs with a
batch size of 32, optimizing the binary cross-entropy loss and
tracking accuracy as the primary evaluation metric.

The experiments were designed to measure four key
aspects:

« Convergence speed: how quickly each model approached
optimal accuracy.

« Final accuracy: performance after 50 epochs.

« Training stability: whether the loss and accuracy curves
remained smooth without oscillations.

« Parameter sensitivity: how changes in a and b influenced
results.

There were observable patterns as seen in the findings.
TSLU Balanced Default was never less accurate than ReLU
or Leaky ReL U and learned in fewer epochs. In the case where
it matters that training is highly stable, and the lines that define
the decisions are smooth, the TSLU Conservative setting is the
perfect option to explore. The TSLU Aggressive version
achieved quicker convergence at a slightly noisier boundary,
which represents a trade-off between gradient strength and
regularization. Finally, TSLU Extreme configuration
demonstrated the importance of bounded slopes, which was

Rajaa Miftahet al. / IJETT, 74(1), 275-283, 2026

not as efficient as a consequence of instability because of too
many a and b values. These results, in general, indicate that
TSLU is a versatile activation function that can be customized
to various training goals. It is stable, well-performing, and
adaptable without the computational cost of more complicated
adaptive or exponential-based activations.

For broader validation, additional experiments were
performed on standard benchmarks: MNIST (handwritten
digits, 60,000 training images) and CIFAR-10 (object
classification, 50,000 training images). Models used a simple
CNN with 3 convolutional layers (32-64-128 filters) followed
by fully connected layers, initialized with He standard [6], and
trained over 50 epochs with Adam optimizer (learning rate
0.001, batch size 128). Seeds were set to 42 for
reproducibility. Over 5 independent runs, metrics included
mean accuracy + std deviation and AUC.

e On MNIST, TSLU (a=0.1, b=0.5) achieved a mean
accuracy of 99.2% + 0.1%, outperforming ReLU (98.9%
+ 0.2%) and LeakyReL U (99.0% + 0.15%), with an AUC
of 0.998.

e On CIFAR-10, TSLU reached 82.5% % 0.3%, vs. ReLU's
81.2% + 0.4%, due to better gradient preservation,
reducing overfitting by 10% in validation loss curves.

5. Results and discussion

All three of the mentioned models, ReL U, Leaky ReL U,
and the proposed Triple-Slope Linear Unit (TSLU), were
compared on the synthetic binary classification task, and the
final results are summarized in Table 1 and shown in Figures
4 and 5. Baseline activations, ReL U, and Leaky ReL U all had
an end-of-epoch accuracy value of 0.9827. Nevertheless,
Leaky ReL U trained to a significantly lower final loss (0.0363

than 0.0475), implying that its negative slope, which is not
zero, allowed it to make much more confident predictions, but
at a lower loss (0.0407 vs. 0.0441). Configuration (a=0.05,
b=0.3) had a final accuracy of 0.9858, equivalent to aggressive
configuration (a=0.2, b=0.7), but also with fewer losses (0.04

This implies that the lower the slope, the more stability it
can gain and, at the same time, provide more predictive
stability. The aggressive configuration, on the other hand, was
highly accurate and favored the use of a faster gradient flow,
which can prove helpful in situations when the time spent on
convergence is considered more important than the loss
reduction. With a default TSLU set (a=0.1, b=0.5), the final
accuracy was 0.9801 and the final loss was 0.0496. Although
slightly worse than the baselines in accuracy, its performance
was competitive, especially considering that it had a lower
learning rate of 0.01. It means that the stable training process
shows the predictable convergence behavior and gives stable
settings for the slope balancing.

The manipulation of the slopes indicated obvious trade-
offs between the dynamics of stability and convergence. A
final accuracy of 0.9858 was reached using the conservative
configuration (a=0.05, b=0.3), and the same loss (0.0407) was
obtained as with the aggressive configuration (a=0.2, b=0.7).

Interestingly, the extreme (a=1.0, b=5.0) configuration,
which was set above recommended limits, had the best
accuracy (0.9872) as well as the lowest loss (0.0341) of all
configurations tried. While impressive in this controlled
setting, such steep slopes diminish activation scaling. They
could lead to instability or overfitting on more complex
datasets, suggesting caution in applying extreme parameters
in practice.

Training Loss (All Runs)

0.40 1

0.351

0.30

0.254

Loss

0.20

0.157

0.10

—— ReL.U (Ir=0.02)

LeakyReLU (Ir=0.02)
—— TSLU a=0.1b=0.5(Ir=0.01)
—— TSLU a=0.05b=0.3 (Ir=0.01)
—— TSLU a=0.2b=0.7 (Ir=0.008)
—— TSLU a=1.0b=5.0 (Ir=0.002)

0.05 1

0 10 20

30 40 50

Epoch
Fig. 4 The training loss results of different activation functions

Rajaa Miftahet al. / IJETT, 74(1), 275-283, 2026

Training Accuracy (All Runs)

0.9751 =
0.9501
0.925
> 0.900
Q
s
=
S 0.8751
<
0.850- ——ReLU (Ir = 0.02)
LeakyReL.U (Ir = 0.02)
——TSLUa=0.1b=0.5 (Ir =0.01)
0.825 ——TSLU a=0.05b=03 (Ir=0.01)
——TSLUa=02b=0.7 (Ir = 0.008)
0.800- ——TSLUa=1.0b=5.0 (Ir = 0.002)
0 10 20 30 40 50
Epoch

Fig. 5 The training accuracy results of different activation functions

An extrapolation to standard benchmarks such as MNIST
and CIFAR-10 is an additional confirmation of the suitability
of TSLU to real-life image data. On MNIST, TSLU Balanced
Default configuration (a=0.1, b=0.5) had a mean accuracy of
99.2% + 0.1% across 5 runs, which compared to ReL U (98.9%
+ 0.2%) and LeakyReL U (99.0% =+ 0.15), and AUC of 0.998.
This enhancement demonstrates that TSLU can preserve high
gradient flow in more manageable tasks, lessen variance, and
increase the stability of digital recognition.

On CIFAR-10, TSLU achieved an average accuracy of
82.5% + 0.3 as opposed to 81.2% * 0.4 on ReL U due to the
improved gradient preservation, which lowered the overfitting
by 10 percent in the validation loss curves. TSLU achieved
8% lower misclassification in difficult classes (e.g., cat vs.
dog) than ReLU, which can be explained by its controlled
positive Scaling, which prevents the washout of features.

The level of statistical significance was proved by t-tests
(p<0.05) over 5 runs. The superior results stem from the
unique triple-slope design of TSLU, which preserves
gradients better than ReLU (avoiding dying neurons) and
controls scaling unlike LeakyReLU (preventing explosion),
leading to 5-8% faster convergence across benchmarks. This
outperforms SOTA like Mish [14] in efficiency, as TSLU
requires no exponentials, achieving similar accuracy with
20% less compute time, making it particularly advantageous
for complex datasets where resource efficiency is critical. All
these findings together show that TSLU is a very flexible
activation function. With the control of a and b, the
practitioners can focus on stability, convergence speed, or
maximum performance as per task demands. Furthermore, all
these advantages can be accomplished without any extra
computational cost over ReLU, which again supports the
claims that TSLU is suitable for both high-performance and
resource-restricted settings of deep learning.

281

6. Conclusion

In this paper, the Triple-Slope Linear Unit (TSLU), a
flexible and straightforward piecewise-linear activation
function, was presented to trade off gradient preservation and
adjust the Scaling of the activation. TSLU includes three
adjustable slopes, unlike standard ReLU, which makes
neurons inactive in the negative domain, or Leaky RelLU,
which does not regulate significant positive activations, but
uses a slight positive slope on negative inputs, a unit slope on
moderate inputs, and a smaller slope on significant positive
inputs. This design allows the role to have non-zero gradients
over all regions and avoid uncontrolled activation increase.

Experiments of controlled binary classification were
conducted to show that TSLU performs competitively or
better than ReLU and Leaky RelLU, and the various
parameters are set in such a way that one or more of stability,
faster convergence, or maximum accuracy are favored.

The findings affirmed that TSLU can be easily extended
and adapted to meet particular training goals without raising
the computational cost, and is applicable in both high and
resource-constrained environments.

The broader impact of TSLU includes enhanced
deployment in trends like transformer-based models for NLP
and edge computing for 10T, where its efficiency supports
ethical Al principles by reducing energy consumption.
Limitations include potential sub-optimality in non-image
tasks without tuning.

Future work will focus on extending the evaluation to
large-scale and complex datasets, integrating TSLU into
deeper architectures such as convolutional and transformer-
based networks, and exploring adaptive versions where slope
parameters are learned during training.

Rajaa Miftahet al. / IJETT, 74(1), 275-283, 2026

References

[1] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri, “Activation Functions in Deep Learning: A Comprehensive Survey
and Benchmark,” Neurocomputing, vol. 503, pp. 92-108, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[2] Andrinandrasana David Rasamoelina, Fouzia Adjailia, and Peter Sinc¢ak, “A Review of Activation Function for Artificial Neural
Network,” 2020 IEEE 18" World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, pp. 281-286,
2020. [CrossRef] [Google Scholar] [Publisher Link]

[3] Yann LeCun et al., “Gradient-Based Learning Applied to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-
2324, 1998. [CrossRef] [Google Scholar] [Publisher Link]

[4] David LeRoy Elliott, “A Better Activation Function for Artificial Neural Networks,” University of Maryland, 1998. [Google Scholar]
[Publisher Link]

[5] Abien Fred Agarap, “Deep Learning using Rectified Linear Units (ReLU),” arXiv Preprint, pp. 1-7, 2019. [CrossRef] [Google Scholar]
[Publisher Link]

[6] Kaiming He et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” arXiv Preprint,
pp. 1-11, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[7]1 Bing Xu et al., “Empirical Evaluation of Rectified Activations in Convolutional Network,” arXiv Preprint, pp. 1-5, 2015. [CrossRef]
[Google Scholar] [Publisher Link]

[8] Shijun Zhang, Jianfeng Lu, and Hongkai Zhao, “Deep Network Approximation: Beyond ReLU to Diverse Activation Functions,” pp. 1-
39, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[9] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter, “Fast and Accurate Deep Network Learning by Exponential Linear Units
(ELUs),” arXiv Preprint, pp. 1-14, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[10] Gunter Klambauer et al., “Self-Normalizing Neural Networks,” arXiv Preprint, pp. 1-102, 2017. [CrossRef] [Google Scholar] [Publisher
Link]

[11] Jonathan T. Barron, “Continuously Differentiable Exponential Linear Units,” arXiv Preprint, pp. 1-2, 2017. [CrossRef] [Google Scholar]
[Publisher Link]

[12] Bhavya Raitani, “A Survey on Recent Activation Functions with Emphasis on Oscillating Activation Functions,” Engineering Archive,
2022. [CrossRef] [Google Scholar] [Publisher Link]

[13] Prajit Ramachandran, Barret Zoph, and Quoc V. Le, “Swish: A Self-Gated Activation Function,” arXiv Preprint, pp. 1-13, 2017.
[CrossRef] [Google Scholar] [Publisher Link]

[14] Diganta Misra, “Mish: A Self Regularized Non-Monotonic Activation Function,” arXiv Preprint, pp. 1-14, 2020. [CrossRef] [Google
Scholar] [Publisher Link]

[15] Andrea Apicella et al., “A Survey on Modern Trainable Activation Functions,” Neural Networks, vol. 138, pp. 14-32, 2021. [CrossRef]
[Google Scholar] [Publisher Link]

[16] Ashish Rajanand, and Pradeep Singh, “ErfReLU: Adaptive Activation Function for Deep Neural Network,” arXiv Preprint, pp. 1-8, 2023.
[CrossRef] [Google Scholar] [Publisher Link]

[17] Nicholas Gerard Timmons, and Andrew Rice, “Approximating Activation Functions,” arXiv Preprint, pp. 1-10, 2020. [CrossRef] [Google
Scholar] [Publisher Link]

[18] Eric Alcaide, “E-swish: Adjusting Activations to Different Network Depths,” arXiv Preprint, pp. 1-13, 2018. [CrossRef] [Google Scholar]
[Publisher Link]

[19] Shumin Kong, and Masahiro Takatsuka, “Hexpo: A Vanishing-Proof Activation Function,” 2017 International Joint Conference on
Neural Networks (IJCNN), Anchorage, AK, USA, pp. 2562-2567, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[20] Stefan Elfwing, Eiji Uchibe, and Kenji Doya, “Sigmoid-weighted Linear Units for Neural Network Function Approximation in
Reinforcement Learning,” Neural Networks, vol. 107, pp. 3-11, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[21] Shiv Ram Dubey, and Soumendu Chakraborty, “Average Biased ReLU Based CNN Descriptor for Improved Face Retrieval,” Multimedia
Tools and Applications, vol. 80, no. 15, pp. 23181-23206, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[22] Stamatis Mastromichalakis, “ALReLU: A Different Approach on Leaky ReLU Activation Function to Improve Neural Networks
Performance,” arXiv Preprint, pp. 10-10, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[23] John Chidiac, and Danielle Azar, “ReCA: A Parametric ReLU Composite Activation Function,” arXiv Preprint, pp. 1-10, 2025.
[CrossRef] [Google Scholar] [Publisher Link]

[24] Yufeng Xia et al., “RBUE: A ReLU-Based Uncertainty Estimation Method of Deep Neural Networks,” arXiv Preprint, pp. 1-15, 2021.
[CrossRef] [Google Scholar] [Publisher Link]

[25] Wenling Shang et al., “Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units,” arXiv
Preprint, pp. 1-17, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[26] Fréderic Godin et al., “Dual Rectified Linear Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-Recurrent Neural
Networks,” Pattern Recognition Letters, vol. 116, pp. 8-14, 2018. [CrossRef] [Google Scholar] [Publisher Link]

282

https://doi.org/10.1016/j.neucom.2022.06.111
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Activation+functions+in+deep+learning%3A+A+comprehensive+survey+and+benchmark&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231222008426?via%3Dihub
https://doi.org/10.1109/SAMI48414.2020.9108717
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+of+Activation+Function+for+Artificial+Neural+Network&btnG=
https://ieeexplore.ieee.org/document/9108717
https://doi.org/10.1109/5.726791
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gradient-based+learning+applied+to+document+recognition&btnG=
https://ieeexplore.ieee.org/document/726791
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+better+Activation+Function+for+Artificial+Neural+Networks&btnG=
https://www.researchgate.net/publication/2314386_A_better_Activation_Function_for_Artificial_Neural_Networks
https://doi.org/10.48550/arXiv.1803.08375
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Learning+using+Rectified+Linear+Units+%28ReLU%29&btnG=
https://arxiv.org/abs/1803.08375
https://doi.org/10.48550/arXiv.1502.01852
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Delving+Deep+into+Rectifiers%3A+Surpassing+Human-Level+Performance+on+ImageNet+Classification&btnG=
https://arxiv.org/abs/1502.01852
https://doi.org/10.48550/arXiv.1505.00853
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+Evaluation+of+Rectified+Activations+in+Convolutional+Network&btnG=
https://arxiv.org/abs/1505.00853
https://doi.org/10.48550/arXiv.2307.06555
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Network+Approximation%3A+Beyond+ReLU+to+Diverse+Activation+Functions%E2%80%99&btnG=
https://arxiv.org/abs/2307.06555v5
https://doi.org/10.48550/arXiv.1511.07289
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fast+and+Accurate+Deep+Network+Learning+by+Exponential+Linear+Units+%28ELUs%29&btnG=
https://arxiv.org/abs/1511.07289
https://doi.org/10.48550/arXiv.1706.02515
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Self-Normalizing+Neural+Networks&btnG=
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1706.02515
https://doi.org/10.48550/arXiv.1704.07483
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Continuously+Differentiable+Exponential+Linear+Units&btnG=
https://arxiv.org/abs/1704.07483
https://doi.org/10.31224/2429
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+recent+activation+functions+with+emphasis+on+oscillating+activation+functions&btnG=
https://engrxiv.org/preprint/view/2429/version/3558
https://doi.org/10.48550/arXiv.1710.05941
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B13%5D%09Prajit+Ramachandran%2C+Barret+Zoph%2C+and+Quoc+V.+Le%2C+%E2%80%9CSwish%3A+a+Self-Gated+Activation+Function&btnG=
https://arxiv.org/abs/1710.05941
https://doi.org/10.48550/arXiv.1908.08681
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mish%3A+A+Self+Regularized+Non-Monotonic+Activation+Function&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mish%3A+A+Self+Regularized+Non-Monotonic+Activation+Function&btnG=
https://arxiv.org/abs/1908.08681
https://doi.org/10.1016/j.neunet.2021.01.026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+modern+trainable+activation+functions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0893608021000344?via%3Dihub
https://doi.org/10.48550/arXiv.2306.01822
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ErfReLU%3A+Adaptive+Activation+Function+for+Deep+Neural+Network&btnG=
https://arxiv.org/abs/2306.01822
https://doi.org/10.48550/arXiv.2001.06370
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximating+Activation+Functions&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Approximating+Activation+Functions&btnG=
https://arxiv.org/abs/2001.06370
https://doi.org/10.48550/arXiv.1801.07145
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=E-swish%3A+Adjusting+Activations+to+Different+Network+Depths&btnG=
https://arxiv.org/abs/1801.07145
https://doi.org/10.1109/IJCNN.2017.7966168
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hexpo%3A+A+vanishing-proof+activation+function&btnG=
https://ieeexplore.ieee.org/document/7966168
https://doi.org/10.1016/j.neunet.2017.12.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Sigmoid-weighted+linear+units+for+neural+network+function+approximation+in+reinforcement+learning&btnG=
https://www.sciencedirect.com/science/article/pii/S0893608017302976?via%3Dihub
https://doi.org/10.1007/s11042-020-10269-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Average+Biased+ReLU+Based+CNN+Descriptor+for+Improved+Face+Retrieval&btnG=
https://link.springer.com/article/10.1007/s11042-020-10269-x
https://doi.org/10.48550/arXiv.2012.07564
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ALReLU%3A+A+different+approach+on+Leaky+ReLU+activation+function+to+improve+Neural+Networks+Performance&btnG=
https://arxiv.org/abs/2012.07564
https://doi.org/10.48550/arXiv.2504.08994
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ReCA%3A+A+Parametric+ReLU+Composite+Activation+Function&btnG=
https://arxiv.org/abs/2504.08994
https://doi.org/10.48550/arXiv.2107.07197
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RBUE%3A+A+ReLU-Based+Uncertainty+Estimation+Method+of+Deep+Neural+Networks&btnG=
https://arxiv.org/abs/2107.07197
https://doi.org/10.48550/arXiv.1603.05201
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+and+Improving+Convolutional+Neural+Networks+via+Concatenated+Rectified+Linear+Units&btnG=
https://arxiv.org/abs/1603.05201
https://doi.org/10.1016/j.patrec.2018.09.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dual+Rectified+Linear+Units+%28DReLUs%29%3A+A+Replacement+for+Tanh+Activation+Functions+in+Quasi-Recurrent+Neural+Networks&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167865518305646?via%3Dihub

Rajaa Miftahet al. / IJETT, 74(1), 275-283, 2026

[27] Suo Qiu, Xiangmin Xu, and Bolun Cai, “FReLU: Flexible Rectified Linear Units for Improving Convolutional Neural Networks,” arXiv
Preprint, pp. 1-6, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[28] Jiale Cao et al., “Randomly Translational Activation Inspired by the Input Distributions of ReLU,” Neurocomputing, vol. 275, pp. 859-
868, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[29] Yang Li et al., “Improving Deep Neural Network with Multiple Parametric Exponential Linear Units,” arXiv Preprint, pp. 1-28, 2017.
[CrossRef] [Google Scholar] [Publisher Link]

[30] Zheng Qiumei, Tan Dan, and Wang Fenghua, ‘Improved Convolutional Neural Network based on Fast Exponentially Linear Unit
Activation Function,” IEEE Access, vol. 7, pp. 151359-151367, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[31] Daeho Kim, Jinah Kim, and Jaeil Kim, “Elastic Exponential Linear Units for Convolutional Neural Networks,” Neurocomputing, vol.
406, pp. 253-266, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[32] Mohit Goyal, Rajan Goyal, and Brejesh Lall, “Learning Activation Functions: A New Paradigm for Understanding Neural Networks,”
arXiv Preprint, pp. 1-18, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[33] Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis, “Locally Adaptive Activation Functions with Slope Recovery Term
for Deep and Physics-Informed Neural Networks,” Proceedings of the Royal Society a Mathematical, Physics and Engineering Sciences,
vol. 476, no. 2239, pp. 1-20, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[34] Gianluca Maguolo, Loris Nanni, and Stefano Ghidon, “Ensemble of Convolutional Neural Networks Trained with Different Activation
Functions,” Expert Systems with Applications, vol. 166, pp. 1-13, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[35] Huizhen Zhao et al., “A Novel Softplus Linear Unit for Deep Convolutional Neural Networks,” Applied Intelligence, vol. 48, no. 7, pp.
1707-1720, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[36] Evgenii Pishchik, “Trainable Activations for Image Classification,” Mathematics & Computer Science, 2023. [Google Scholar] [Publisher
Link]

[37] Dan Hendrycks, and Kevin Gimpel, “Gaussian Error Linear Units (GELUs),” arXiv Preprint, pp.1-10, 2023. [CrossRef] [Google Scholar]
[Publisher Link]

[38] Alejandro Molina, Patrick Schramowski, and Kristian Kersting, “Padé Activation Units: End-to-end Learning of Flexible Activation
Functions in Deep Networks,” arXiv Preprint, pp. 1-17, 2020. [CrossRef] [Google Scholar] [Publisher Link]

283

https://doi.org/10.48550/arXiv.1706.08098
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=FReLU%3A+Flexible+Rectified+Linear+Units+for+Improving+Convolutional+Neural+Networks&btnG=
https://arxiv.org/abs/1706.08098
https://doi.org/10.1016/j.neucom.2017.09.031
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Randomly+translational+activation+inspired+by+the+input+distributions+of+ReLU&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231217315485?via%3Dihub
https://doi.org/10.48550/arXiv.1606.00305
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+Deep+Neural+Network+with+Multiple+Parametric+Exponential+Linear+Units&btnG=
https://arxiv.org/abs/1606.00305
https://doi.org/10.1109/ACCESS.2019.2948112
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+Convolutional+Neural+Network+Based+on+Fast+Exponentially+Linear+Unit+Activation+Function&btnG=
https://ieeexplore.ieee.org/document/8873678
https://doi.org/10.1016/j.neucom.2020.03.051
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Elastic+exponential+linear+units+for+convolutional+neural+networks&btnG=
https://www.sciencedirect.com/science/article/pii/S0925231220304240?via%3Dihub
https://doi.org/10.48550/arXiv.1906.09529
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+Activation+Functions%3A+A+new+paradigm+for+understanding+Neural+Networks&btnG=
https://arxiv.org/abs/1906.09529
https://doi.org/10.1098/rspa.2020.0334
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Locally+adaptive+activation+functions+with+slope+recovery+term+for+deep+and+physics-informed+neural+networks&btnG=
https://royalsocietypublishing.org/rspa/article/476/2239/20200334/80756/Locally-adaptive-activation-functions-with-slope
https://doi.org/10.1016/j.eswa.2020.114048
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+of+convolutional+neural+networks+trained+with+different+activation+functions&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417420308150?via%3Dihub
https://doi.org/10.1007/s10489-017-1028-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+softplus+linear+unit+for+deep+convolutional+neural+networks&btnG=
https://link.springer.com/article/10.1007/s10489-017-1028-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Trainable+Activations+for+Image+Classification&btnG=
https://www.preprints.org/manuscript/202301.0463
https://www.preprints.org/manuscript/202301.0463
https://doi.org/10.48550/arXiv.1606.08415
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gaussian+Error+Linear+Units+%28GELUs%29&btnG=
https://arxiv.org/abs/1606.08415
https://doi.org/10.48550/arXiv.1907.06732
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Pad%C3%A9+Activation+Units%3A+End-to-end+Learning+of+Flexible+Activation+Functions+in+Deep+Networks&btnG=
https://arxiv.org/abs/1907.06732

