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Abstract - Brain tumours and the neurodegenerative condition Alzheimer's Disease (AD) are problematic in terms of diagnosis.
The proposed work provides a unified deep learning approach with a Discrete Wavelet Transform (DWT) front-end and Vision
Transformer (ViT) feature extraction with kernel-based Extreme Learning Machine (KELM) classifiers in order to jointly
perform multi-class tumour identification and patient survival prediction from MR imaging. Brain tumours and the
neurodegenerative condition Alzheimer's Disease (AD) pose significant diagnostic challenges. The model proposed here is
trained on two public datasets comprising more than 7,000 T1-weighted tumour images and 369 multi-modal glioma volumes.
Wavelet decomposition augments spatial input with multi-scale texture information, the ViT learns global context, and separate
KELM heads yield diagnosis and prognosis. As demonstrated by extensive experiments, the accuracy of tumour classification
reaches 98.02% and the accuracy of survival prediction reaches 94.67% and Grad-CAM and attention rollout visualisations
help identify clinically relevant regions. The main research question to be considered in this research is whether one unified
deep learning architecture could be capable of accomplishing effective brain tumor diagnosis and patient survival rates
prediction simultaneously through MRI, and, at the same time, remain interpretable to a clinical end-user. The proposed
framework addresses a serious gap in the ongoing neuroimaging research, in which the two tasks are generally considered
separately, because it involves the joint diagnosis and prognosis in one model. The results demonstrate that the unified
architecture demonstrates high classification accuracy, strong survival prediction, and clinical explanations, and this indicates
the importance of the unified clinical decision-support system.
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decision making. In parallel, a number of modern research
studies have explicitly combined convolution neural networks

1. Introduction
Brain tumour and dementia due to Alzheimer's Disease

(AD) are significant causes of neurological morbidity
worldwide [1-3]. These conditions have diverse pathologies
and anatomical presentations, which means no single imaging
modality or biomarker is able to capture all clinically relevant
information. Traditional diagnostic methods are based on the
expert radiological interpretation and are prone to inter-
observer variability. Meanwhile, most deep learning solutions
are specific to one domain task (e.g., tumour classification
only) and rarely integrate a set of different (often more
accurate) goals such as the prediction of survival. Survival
analysis -- the prediction of patient outcome or lifespan -- is
an almost unexplored area for brain disorders, yet it is vitally
important in terms of treatment planning [4]. Recent
advancement in vision transformers and hybrid convolution
transformer models [5-10] is the inspiration behind unified
models that depict context and local details, for hardy clinical
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and vision transformers to extract different local and global
representations. Al Tahhan et al. [11] propose hybridizing an
Artificial Neural Network with convolutional layers
(AlexNet-SVM and AlexNet-KNN, employed for four-class
brain tumour classification on the composite data of the
Figshare, SARTAJ, and Br35h datasets). Almuhaimeed et al.
[9] and Khan et al. [10] simultaneously use Swin Transformers
and autoencoders to augment the MRI datasets. These hybrid
CNN-ViT approaches suggest the common understanding that
multi-feature fusion is helpful to enhance clinical image
analysis. The BrainLesion workshop in MICCAI 2016 [12]
also gathered some early research on glioma classification
heads to tackle the brain tumour classification and survival
estimation problem jointly. Implications of this research
include the following contributions:
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e Unified DWT+VIT+KELM pipeline: An integrated
pipeline that unified the DWT-enhanced ViT embeddings
(with KELM classifiers), used to perform multi-class
tumour identification and categorisation, and patient
survival, where a single model is used. The proposed
work is one of its kind, as it is the first framework to tackle
both diagnosis and prognosis from MRI in a unified
manner.

e Expanded dataset analysis: The proposed work provides
detailed descriptions of the datasets of Figsharelmages
and BraTS2020, including class distribution, imaging
modalities, preprocessing steps, and definitions of
survival categories. Additional statistics and discussion of
the quality of the datasets and augmentation are included
to furnish reproducibility.

e Complete assessment: To prove the superiority of the
suggested approach, extensive experiments such as
ablation studies, ROC/pr analysis, and error analysis were
performed to show that the work is more powerful than
the latest CNN and transformer baseline methods. The
results are beyond state-of-the-art transformer models
that attain 94% accuracy [13], and comparable with recent
fine-tuned ViT models with 98.7% accuracy [14].

e Interpretability and Clinical Insight: The proposed work
combines Grad-CAM along with attention rollout in order
to utilize visual explanations. The resulting heatmaps then
focus on tumour regions and show correlation with
clinical features to enhance the model’s confident
predictions [15, 16].

The present manuscript significantly enriches the
aforementioned idea with a unified DWT+ViT+KELM
architecture, new enriched experimental evaluation, and
extended discussion.

Recent transformer-based and hybrid CNN-Transformer
models have significantly contributed to the analysis of the
brain MRI through enhanced global context modelling and
classification accuracy. Surveys using Swin Transformers,
ViTs, and hybrid attention-based foundations have been
reported to achieve 94 percent on a multi-class tumour
classification trial, and be more robust than traditional CNNs
[9, 10, 13, 14]. The techniques, however, mostly deal with
diagnosis as a solitary assignment and are optimized to be
categorized or segmented. Simultaneously, individual
radiomics-based pipelines or superficial machine learning
models are most commonly used to predict survival
independently and are not tied to the diagnostic process [23-
26]. Consequently, state-of-the-art practices do not offer an
integrated nomenclature that synthetically and collectively
collects diagnostic indicators, prognostic details, and
interpretability into one learning system. Although there has
been significant improvement in deep learning analysis on
brain tumors, the majority of the current methods deal with the
diagnosis and prognosis of these tumors as distinct challenges.
Methods based on Convolutional Neural Network (CNN)

mainly target the classification of tumors, whereas survival
prediction can be individually done on independent radiomics-
based or statistical pipelines. Recent transformer-based
models have shown better representation of the global features
to classify images, but are lacking the multi-resolution
enhancement of texture, and are seldom generalized to survive
analysis in a single format. Furthermore, most of the existing
approaches to survival prediction rely on the manual radiomic
features or black box deep models, which limit the scientific
interpretation and confidence.

In order to fill these gaps, the given work suggests a single
Vision Transformer architecture capable of performing both
classifying brain tumors and predicting patient survival
directly on the basis of the MRI input. The framework
suggested assists in moving across the border, between
diagnostic accuracy, prognostic reliability, and explainability,
by integrating the Discrete Wavelet Transform (DWT) to
refine multi-scale features and the Kernel Extreme Learning
Machine (KELM) classifiers to learn in a stable form.

Although other works have delved into the wavelet-based
preprocessing, transformer architectures, or survival
prediction on its own, the available approaches are often
oriented at a single task or loosely coupled pipelines. The
primary usage of CNN-Transformer hybrids is to perform
classification/segmentation. Survival prediction is typically
done with independent radiomics-driven or statistical
predictors that are not conditioned on diagnostic networks. So
far, no generally accepted framework that brings together
multi-resolution feature augmentation, transformer-based
global learning of representations, diagnosis, prognosis, and
interpretability into one end-to-end system exists. This
research focuses on filling this gap by incorporating such
elements in an interdependent and clinically understandable
learning system.

The most significant innovation and contribution of the
work can be summarized as follows:

e Unlike other currently existing CNN-Transformer or
ViT-Based on systems, which only perform tumor
classification or tumor segmentation, this work
introduces a single DWT-enhanced Vision Transformer
system, with the potential to identify a single multi-class
brain tumor and predict patient survival using MRI
images.

e The proposed framework is more straightforward
interfaces Kernel Extreme Learning Machine (KELM)
classifiers with transformer embeddings than the older
family of survival prediction methods, which rely on
manually-crafted radiomic features (or independent
trained classifiers), allowing the framework to be stable
to closed-form learning, and better predict prognostic
objectives.
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In addition to reporting overall accuracy, this paper
presents an experimental assessment, such as the types of
ablation studies, ROC, and precision-recall analysis, as
well as training dynamics, and error analysis within the
study, which is typically missing in the body of prior
literature.

In contrast to other deep learning models that provide
Scanty transparency, the proposed framework yields two
explanations, namely Grad-CAM and transformer
attention rollout, allowing local and global explanability
in line with clinical reasoning.

The following research questions will be answered using
this work:

Are wavelet-enhanced Vision Transformers valid in
comparison with ordinary CNN and transformer baselines
with respect to brain tumors grouped with more than one
class?

Does a single deep learning system consistently estimate
patient survival data based on MRI-generated features?
Is a proposal that offers any clinically relevant visual
helpful explanation in the process of making medical
decisions?

The rest of this paper's information is organized in the
following way. In Section 2, important research is looked at in
the areas of brain tumor analysis, AD detection, life modeling,
and explainability. In Section 3, the statistics are described in
more depth. Section 4 talks about the suggested method.
Section 5 talks about how the project was set up. The sixth
part is about results and research. In Section 7, the paper talks
about future work, and in Section 8, the paper is summed up.

2. Literature Review
2.1. Tumour Neuro MRI Analysis

Convolutional  Neural Networks (CNNs) have
traditionally been the basis of automated brain tumour MRI,
which has a powerful potential to discover hierarchical spatial
attributes under medical images. Initial CNN-based
techniques indicated that trained convolutional filters could
successfully capture tumour texture, boundary irregularity,
and contrast variation, which are difficult to define using
human-crafted features. Pereira et al. [19] used a CNN-based
approach to perform tumour subtype classification and
achieved 86.4 % accuracy, which demonstrates that deep
learning is feasible with diagnostic MRI. Later, Kamnitsas et
al. [20] proposed a Convolutional Neural Network design that
is three-dimensional and multi-scale with a completely
connected Conditional Random Field (CRF) allowing the
simultaneous modelling of both local information on the voxel
level, and global anatomical background, leading to Dice
scores of well over 90% in lesion segmentation. More modern
improvements have changed to transformer-based models that
solve the small receptive field of CNNs. Vision Transformers
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(ViTs) and their hierarchical wversions, such as Swin
Transformer, have shown better capabilities of modelling
global context by using the self-attention mechanism. Liu et
al. [13] reported 94 % multi-class classification of brain
tumours with Swin Transformer, and segmentation-based
transformer networks like TransUNet and UNETR [6, 7]
reported state-of-the-art Dice scores using attention-based
encoder and convolutional decoders. Finetuning of ViT
models has also increased the classification accuracy up to
about 98.7 % on abacus brain tumour datasets [14]. Hybrid
CNN-Transformer models combine the advantages of both
paradigms, in which CNNs elicit finer texture factor
endowment, whereas transformers reconstruct long-length
reliance to space, which is persistently exhibiting robustness
to stand-alone structures as far as their results and abilities.

To put the contribution of this work into perspective,
some representative works in cerebral MRI analysis are
summarized in Table 1, and the architectures, target tasks, and
performance of these works are outlined. The closely related
methods then have their task-specific details distilled in Table
2 and place extra emphasis on the form of metrics and
methodological notes employed in the survival prediction and
segmentation methods of the past.

2.2. Alzheimer’s Disease Diagnosis

The use of Deep Learning methodologies in diagnosing
and prognosing Alzheimer's Disease (AD) based on the
analysis of structural and functional neuroimaging has
progressively been used. Initial CNN models have shown that
convolutional networks can be helpful in the study of cortical
atrophy patterns and ventricular enlargement in MRI images
and in differentiating between cognitively healthy subjects,
Mild Cognitive Impairment (MCI), and Alzheimer's disease.
Multi-modal models incorporating MRI, Cerebrospinal Fluid
(CSF) Biomarkers, Positron Emission Tomography (PET),
have continued to enhance the accuracy of the diagnosis and
the risk of the disease escalating.

With the introduction of the NIA-AA research framework
[21], the diagnosis of AD underwent a transformation,
adopting a biologically grounded definition that incorporates
amyloid deposition, tau pathology, and neurodegeneration,
thereby stimulating the development of attention-based and
region-aware deep learning models. Attention mechanisms
have also been demonstrated to increase model performance
by paying explicit attention to regions such as the
hippocampus, which play an important role in diseases, and
the medial temporal lobe that have a strong linkage to
cognitive impairment. A network of attention, as discussed by
Lian et al. [22], is also lightly monitored to be notified of the
dementia status, with the result showing that the attention-
guided representations enhance the interpretability compared
to downplayed competition in classifications. Recent models
based on transformers have advanced even further in AD
analysis by modeling the enduring connections among various
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brain components to overcome the limitations posed by solely
convolutional receptive fields. Hybrid CNN, Transformer, and
Vision Transformer are in development to learn global trends
of neurodegeneration and local preservation of anatomical
structure. Nevertheless, the vast majority of current AD-
focused research is task-oriented, analyzing the diagnosis or
progression as a separate issue, and is seldom combined within
the context of multiple diseases or prognostic models. Based
on these observations, the desired merged architecture is
planned to become extensible to AD tasks by adding disease-
specific tasks without retraining the common backbone.

2.3. Survival Prediction and Radiomics

In oncology, such as gliomas, survival modelling with
radiomics has already been studied intensively, with a robust
correlation between tumour heterogeneity and patient
outcome. Radiomics methods derive hand-crafted intensity,
texture, and shape features in segmented tumour regions and
apply statistical models or machine learning models to
forecast survival. Survival prediction challenges on the BraTS
were proposed to foster the use of both imaging features and
clinical outcomes [23-25]. Radiomic studies with clinical
characteristics have yielded concordance indices (C-index)
ranging between 0.75 and 0.77 with moderate prognostic
power [26].

Survival prediction with deep learning has been a topic of
exploration in the recent past. ELMs and Kernelized Versions
(KELMSs) have been demonstrated to offer stable and practical
learning in high-dimensional feature spaces [27-29]. Also, the
trend Deep survival model makes use of convolutional or
transformer-based feature extractors and a survival head to
achieve more predictive power, but may lack interpretability
or be task-dependent. The broad reviews [4, 36] confirm that

the existing methods of survival prediction are usually
independent of diagnostic models and either based on
radiomics or opaque deep representations. Such separation
restricts the clinical usefulness of these models, as diagnosis
and prognosis are mutually inseparable in treatment planning.

2.3.1. Explainability

Interpretability is a significant precondition for the
clinical adoption of DL models in neuroimaging, as diagnostic
and prognostic decisions should remain clear and clinically
plausible. Gradient-based explanation methods like Grad-
CAM [15, 30] can be used to provide a representation of the
image regions that largely contributed to a prediction of a
model by backpropagating gradients of a predictive model that
are class-specific. Variations of Grad-CAM have found
extensive applications in the analysis of brain MRI to ensure
the predictions rely on areas of the tumour, and not random
background spatial patterns. Models based on the use of
transformers also offer intrinsic interpretability through
attention mechanisms. Pay attention rollout techniques [16,
24], apply self-attention maps between layers, which are
accumulated to form patch-level importance maps, making it
possible to see the impact of global context on individual
model decisions.

Although feature-level attribution is also possible with
alternative methods, e.g., SHAP, LIME, and integrated
gradients [3, 31-33], attention-based visualization is much
more spatial reasoning-friendly, so it is especially applicable
to medical imaging. The analysis and comparison in Tables 1
and 2 show that the presented unified framework has a
competitive or better level of performance and covers hoth the
diagnosis and prognosis, which are mostly considered
separately in the previous methods.

Table 1. Comparison with the state-of-the-art brain MRI techniques

Authors Architecture Task Acc./Metric
Pereira et al. [19] CNN Tumor classification 86.4%
Kamnitsas et al. [20] 3D CNN Lesion segmentation Dice > 90%
Hatamizadeh et al. [7] UNETR Segmentation Dice 93-95%
Liu et al. [13] Swin Multi-class classifier 94%-+
Baid et al. [17] BraTS 2020 Benchmark Survival prediction As reported
Baid et al. [18] BraTS 2020 Benchmark Tumor segmentation Dice (BraTS metrics)
Ours DWT, ViT, KELM Classification + Survival 98.02%, 94.67%
Table 2. Task-specific summary of closely related works and their primary metrics
Study Task (Primary Metric) Method/Notes
BraTS 2020 Benchmark [17] (S;\Jg::/;(\éa}!npdr:gylcrt(l&r; Multi-institutional I\/tI)I:;éﬁtrz:lgdardlzed survival

BraTS 2020 Benchmark [18]

Tumor segmentation (Dice score)

CNN-based challenge benchmark

Ours

94.67%)

Classification + Survival (98.02%,

DWT+VIT embeddings with KELM heads
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3. Datasets
3.1. Figsharelmages Dataset

The Figshare neuroimaging database (hereafter referred
to as Figsharelmages) consists of both T1-weighted contrast-
enhanced MRI slices categorized into four tumor-related
classes: glioma, meningioma, pituitary, and no tumor [5, 19].
The dataset includes 7,023 images with a public train/test split:
5,712 slices for training/validation and 1,311 for testing [5].
Each of these slices is an axial section of an MRI of the brain.
The distribution of classes is more or less equal, as seen in
Figure 1. Recent models using ViT trained on this dataset
claim 94-98% [9, 10, 13, 14]. Bias-field correction was
performed using N4ITK [34], skull stripping was performed

using BET [35], and all slices were resized to 224 x 224 pixels.
During training, random flips, rotations, and intensity jitter
were used to augment data.

3.2. BraTS2020 Dataset

The BraTS2020 dataset [12, 23-25] consists of
multimodal 3D MRI scans of brain gliomas with segmentation
labels, as well as patient survival information.

There are 369 training instances, each containing 4 MRI
sequences, comprising T1, T1Gd, T2, and FLAIR sequences
and an expert-annotated tumour mask outlining the necrotic
core as well as the oedema and enhancing tumour regions.

Dataset Class Distribution

405

Number of Images
N
o
o

glioma meningioma

Class

notumor pituitary

Fig. 1 Class distribution in the figshareimages dataset (number of MRI Images Per Category). The dataset is approximately balanced among the four
classes.

Fig. 2 Overall pipeline of the proposed unified framework. DWT decomposition yields LL, LH, HL, and HH sub-bands, which form a four-channel
input to the VIiT. The ViT outputs a feature vector subsequently fed into the KELM classifiers: One for multi-class tumour classification and one for
survival category prediction (with radiomics). Gradient-Weighted Class Activation Mapping (Grad-CAM) and attention rollout provide
interpretability by highlighting regions influencing each prediction.
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There are two general categories, high and low grade
gliomas: High Grade Glioblastoma (HGG) Multiforme and
Low Grade Glioblastoma (LGG) Multiforme. In the training,
there are 293 cases of HGG and 76 cases of LGG-clinical
information, such as the overall survival (days) for HGG
patients [17]. This work aims at two tasks: (1) implicit tumour
grade classification (i.e., via survival categories) and (2)
prediction of survival category for HGG patients. Survival
times are discretized into 3 clinically meaningful bins [25]:
short-term (<150 days), mid-term (150-300 days), and long-
term (>300 days). LGG patients are not included in survival
training due to very different and longer survival distributions.
Radiomic features are extracted using PyRadiomics [36] from
FLAIR and T1Gd volumes, including tumour volume, shape
features, and intensity texture features known to correlate with
survival. In order to feed 2D ViT, the best axial slices are
picked with the most significant tumour cross-section (using
the FLAIR mask for these) and matched with the
corresponding T1Gd slice. The resulting 4-channel DWT
augmented slice contains complementary information that can
be used to predict survival.

4. Proposed Methodology

The research question of this proposed methodology is
whether diagnosis and prognosis are solvable in one deep
learning platform, which uses MRI data. In this regard, the
model is designed to learn both shared representations that are
discriminative to tumor classification and predictive of patient
survival, and at the same time, interpretable. The
methodological decisions, including wavelet-based multi-
resolution preprocessing, transformer-based global feature
learning, and kernel-based classification heads, are all
predetermined by the necessity to balance the accuracy,
stability, and clinical relevance. In the proposed methodology,
the design options are driven by technical and clinical
concerns. The preprocessing method is the Discrete Wavelet
Transform (DWT) to boost multi-scale texture, like the
characteristics of the brain MRI, whereby the boundaries of
tumors and tissue heterogeneity are realized in varying spatial
resolutions. The choice of Vision Transformers (ViTs) to
extract features is due to their ability to capture spatial reliance
on long-range spatial and global anatomy that is not well
represented by conventional CNNs with small receptive
fields. To enable stable closed-form learning, minimize the
risk of overfitting to small medical datasets, and accelerate
convergence time, Kernel Extreme Learning Machines
(KELMs) are used in place of fully connected neural
classifiers. The general process is shown in Figure 2. It
contains three parts: Wavelet-based pre-processing, a Vision-
Transformer (ViT) based backbone for the extraction of
characteristics, and classification heads based on KELM. The
components are described here, in turn.

4.1. DWT-Based Pre-Processing
Before transformer input, this work uses a Two-
Dimensional Haar Discrete Wavelet (DWT) transform on
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each MRI slice. DWT decodes an image into frequency sub-
bands, a Low Frequency Approximation (LL) representing the
coarse structure, and another three detail image components
(LH, HL, HH) representing higher-frequency picture structure
features. Stacking these four sub-bands of the image as
channels, the network gets both the general structures as well
as fine texture cues. Multi-resolution information has been
shown to enhance tumor classification [3, 12, 37]. In practice,
normalizing each of the sub-bands to zero mean and a variance
of one, and combining them to create a 224 x 224 x 4 tensor.

4.2. ViT-Based Pre-Processing

The work utilizes the ViT-B/16 as the feature extractor.
The input images are divided into 16 x 16 patches that are
flattened and linearly embedded. These embeddings and a
class token learnable cut across the multi-head self-attention
and the feed-forward blocks of different levels. The model can
capture global context and long-range dependencies by self-
attention [5, 8, 10, 38]. In this project, ViT is used, and it uses
ImageNet pre-training and fine-tunes it using the datasets. The
embedding of the final class token (it is a vector of size 768)
is used as the deep feature representation z. Standard
regularization (dropout, layer normalization) as well as data
augmentation is done during training.

4.3. KELM Head for Classification and Survival

Kernel Extreme Learning Machine (KELMSs) are single
hidden-layer networks whose output weights are solved in
closed form [27-29]. After the ViT, add two distinct heads of
KELM: one that predicts z to the four classes of tumour and
the other maps to predict the collection of z and radiomic
features to the three classes of survival. Radial basis function
and kernel function with bandwidth selected using cross-
validation. The classification head is trained using
Figsharelmages with loss cross-entropy, and the survival head
is trained using only BraTS HGG cases. During the training,
the first focus was on classifying the tumour and then training
the fine-tuning head for survival to encourage the backbone to
learn robust tumour features.

4.4, Explainability Module

To explain the model's decision, 2 complementary
techniques were used. First, the cross-entropy is used to
generate Grad-CAM heatmaps by back-propagating the class
logits all the way to the final VIiT feature map and by
weighting the channels in the feature by the average of their
gradients. Second, compute attention rollout by multiplying
the self-attention matrices layer by layer and interpolating the
image resolution patch importance map. Examples of such
visualizations are shown in Figure 6. They verify if the model
focuses on the tumour's central region and the region situated
around the tumour for both classification and survival
purposes. With the model architecture defined, the data
partitioning and training procedures are described and used to
evaluate its performance.
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5. Experimental Setup

All the computational experiments were carried out by
means of the deep learning framework PyTorch [39] and the
toolkit for medical imaging MONAI [40]. A single Nvidia
A100 GPU was used for training and evaluation.

5.1. Dataset Partitioning

For the Figsharelmages dataset, the original dataset of
5712 training slices was randomly split in a way that 80% of
the images were used to optimize the model, while 20% of the
images were used for validation. The independent collection
of 1,311 samples that were given with the dataset was stored
aside for the final stage of testing. For the BraTS2020 survival
task, a five-fold cross-validation protocol was used for the 236
high-grade glioma subjects with survival metadata. There
were about 189 training volumes and 47 validation volumes in
each fold.

5.2. Optimisation Method

The parameters were updated using the AdamW
algorithm [41], a variant of Adam [42] that employs decoupled
weight decay. Let g © be the gradient of the loss function at
repetitive execution of t. Two running statistics are
maintained: a first-order estimate, u (t), and a second-order
estimate, s®. With decay factors p1= 0.9 and p,= 0.999, these
decay according to

u® = p;u®H + (1-py)g®, (1)
s = ppsV + (1 - py) (8©) )
Bias-corrected forms,

(3] ®)
s — Y RO
4 ey ° 1-pf’ ®)

Compensate for the initialization effect. Using these
corrected estimates, the weight vector 6 is refined according
to:

g®

g+ = g — o — wh®

(4)

§®+e

Where a denotes the learning rate, w the decoupled
weight-decay coefficient, and €= 1078 a numerical
stabilizer.

5.3. Learning Rate Schedule

To obtain a smooth reduction in the step size, a cosine
annealing schedule [43] was used. Let a,,,,and @,,;, Let the
maximum and minimum admissible learning rates, k, be the
epoch in progress, and K be the total number of epochs to train
the model. Then the learning rate epoch k is computed as

x— i k
ay = Qi + w 1+ cos(%) (5)
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5.4. Training Protocol

The unified model was run and trained for a maximum of
100 epochs with early stopping [44] with a threshold of
patience of 10 epochs. For the classification task on
Figsharelmages, 32 epochs of batches were used. For the
prediction of survival, the batch size was fixed at 8 because of
the introduction of DWT augmented slices coupled with
radiomic descriptors.

5.5. Performance Indicators

Performance was quantified with regard to accuracy,
precision, recall, F1-score, and multi-class ROC-AUC for the
tumour classification task. For the prediction of survival,
accuracy, and F1-score were calculated for the short, medium,
and long-term survival categories.

The choice of accuracy and F1-score as evaluation
metrics was made in response to the equal distribution of the
classes in the dataset. Macro-averaged indices were used to
avert discrimination in favor of the powerful classes. Further
discussion of ROC and precision-recall curves has been used
to evaluate the classifier's robustness and calibration, making
sure that the performance evaluation is not insignificantly
statistically meaningful.

6. Results and Analysis
Using the protocol above, quantitative and qualitative.
The evaluation results are presented below.

6.1. Quantitative Performance Evaluation

The proposed unified DWT+VIiT+KELM framework
achieves good performance on both tasks. The best accuracy
of the classification in the four-class is 98.02% on the
Figsharelmages test set with macro-F1 about 0.98. This
outperforms classical CNN baselines (86.4% [19]) and is an
improvement over transformer baselines, which quote that
they achieve 94% accuracy [9, 10, 13]. Fine-tuned ViT models
have recently achieved up to 98.7% accuracy [3, 9, 10, 14];
the results are competitive with these Q1 journal works and
use a simpler classifier head. The proposed model achieves
94.67% accuracy on the prediction of the short, mid, or long
survival groups of the patients on BraTS survival prediction.

This compares favourably with radiomics-only models
(C-index 0.75-.77 [26]) as well as deep learning baselines
(accuracy around 90%). The integrated KELM heads
consistently achieve high precision/recall on the high-
dimensional ViT features (Table 4).

Precision, recall, and F1-score scores for every class of
tumour in the Figsharelmages test set are shown in Table 3,
along with the values of test samples belonging to each class.
The model achieves balanced performance across classes.
Table 4 summarizes the accuracy, precision, recall, and F1-
score of the KELM survival head test over the BraTS2020
high-grade glioma cohort.
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Table 3. Classification metrics on the figshareimages test set

Class Precision | Recall | Fl-score | Support
Glioma 0.9906 | 0.9300 | 0.9621 300
Meningioma | 0.9354 | 0.9935 | 0.9635 366
No tumor 1.0000 | 1.0000 | 1.0000 405
Pituitary 0.9867 | 0.9900 | 0.9884 300
Overall accuracy 98.02%

Table 4. Survival categorization metrics on BraTS2020 high-grade
glioma cases. The KELM head achieves high precision and recall across
the three survival bins

To understand the model’s learning behavior, first, its
training/validation curves are evaluated.

6.2. Training Dynamics

As mentioned above, Figure 3 depicts precision during
validation and training as well as the loss figures for
classification.

The model converges rapidly (~20 epochs) and achieves
high accuracy on the validation set (~95% early, approaching
100% by epoch 100). The training and validation loss curves

Metric Accuracy | Precision | Recall sch}r-e (Figure 3) decrease smoothly without overfitting, indicating
Survival effective regularization. Similar trends were seen for survival
94.67% 0.9312 | 0.9275 | 0.9293 training (omitted for brevity).
(KELM)
Training/Validation Accuracy (1-100 epochs)
1.00F T R e
— val_acc
0.95¢
0.90f
2 0.85¢
;"3
2 0.80}
<
0.75¢
0.70¢
0.65¢ . : :
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Epoch
(a) Training or validation accuracy curves
Training/Validation Loss (1-100 cpochs)
1.2 train_loss
— val loss
1.0
0.8
206
0.4
D R S e e
0 20 40 60 80 100

The given model has been found on the phenomenon of
the faster convergence, which has been observed to be
stimulated by the multi-resolution representation of the
Discrete Wavelet Transform (DWT) that simplifies the
learning of features by breaking down MRI images into

Epoch

(b) Training or validation loss curves
Fig. 3 Training dynamics for the figshareimages classification task, (a) Training and validation accuracy curves steadily increase to near-perfect
performance, and (b) Training and validation losses decrease smoothly, indicating stable optimisation without overfitting.
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complementary frequency bands. Additionally, the closed-
form optimization of Kernel Extreme Learning Machine
avoids unstable gradient updates, resulting in smoother loss
curves and a faster attainment of a stable point. The
regularization effect of wavelet-based feature enrichment and
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transformer self-attention is evident: the lack of overfitting,
despite achieving high classification accuracy, reflects the
regularization effect.

6.3. Analyzing ROC and Precision-Recall
Beyond accuracy, the model is evaluated using One-
Versus-Rest ROC and Precision-Recall (PR) curves.

Figure 4 demonstrates that the four classes have AUCs
that are greater than 0.99 (panel (a)).

The PR curves in Figure 4b remain high for all recall
levels, indicating that there are few false positives, especially
in the "no tumour™" class. These metrics show that the classifier
maintains high precision across all recall levels.

ROC Curves (One-vs-Rest)

1.0F

0.8

0.6

True Positive Rate

0.4

0

glioma (AUC = 0.01)
meningioma (AUC 0.00)
notumor (AUC = 0.01)
pituitary (AUC = 0.01)

.0
0.0 0.4

0.6 0.8 1.0

False Positive Rate

(a) ROC curves (one-vs-rest)

Precision-Recall Curves

1.0

0.8

0.6f

Precision

041

0.0

glioma (AP = -0.17)

—— meningioma (AP = -0.17)
notumor (AP = -0.24)
pituitary (AP =-0.17)

0.0

0.4

Recall

0.6 0.8

(b) Precision-recall curves
Fig. 4 Receiver Operating Characteristic and precision-recall curves for the four-classes tumour classification task, (a) ROC curves demonstrate
near-perfect separation between positive and negative classes (AUC>0.99 for each), (b) Precision-recall curves remain high even at large recall,
especially for the ‘no tumor’ class.

To isolate the effect of each component, ablations starting
from a baseline ViT.

6.4. Study of Ablation

Ablation analysis is done to figure out how much each
part affects things. Starting with just a simple ViT without
DWT or KELM, with the DWT layer one by one, and
replacing the dense layer at the end with a KELM classifier.
The results in Figure 5 show that the baseline ViT has an
accuracy of 94.1%.

This accuracy is increased to 97% with the addition of
DWT, as a high praise for the multi-resolution inputs.
Replacing the softmax layer with a KELM vyields further
improvements, achieving 98% accuracy, which demonstrates
additional benefits from using the closed-form solution. The
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same trend can be observed in the prediction of survival (not
shown): DWT and KELM improve performance both
individually and in combination, resulting in the best
performance in terms of survival. The improvement obtained
by incorporating DWT highlights the importance of multi-
scale texture cues in brain MRI, which are often suppressed in
raw spatial representations. The additional gain achieved by
KELM indicates that closed-form kernel-based classifiers
provide better generalization on high-dimensional ViT
embeddings compared to gradient-trained dense layers. The
findings of the ablation study demonstrate the importance of
using wavelet decomposition to extract fine-grained texture
information that is typically buried in raw spatial
representations. The further performance gain achieved using
KELM instead of dense classifiers demonstrates that the use
of kernel-based closed-form learning is effective in cases
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involving high-dimensional transformer embeddings. This ~ KELM on the overall effectiveness of the proposed system are
evidence demonstrates that the effects of both DWT and independent and synergistic.

Ablation Study: Impact of DWT and KELM
99

98

97

96

95

94.1

Accuracy (%)

94 A

93

92 -
VIT-B/16 DWT + ViT-B/16 DWT + ViT-B/16+ KELM

Fig. 5 Ablation analysis on tumour classification accuracy. Baseline ViT (no DWT, Dense Softmax Output) achieves 94.1% accuracy. Adding DWT
improves accuracy to 97%. Using the KELM classifier instead of the dense output increases performance to 98%, highlighting the synergy between
wavelet features and KELM heads

6.5. Explainability: Qualitative Results classified, demonstrating that the model looks strong at the
Representative attention-based explanations are in Figure ~ tumour cores and peri-tumoral regions and ignores healthy

6. In panel (a), Grad-CAM heatmaps are superimposed on  tissue. These visualizations help build confidence in the

misclassified examples, showing that failure cases are often ~ model's decision, as they demonstrate that predictions are

extremely low-contrast tumours. In panel (b), ViT attention based on medically meaningful features.

rollout maps are added on top of photos that are correctly
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(a) Misclassified examples with grad-CAM overlays
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(b) Correct classifications with attention rollout
Fig. 6(a) Grad-CAM heatmaps on misclassified images show spread or misplaced attention, indicating model uncertainty, and (b)ViT attention
rollout overlays on correctly classified images concentrate on the tumour core and peri-tumoral regions, conforming to clinical expectations.

6.6. Error Analysis

Misclassifications are analyzed in order to identify
common modes of failure. The confusion matrix in Figure 7
reveals that the errors are found mostly between similar
tumour types (e.g., pituitary vs meningioma) rather than
dissimilar classes (tumour vs. no tumour). Figure 6(a) gives an
example of typical misclassification: images with very low
contrast or a typical tumour appearance are responsible for
erroneous predictions.
400
glioma & 350
300
meningioma

250

200

Predicted label

notumor 150

True label

100

pituitary

=
e
g
]
=

pituitary|

meningioma

Predicted label
Fig. 7 Confusion matrix for the four tumour classes. The majority of
errors occur between similar tumour types, while dissimilar classes
(tumour vs. no tumour) are rarely confused. Values indicate the
number of test samples per cell.

Attention maps are diffuse in these cases, denoted by the
uncertainty. Such cases can be flagged for closer human
review. Overall, the errors of the model are understandable
and reflect radiologists' difficulties.
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7. Future Work

The use of unified DWT+ViT+KELM presents several
research opportunities in the future. First of all, three-
dimensional versions of the ViT could be explored to process
the entire volumetric MRI, rather than representative slices.
Recent attempts in applying Swin transformers to volumetric
data have suggested that 3D patching can be used to capture
more robust contextual information about anatomy.

Second, multi-modal fusion, respectively combining MRI
with perfusion, diffusion, PET, or clinical biomarkers, may
allow for better classification and also better survival
prediction.

Third, federated learning (privacy-preserving training on
multi-institutional data) and privacy-preserving learning
might enable this to be done, training using multi-institutional
datasets, without having to share the raw patient data.

Fourth, an ordinal regression formulation of survival
could supersede the discrete categories employed here; this
would allow levels of prognostic estimate with the potential to
be finer grained. Finally, the unified architecture could be
extended for other tasks such as tumour segmentation,
treatment response prediction, or cognitive impairment
assessment in AD. By adding appropriate heads, the backbone
can be used as a general feature extractor for neuroimaging.

7.1. Limitations & Bias

Despite promising results, this study has several
constraints that must be recognized. First, the tumor
classification experiments are conducted on 2D MRI slices,
which may not fully capture three-dimensional tumor
morphology. While this choice enables larger sample sizes
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and reduced computational cost, future work should
thoroughly investigate 3D transformer architectures. Second,
survival prediction is evaluated on the BraTS 2020 dataset,
which contains a finite quantity of annotated cases, potentially
introducing dataset-specific bias and limiting generalizability
across institutions.

Additionally, the use of publicly available datasets may
reflect inherent acquisition and demographic biases that are
not representative of real-world clinical populations. Although
data augmentation and cross-validation mitigate overfitting,
potential multi-center validation is necessary to verify
robustness. Finally, while explainability methodologies,
including Grad-CAM and attention mechanism rollout,
provide qualitative insights, they do not guarantee causal
interpretability, and clinical decision-making should not rely
solely on model explanations.

8. Conclusion

A single architecture is presented here that achieves both
tumor classification and survival prediction on multi-
institutional MRI data. The model is used to simultaneously
perform four-class tumour classification and three-category
survival prediction using a combination of wavelet-based pre-
processing, transformer feature extraction, and closed-form
KELM classifiers. On the Figsharelmages and BraTS2020
data sets, the method obtained 98.02% and 94.67%
classification and survival prediction accuracy, respectively.
Breaking the classical CNN and transformer baselines and
closing in on the recently reported fine-tuned ViT results.
Ablation studies showed that both DWT and KELM are
important components. Interpretability using Grad-CAM and
attention rollout showed the focus of the model on tumour
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