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Abstract - Brain tumours and the neurodegenerative condition Alzheimer's Disease (AD) are problematic in terms of diagnosis. 

The proposed work provides a unified deep learning approach with a Discrete Wavelet Transform (DWT) front-end and Vision 
Transformer (ViT) feature extraction with kernel-based Extreme Learning Machine (KELM) classifiers in order to jointly 

perform multi-class tumour identification and patient survival prediction from MR imaging. Brain tumours and the 

neurodegenerative condition Alzheimer's Disease (AD) pose significant diagnostic challenges. The model proposed here is 

trained on two public datasets comprising more than 7,000 T1‑weighted tumour images and 369 multi‑modal glioma volumes. 

Wavelet decomposition augments spatial input with multi‑scale texture information, the ViT learns global context, and separate 

KELM heads yield diagnosis and prognosis. As demonstrated by extensive experiments, the accuracy of tumour classification 

reaches 98.02% and the accuracy of survival prediction reaches 94.67% and Grad-CAM and attention rollout visualisations 

help identify clinically relevant regions.  The main research question to be considered in this research is whether one unified 

deep learning architecture could be capable of accomplishing effective brain tumor diagnosis and patient survival rates 

prediction simultaneously through MRI, and, at the same time, remain interpretable to a clinical end-user. The proposed 

framework addresses a serious gap in the ongoing neuroimaging research, in which the two tasks are generally considered 
separately, because it involves the joint diagnosis and prognosis in one model. The results demonstrate that the unified 

architecture demonstrates high classification accuracy, strong survival prediction, and clinical explanations, and this indicates 

the importance of the unified clinical decision-support system. 

Keywords - Brain MRI, Vision Transformers, Discrete Wavelet Transform, Extreme Learning Machines, Survival Analysis. 

1. Introduction 
Brain tumour and dementia due to Alzheimer's Disease 

(AD) are significant causes of neurological morbidity 
worldwide [1-3]. These conditions have diverse pathologies 

and anatomical presentations, which means no single imaging 

modality or biomarker is able to capture all clinically relevant 

information. Traditional diagnostic methods are based on the 

expert radiological interpretation and are prone to inter-

observer variability. Meanwhile, most deep learning solutions 

are specific to one domain task (e.g., tumour classification 

only) and rarely integrate a set of different (often more 

accurate) goals such as the prediction of survival. Survival 

analysis -- the prediction of patient outcome or lifespan -- is 

an almost unexplored area for brain disorders, yet it is vitally 
important in terms of treatment planning [4]. Recent 

advancement in vision transformers and hybrid convolution 

transformer models [5-10] is the inspiration behind unified 

models that depict context and local details, for hardy clinical 

decision making. In parallel, a number of modern research 

studies have explicitly combined convolution neural networks 

and vision transformers to extract different local and global 

representations. Al Tahhan et al. [11] propose hybridizing an 

Artificial Neural Network with convolutional layers 

(AlexNet-SVM and AlexNet-KNN, employed for four-class 

brain tumour classification on the composite data of the 

Figshare, SARTAJ, and Br35h datasets). Almuhaimeed et al. 
[9] and Khan et al. [10] simultaneously use Swin Transformers 

and autoencoders to augment the MRI datasets. These hybrid 

CNN-ViT approaches suggest the common understanding that 

multi-feature fusion is helpful to enhance clinical image 

analysis. The BrainLesion workshop in MICCAI 2016 [12] 

also gathered some early research on glioma classification 

heads to tackle the brain tumour classification and survival 

estimation problem jointly. Implications of this research 

include the following contributions: 

https://www.internationaljournalssrg.org/
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 Unified DWT+ViT+KELM pipeline: An integrated 

pipeline that unified the DWT-enhanced ViT embeddings 

(with KELM classifiers), used to perform multi-class 

tumour identification and categorisation, and patient 

survival, where a single model is used. The proposed 
work is one of its kind, as it is the first framework to tackle 

both diagnosis and prognosis from MRI in a unified 

manner. 

 Expanded dataset analysis: The proposed work provides 

detailed descriptions of the datasets of FigshareImages 

and BraTS2020, including class distribution, imaging 

modalities, preprocessing steps, and definitions of 

survival categories. Additional statistics and discussion of 

the quality of the datasets and augmentation are included 

to furnish reproducibility.  

 Complete assessment: To prove the superiority of the 
suggested approach, extensive experiments such as 

ablation studies, ROC/pr analysis, and error analysis were 

performed to show that the work is more powerful than 

the latest CNN and transformer baseline methods. The 

results are beyond state-of-the-art transformer models 

that attain 94% accuracy [13], and comparable with recent 

fine-tuned ViT models with 98.7% accuracy [14]. 

 Interpretability and Clinical Insight: The proposed work 

combines Grad-CAM along with attention rollout in order 

to utilize visual explanations. The resulting heatmaps then 

focus on tumour regions and show correlation with 

clinical features to enhance the model’s confident 

predictions [15, 16]. 

The present manuscript significantly enriches the 

aforementioned idea with a unified DWT+ViT+KELM 

architecture, new enriched experimental evaluation, and 

extended discussion.  

Recent transformer-based and hybrid CNN-Transformer 

models have significantly contributed to the analysis of the 

brain MRI through enhanced global context modelling and 

classification accuracy. Surveys using Swin Transformers, 

ViTs, and hybrid attention-based foundations have been 

reported to achieve 94 percent on a multi-class tumour 
classification trial, and be more robust than traditional CNNs 

[9, 10, 13, 14]. The techniques, however, mostly deal with 

diagnosis as a solitary assignment and are optimized to be 

categorized or segmented. Simultaneously, individual 

radiomics-based pipelines or superficial machine learning 

models are most commonly used to predict survival 

independently and are not tied to the diagnostic process [23-

26]. Consequently, state-of-the-art practices do not offer an 

integrated nomenclature that synthetically and collectively 

collects diagnostic indicators, prognostic details, and 

interpretability into one learning system. Although there has 

been significant improvement in deep learning analysis on 
brain tumors, the majority of the current methods deal with the 

diagnosis and prognosis of these tumors as distinct challenges. 

Methods based on Convolutional Neural Network (CNN) 

mainly target the classification of tumors, whereas survival 

prediction can be individually done on independent radiomics-

based or statistical pipelines. Recent transformer-based 

models have shown better representation of the global features 

to classify images, but are lacking the multi-resolution 
enhancement of texture, and are seldom generalized to survive 

analysis in a single format. Furthermore, most of the existing 

approaches to survival prediction rely on the manual radiomic 

features or black box deep models, which limit the scientific 

interpretation and confidence. 

In order to fill these gaps, the given work suggests a single 

Vision Transformer architecture capable of performing both 

classifying brain tumors and predicting patient survival 

directly on the basis of the MRI input. The framework 

suggested assists in moving across the border, between 

diagnostic accuracy, prognostic reliability, and explainability, 

by integrating the Discrete Wavelet Transform (DWT) to 
refine multi-scale features and the Kernel Extreme Learning 

Machine (KELM) classifiers to learn in a stable form. 

Although other works have delved into the wavelet-based 

preprocessing, transformer architectures, or survival 

prediction on its own, the available approaches are often 

oriented at a single task or loosely coupled pipelines. The 

primary usage of CNN-Transformer hybrids is to perform 

classification/segmentation. Survival prediction is typically 

done with independent radiomics-driven or statistical 

predictors that are not conditioned on diagnostic networks. So 

far, no generally accepted framework that brings together 
multi-resolution feature augmentation, transformer-based 

global learning of representations, diagnosis, prognosis, and 

interpretability into one end-to-end system exists. This 

research focuses on filling this gap by incorporating such 

elements in an interdependent and clinically understandable 

learning system. 

The most significant innovation and contribution of the 

work can be summarized as follows:  

 Unlike other currently existing CNN-Transformer or 

ViT-Based on systems, which only perform tumor 

classification or tumor segmentation, this work 
introduces a single DWT-enhanced Vision Transformer 

system, with the potential to identify a single multi-class 

brain tumor and predict patient survival using MRI 

images. 

 The proposed framework is more straightforward 

interfaces Kernel Extreme Learning Machine (KELM) 

classifiers with transformer embeddings than the older 

family of survival prediction methods, which rely on 

manually-crafted radiomic features (or independent 

trained classifiers), allowing the framework to be stable 

to closed-form learning, and better predict prognostic 

objectives. 
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 In addition to reporting overall accuracy, this paper 

presents an experimental assessment, such as the types of 

ablation studies, ROC, and precision-recall analysis, as 

well as training dynamics, and error analysis within the 

study, which is typically missing in the body of prior 
literature. 

 In contrast to other deep learning models that provide 

Scanty transparency, the proposed framework yields two 

explanations, namely Grad-CAM and transformer 

attention rollout, allowing local and global explanability 

in line with clinical reasoning. 

The following research questions will be answered using 

this work: 

 Are wavelet-enhanced Vision Transformers valid in 

comparison with ordinary CNN and transformer baselines 

with respect to brain tumors grouped with more than one 
class? 

 Does a single deep learning system consistently estimate 

patient survival data based on MRI-generated features? 

 Is a proposal that offers any clinically relevant visual 

helpful explanation in the process of making medical 

decisions? 

The rest of this paper's information is organized in the 

following way. In Section 2, important research is looked at in 

the areas of brain tumor analysis, AD detection, life modeling, 

and explainability. In Section 3, the statistics are described in 

more depth. Section 4 talks about the suggested method. 

Section 5 talks about how the project was set up. The sixth 
part is about results and research. In Section 7, the paper talks 

about future work, and in Section 8, the paper is summed up. 

2. Literature Review 
2.1. Tumour Neuro MRI Analysis 

Convolutional Neural Networks (CNNs) have 

traditionally been the basis of automated brain tumour MRI, 
which has a powerful potential to discover hierarchical spatial 

attributes under medical images. Initial CNN-based 

techniques indicated that trained convolutional filters could 

successfully capture tumour texture, boundary irregularity, 

and contrast variation, which are difficult to define using 

human-crafted features. Pereira et al. [19] used a CNN-based 

approach to perform tumour subtype classification and 

achieved 86.4 % accuracy, which demonstrates that deep 

learning is feasible with diagnostic MRI. Later, Kamnitsas et 

al. [20] proposed a Convolutional Neural Network design that 

is three-dimensional and multi-scale with a completely 

connected Conditional Random Field (CRF) allowing the 
simultaneous modelling of both local information on the voxel 

level, and global anatomical background, leading to Dice 

scores of well over 90% in lesion segmentation. More modern 

improvements have changed to transformer-based models that 

solve the small receptive field of CNNs. Vision Transformers 

(ViTs) and their hierarchical versions, such as Swin 

Transformer, have shown better capabilities of modelling 

global context by using the self-attention mechanism. Liu et 

al. [13] reported 94 %  multi-class classification of brain 

tumours with Swin Transformer, and segmentation-based 
transformer networks like TransUNet and UNETR [6, 7] 

reported state-of-the-art Dice scores using attention-based 

encoder and convolutional decoders. Finetuning of ViT 

models has also increased the classification accuracy up to 

about 98.7 % on abacus brain tumour datasets [14]. Hybrid 

CNN-Transformer models combine the advantages of both 

paradigms, in which CNNs elicit finer texture factor 

endowment, whereas transformers reconstruct long-length 

reliance to space, which is persistently exhibiting robustness 

to stand-alone structures as far as their results and abilities. 

To put the contribution of this work into perspective, 

some representative works in cerebral MRI analysis are 
summarized in Table 1, and the architectures, target tasks, and 

performance of these works are outlined. The closely related 

methods then have their task-specific details distilled in Table 

2 and place extra emphasis on the form of metrics and 

methodological notes employed in the survival prediction and 

segmentation methods of the past. 

2.2. Alzheimer’s Disease Diagnosis 

The use of Deep Learning methodologies in diagnosing 

and prognosing Alzheimer's Disease (AD) based on the 

analysis of structural and functional neuroimaging has 

progressively been used. Initial CNN models have shown that 
convolutional networks can be helpful in the study of cortical 

atrophy patterns and ventricular enlargement in MRI images 

and in differentiating between cognitively healthy subjects, 

Mild Cognitive Impairment (MCI), and Alzheimer's disease. 

Multi-modal models incorporating MRI, Cerebrospinal Fluid 

(CSF) Biomarkers, Positron Emission Tomography (PET), 

have continued to enhance the accuracy of the diagnosis and 

the risk of the disease escalating. 

With the introduction of the NIA-AA research framework 

[21], the diagnosis of AD underwent a transformation, 

adopting a biologically grounded definition that incorporates 

amyloid deposition, tau pathology, and neurodegeneration, 
thereby stimulating the development of attention-based and 

region-aware deep learning models. Attention mechanisms 

have also been demonstrated to increase model performance 

by paying explicit attention to regions such as the 

hippocampus, which play an important role in diseases, and 

the medial temporal lobe that have a strong linkage to 

cognitive impairment. A network of attention, as discussed by 

Lian et al. [22], is also lightly monitored to be notified of the 

dementia status, with the result showing that the attention-

guided representations enhance the interpretability compared 

to downplayed competition in classifications. Recent models 
based on transformers have advanced even further in AD 

analysis by modeling the enduring connections among various 
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brain components to overcome the limitations posed by solely 

convolutional receptive fields. Hybrid CNN, Transformer, and 

Vision Transformer are in development to learn global trends 

of neurodegeneration and local preservation of anatomical 

structure. Nevertheless, the vast majority of current AD-
focused research is task-oriented, analyzing the diagnosis or 

progression as a separate issue, and is seldom combined within 

the context of multiple diseases or prognostic models. Based 

on these observations, the desired merged architecture is 

planned to become extensible to AD tasks by adding disease-

specific tasks without retraining the common backbone. 

2.3. Survival Prediction and Radiomics 

In oncology, such as gliomas, survival modelling with 

radiomics has already been studied intensively, with a robust 

correlation between tumour heterogeneity and patient 

outcome. Radiomics methods derive hand-crafted intensity, 

texture, and shape features in segmented tumour regions and 
apply statistical models or machine learning models to 

forecast survival. Survival prediction challenges on the BraTS 

were proposed to foster the use of both imaging features and 

clinical outcomes [23-25]. Radiomic studies with clinical 

characteristics have yielded concordance indices (C-index) 

ranging between 0.75 and 0.77 with moderate prognostic 

power [26]. 

Survival prediction with deep learning has been a topic of 

exploration in the recent past. ELMs and Kernelized Versions 

(KELMs) have been demonstrated to offer stable and practical 

learning in high-dimensional feature spaces [27-29].  Also, the 
trend Deep survival model makes use of convolutional or 

transformer-based feature extractors and a survival head to 

achieve more predictive power, but may lack interpretability 

or be task-dependent. The broad reviews [4, 36] confirm that 

the existing methods of survival prediction are usually 

independent of diagnostic models and either based on 

radiomics or opaque deep representations. Such separation 

restricts the clinical usefulness of these models, as diagnosis 

and prognosis are mutually inseparable in treatment planning. 

2.3.1. Explainability    
Interpretability is a significant precondition for the 

clinical adoption of DL models in neuroimaging, as diagnostic 

and prognostic decisions should remain clear and clinically 

plausible. Gradient-based explanation methods like Grad-

CAM [15, 30] can be used to provide a representation of the 

image regions that largely contributed to a prediction of a 

model by backpropagating gradients of a predictive model that 

are class-specific. Variations of Grad-CAM have found 

extensive applications in the analysis of brain MRI to ensure 

the predictions rely on areas of the tumour, and not random 

background spatial patterns. Models based on the use of 
transformers also offer intrinsic interpretability through 

attention mechanisms. Pay attention rollout techniques [16, 

24], apply self-attention maps between layers, which are 

accumulated to form patch-level importance maps, making it 

possible to see the impact of global context on individual 

model decisions. 

Although feature-level attribution is also possible with 

alternative methods, e.g., SHAP, LIME, and integrated 

gradients [3, 31-33], attention-based visualization is much 

more spatial reasoning-friendly, so it is especially applicable 

to medical imaging. The analysis and comparison in Tables 1 
and 2 show that the presented unified framework has a 

competitive or better level of performance and covers both the 

diagnosis and prognosis, which are mostly considered 

separately in the previous methods. 

Table 1. Comparison with the state-of-the-art brain MRI techniques 

Authors Architecture Task Acc./Metric 

Pereira et al. [19] CNN Tumor classification 86.4% 

Kamnitsas et al. [20] 3D CNN Lesion segmentation Dice > 90% 

Hatamizadeh et al. [7] UNETR Segmentation Dice 93-95% 

Liu et al. [13] Swin Multi-class classifier 94%+ 

Baid et al. [17] BraTS 2020 Benchmark Survival prediction As reported 

Baid et al. [18] BraTS 2020 Benchmark Tumor segmentation Dice (BraTS metrics) 

Ours DWT, ViT, KELM Classification + Survival 98.02%, 94.67% 

 
Table 2. Task-specific summary of closely related works and their primary metrics 

Study Task (Primary Metric) Method/Notes 

BraTS 2020 Benchmark [17] 
Survival prediction  

(Acc/C-index, KM) 

Multi-institutional MRI; standardized survival 

baseline 

BraTS 2020 Benchmark [18] Tumor segmentation (Dice score) CNN-based challenge benchmark 

Ours 
Classification + Survival (98.02%, 

94.67%) 
DWT+ViT embeddings with KELM heads 
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3. Datasets 

3.1. FigshareImages Dataset 

The Figshare neuroimaging database (hereafter referred 

to as FigshareImages) consists of both T1-weighted contrast-

enhanced MRI slices categorized into four tumor-related 

classes: glioma, meningioma, pituitary, and no tumor [5, 19]. 

The dataset includes 7,023 images with a public train/test split: 

5,712 slices for training/validation and 1,311 for testing [5]. 

Each of these slices is an axial section of an MRI of the brain. 

The distribution of classes is more or less equal, as seen in 

Figure 1. Recent models using ViT trained on this dataset 

claim 94-98% [9, 10, 13, 14]. Bias-field correction was 
performed using N4ITK [34], skull stripping was performed 

using BET [35], and all slices were resized to 224 x 224 pixels. 

During training, random flips, rotations, and intensity jitter 

were used to augment data. 

3.2. BraTS2020 Dataset 

The BraTS2020 dataset [12, 23-25] consists of 
multimodal 3D MRI scans of brain gliomas with segmentation 

labels, as well as patient survival information.  

There are 369 training instances, each containing 4 MRI 

sequences, comprising T1, T1Gd, T2, and FLAIR sequences 

and an expert-annotated tumour mask outlining the necrotic 

core as well as the oedema and enhancing tumour regions.  

 
Fig. 1 Class distribution in the figshareimages dataset (number of MRI Images Per Category). The dataset is approximately balanced among the four 

classes. 

 
Fig. 2 Overall pipeline of the proposed unified framework. DWT decomposition yields LL, LH, HL, and HH sub-bands, which form a four-channel 

input to the ViT. The ViT outputs a feature vector subsequently fed into the KELM classifiers: One for multi-class tumour classification and one for 

survival category prediction (with radiomics). Gradient-Weighted Class Activation Mapping (Grad-CAM) and attention rollout provide 

interpretability by highlighting regions influencing each prediction.
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There are two general categories, high and low grade 

gliomas: High Grade Glioblastoma (HGG) Multiforme and 

Low Grade Glioblastoma (LGG) Multiforme. In the training, 

there are 293 cases of HGG and 76 cases of LGG-clinical 

information, such as the overall survival (days) for HGG 
patients [17]. This work aims at two tasks: (1) implicit tumour 

grade classification (i.e., via survival categories) and (2) 

prediction of survival category for HGG patients. Survival 

times are discretized into 3 clinically meaningful bins [25]: 

short-term (<150 days), mid-term (150-300 days), and long-

term (>300 days). LGG patients are not included in survival 

training due to very different and longer survival distributions. 

Radiomic features are extracted using PyRadiomics [36] from 

FLAIR and T1Gd volumes, including tumour volume, shape 

features, and intensity texture features known to correlate with 

survival. In order to feed 2D ViT, the best axial slices are 

picked with the most significant tumour cross-section (using 
the FLAIR mask for these) and matched with the 

corresponding T1Gd slice. The resulting 4-channel DWT 

augmented slice contains complementary information that can 

be used to predict survival. 

4. Proposed Methodology 
The research question of this proposed methodology is 

whether diagnosis and prognosis are solvable in one deep 

learning platform, which uses MRI data. In this regard, the 

model is designed to learn both shared representations that are 

discriminative to tumor classification and predictive of patient 

survival, and at the same time, interpretable. The 

methodological decisions, including wavelet-based multi-

resolution preprocessing, transformer-based global feature 

learning, and kernel-based classification heads, are all 

predetermined by the necessity to balance the accuracy, 

stability, and clinical relevance. In the proposed methodology, 

the design options are driven by technical and clinical 

concerns. The preprocessing method is the Discrete Wavelet 
Transform (DWT) to boost multi-scale texture, like the 

characteristics of the brain MRI, whereby the boundaries of 

tumors and tissue heterogeneity are realized in varying spatial 

resolutions. The choice of Vision Transformers (ViTs) to 

extract features is due to their ability to capture spatial reliance 

on long-range spatial and global anatomy that is not well 

represented by conventional CNNs with small receptive 

fields. To enable stable closed-form learning, minimize the 

risk of overfitting to small medical datasets, and accelerate 

convergence time, Kernel Extreme Learning Machines 

(KELMs) are used in place of fully connected neural 
classifiers. The general process is shown in Figure 2. It 

contains three parts: Wavelet-based pre-processing, a Vision-

Transformer (ViT) based backbone for the extraction of 

characteristics, and classification heads based on KELM. The 

components are described here, in turn. 

4.1. DWT-Based Pre-Processing 

Before transformer input, this work uses a Two-

Dimensional Haar Discrete Wavelet (DWT)  transform on 

each MRI slice. DWT decodes an image into frequency sub-

bands, a Low Frequency Approximation (LL) representing the 

coarse structure, and another three detail image components 

(LH, HL, HH) representing higher-frequency picture structure 

features. Stacking these four sub-bands of the image as 
channels, the network gets both the general structures as well 

as fine texture cues. Multi-resolution information has been 

shown to enhance tumor classification [3, 12, 37]. In practice, 

normalizing each of the sub-bands to zero mean and a variance 

of one, and combining them to create a 224 x 224 x 4 tensor. 

4.2. ViT-Based Pre-Processing 

The work utilizes the ViT-B/16 as the feature extractor. 

The input images are divided into 16 x 16 patches that are 

flattened and linearly embedded. These embeddings and a 

class token learnable cut across the multi-head self-attention 

and the feed-forward blocks of different levels. The model can 

capture global context and long-range dependencies by self-
attention [5, 8, 10, 38]. In this project, ViT is used, and it uses 

ImageNet pre-training and fine-tunes it using the datasets. The 

embedding of the final class token (it is a vector of size 768) 

is used as the deep feature representation z. Standard 

regularization (dropout, layer normalization) as well as data 

augmentation is done during training. 

4.3. KELM Head for Classification and Survival 

Kernel Extreme Learning Machine (KELMs) are single 

hidden-layer networks whose output weights are solved in 

closed form [27-29]. After the ViT, add two distinct heads of 

KELM: one that predicts z to the four classes of tumour and 
the other maps to predict the collection of z and radiomic 

features to the three classes of survival. Radial basis function 

and kernel function with bandwidth selected using cross-

validation. The classification head is trained using 

FigshareImages with loss cross-entropy, and the survival head 

is trained using only BraTS HGG cases. During the training, 

the first focus was on classifying the tumour and then training 

the fine-tuning head for survival to encourage the backbone to 

learn robust tumour features. 

4.4. Explainability Module 

To explain the model's decision, 2 complementary 

techniques were used. First, the cross-entropy is used to 
generate Grad-CAM heatmaps by back-propagating the class 

logits all the way to the final ViT feature map and by 

weighting the channels in the feature by the average of their 

gradients. Second, compute attention rollout by multiplying 

the self-attention matrices layer by layer and interpolating the 

image resolution patch importance map. Examples of such 

visualizations are shown in Figure  6. They verify if the model 

focuses on the tumour's central region and the region situated 

around the tumour for both classification and survival 

purposes. With the model architecture defined, the data 

partitioning and training procedures are described and used to 

evaluate its performance. 
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5. Experimental Setup 
All the computational experiments were carried out by 

means of the deep learning framework PyTorch [39] and the 

toolkit for medical imaging MONAI [40]. A single Nvidia 

A100 GPU was used for training and evaluation. 

5.1. Dataset Partitioning 

For the FigshareImages dataset, the original dataset of 

5712 training slices was randomly split in a way that 80% of 

the images were used to optimize the model, while 20% of the 

images were used for validation. The independent collection 

of 1,311 samples that were given with the dataset was stored 

aside for the final stage of testing. For the BraTS2020 survival 
task, a five-fold cross-validation protocol was used for the 236 

high-grade glioma subjects with survival metadata. There 

were about 189 training volumes and 47 validation volumes in 

each fold. 

5.2. Optimisation Method 

The parameters were updated using the AdamW 

algorithm [41], a variant of Adam [42] that employs decoupled 

weight decay. Let g (t) be the gradient of the loss function at 

repetitive execution of t. Two running statistics are 

maintained: a first-order estimate, u (t), and a second-order 

estimate, s(t). With decay factors ρ1 = 0.9 and ρ2 = 0.999, these 

decay according to 

u(t) =  𝜌1 u
(t−1)  +  (1 − 𝜌1)g(t), (1) 

s(t)  =  𝜌2s(t−1) +  (1 − 𝜌2) (g(t))2 (2) 

Bias-corrected forms, 

ũ(𝑡) =  
u(𝑡)

1− 𝜌1
t ,        s̃(𝑡) =  

s(𝑡)

1− 𝜌2
t  , (3) 

Compensate for the initialization effect. Using these 

corrected estimates, the weight vector 𝜃 is refined according 

to: 

𝜃(𝑡+1) =  𝜃(𝑡) −  𝛼
𝑢(𝑡)

√𝑠̃(𝑡)+∈
−  𝜔𝜃(𝑡) (4) 

Where α denotes the learning rate, 𝜔 the decoupled 

weight-decay coefficient, and ∈=  10−8 a numerical 

stabilizer. 

5.3. Learning Rate Schedule 

To obtain a smooth reduction in the step size, a cosine 

annealing schedule [43] was used. Let 𝛼𝑚𝑎𝑥and 𝛼𝑚𝑖𝑛  Let the 

maximum and minimum admissible learning rates, k, be the 

epoch in progress, and K be the total number of epochs to train 

the model. Then the learning rate epoch k is computed as 

𝜶𝒌 = 𝜶𝒎𝒊𝒏 + 
𝜶𝒎𝒂𝒙−𝜶𝒎𝒊𝒏

𝟐
[𝟏 + 𝒄𝒐𝒔(

𝝅𝒌

𝑲
) (5) 

5.4. Training Protocol 

The unified model was run and trained for a maximum of 

100 epochs with early stopping [44] with a threshold of 

patience of 10 epochs. For the classification task on 

FigshareImages, 32 epochs of batches were used. For the 
prediction of survival, the batch size was fixed at 8 because of 

the introduction of DWT augmented slices coupled with 

radiomic descriptors. 

5.5. Performance Indicators 

Performance was quantified with regard to accuracy, 

precision, recall, F1-score, and multi-class ROC-AUC for the 

tumour classification task. For the prediction of survival, 

accuracy, and F1-score were calculated for the short, medium, 

and long-term survival categories. 

The choice of accuracy and F1-score as evaluation 

metrics was made in response to the equal distribution of the 

classes in the dataset. Macro-averaged indices were used to 
avert discrimination in favor of the powerful classes. Further 

discussion of ROC and precision-recall curves has been used 

to evaluate the classifier's robustness and calibration, making 

sure that the performance evaluation is not insignificantly 

statistically meaningful. 

6. Results and Analysis 
Using the protocol above, quantitative and qualitative. 

The evaluation results are presented below. 

6.1. Quantitative Performance Evaluation 
The proposed unified DWT+ViT+KELM framework 

achieves good performance on both tasks. The best accuracy 

of the classification in the four-class is 98.02% on the 

FigshareImages test set with macro-F1 about 0.98. This 

outperforms classical CNN baselines (86.4% [19]) and is an 

improvement over transformer baselines, which quote that 

they achieve 94% accuracy [9, 10, 13]. Fine-tuned ViT models 

have recently achieved up to 98.7% accuracy [3, 9, 10, 14]; 

the results are competitive with these Q1 journal works and 
use a simpler classifier head. The proposed model achieves 

94.67% accuracy on the prediction of the short, mid, or long 

survival groups of the patients on BraTS survival prediction.  

This compares favourably with radiomics-only models 

(C-index 0.75-.77 [26]) as well as deep learning baselines 

(accuracy around 90%). The integrated KELM heads 

consistently achieve high precision/recall on the high-

dimensional ViT features (Table 4).  

Precision, recall, and F1-score scores for every class of 

tumour in the FigshareImages test set are shown in Table 3, 

along with the values of test samples belonging to each class. 

The model achieves balanced performance across classes. 

Table 4 summarizes the accuracy, precision, recall, and F1-

score of the KELM survival head test over the BraTS2020 

high-grade glioma cohort. 
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Table 3. Classification metrics on the figshareimages test set 

Class Precision Recall F1-score Support 

Glioma 0.9906 0.9300 0.9621 300 

Meningioma 0.9354 0.9935 0.9635 366 

No tumor 1.0000 1.0000 1.0000 405 

Pituitary 0.9867 0.9900 0.9884 300 

Overall accuracy 98.02% 

  
Table 4. Survival categorization metrics on BraTS2020 high-grade 

glioma cases. The KELM head achieves high precision and recall across 

the three survival bins 

Metric Accuracy Precision Recall 
F1-

score 

Survival 

(KELM) 
94.67% 0.9312 0.9275 0.9293 

To understand the model’s learning behavior, first, its 

training/validation curves are evaluated. 

6.2. Training Dynamics 

As mentioned above, Figure 3 depicts precision during 

validation and training as well as the loss figures for 

classification.  

The model converges rapidly (~20 epochs) and achieves 

high accuracy on the validation set (~95% early, approaching 

100% by epoch 100). The training and validation loss curves 

(Figure 3) decrease smoothly without overfitting, indicating 

effective regularization. Similar trends were seen for survival 

training (omitted for brevity). 

 
(a) Training or validation accuracy curves 

 
(b) Training or validation loss curves 

Fig. 3 Training dynamics for the figshareimages classification task, (a) Training and validation accuracy curves steadily increase to near-perfect 

performance, and (b) Training and validation losses decrease smoothly, indicating stable optimisation without overfitting. 

The given model has been found on the phenomenon of 

the faster convergence, which has been observed to be 

stimulated by the multi-resolution representation of the 
Discrete Wavelet Transform (DWT) that simplifies the 

learning of features by breaking down MRI images into 

complementary frequency bands. Additionally, the closed-

form optimization of Kernel Extreme Learning Machine 

avoids unstable gradient updates, resulting in smoother loss 
curves and a faster attainment of a stable point. The 

regularization effect of wavelet-based feature enrichment and 
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transformer self-attention is evident: the lack of overfitting, 

despite achieving high classification accuracy, reflects the 

regularization effect. 

6.3. Analyzing ROC and Precision-Recall 

Beyond accuracy, the model is evaluated using One-

Versus-Rest ROC and Precision-Recall (PR) curves.  

Figure 4 demonstrates that the four classes have AUCs 

that are greater than 0.99 (panel (a)).  

The PR curves in Figure 4b remain high for all recall 

levels, indicating that there are few false positives, especially 

in the "no tumour" class. These metrics show that the classifier 
maintains high precision across all recall levels. 

 
(a) ROC curves (one-vs-rest) 

 
(b) Precision-recall curves 

Fig. 4 Receiver Operating Characteristic and precision-recall curves for the four-classes tumour classification task, (a) ROC curves demonstrate 

near-perfect separation between positive and negative classes (AUC>0.99 for each), (b) Precision-recall curves remain high even at large recall, 

especially for the ‘no tumor’ class. 

To isolate the effect of each component, ablations starting 

from a baseline ViT.  

6.4. Study of Ablation 

Ablation analysis is done to figure out how much each 

part affects things. Starting with just a simple ViT without 

DWT or KELM, with the DWT layer one by one, and 

replacing the dense layer at the end with a KELM classifier. 
The results in Figure 5 show that the baseline ViT has an 

accuracy of 94.1%.  

This accuracy is increased to 97% with the addition of 

DWT, as a high praise for the multi-resolution inputs. 

Replacing the softmax layer with a KELM yields further 

improvements, achieving 98% accuracy, which demonstrates 

additional benefits from using the closed-form solution. The 

same trend can be observed in the prediction of survival (not 

shown): DWT and KELM improve performance both 

individually and in combination, resulting in the best 

performance in terms of survival. The improvement obtained 

by incorporating DWT highlights the importance of multi-

scale texture cues in brain MRI, which are often suppressed in 

raw spatial representations. The additional gain achieved by 
KELM indicates that closed-form kernel-based classifiers 

provide better generalization on high-dimensional ViT 

embeddings compared to gradient-trained dense layers. The 

findings of the ablation study demonstrate the importance of 

using wavelet decomposition to extract fine-grained texture 

information that is typically buried in raw spatial 

representations. The further performance gain achieved using 

KELM instead of dense classifiers demonstrates that the use 

of kernel-based closed-form learning is effective in cases 
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involving high-dimensional transformer embeddings. This 

evidence demonstrates that the effects of both DWT and 

KELM on the overall effectiveness of the proposed system are 

independent and synergistic. 

 
Fig. 5 Ablation analysis on tumour classification accuracy. Baseline ViT (no DWT, Dense Softmax Output) achieves 94.1% accuracy. Adding DWT 

improves accuracy to 97%. Using the KELM classifier instead of the dense output increases performance to 98%, highlighting the synergy between 

wavelet features and KELM heads

6.5. Explainability: Qualitative Results 

Representative attention-based explanations are in Figure 

6. In panel (a), Grad-CAM heatmaps are superimposed on 

misclassified examples, showing that failure cases are often 

extremely low-contrast tumours. In panel (b), ViT attention 

rollout maps are added on top of photos that are correctly 

classified, demonstrating that the model looks strong at the 

tumour cores and peri-tumoral regions and ignores healthy 

tissue. These visualizations help build confidence in the 

model's decision, as they demonstrate that predictions are 

based on medically meaningful features. 

 
(a) Misclassified examples with grad-CAM overlays 
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(b) Correct classifications with attention rollout 

Fig. 6(a) Grad-CAM heatmaps on misclassified images show spread or misplaced attention, indicating model uncertainty, and (b)ViT attention 

rollout overlays on correctly classified images concentrate on the tumour core and peri-tumoral regions, conforming to clinical expectations. 

6.6. Error Analysis 

Misclassifications are analyzed in order to identify 

common modes of failure. The confusion matrix in Figure 7 

reveals that the errors are found mostly between similar 

tumour types (e.g., pituitary vs meningioma) rather than 
dissimilar classes (tumour vs. no tumour). Figure 6(a) gives an 

example of typical misclassification: images with very low 

contrast or a typical tumour appearance are responsible for 

erroneous predictions.  

 
Fig. 7 Confusion matrix for the four tumour classes. The majority of 

errors occur between similar tumour types, while dissimilar classes 

(tumour vs. no tumour) are rarely confused. Values indicate the 

number of test samples per cell. 

Attention maps are diffuse in these cases, denoted by the 

uncertainty. Such cases can be flagged for closer human 

review. Overall, the errors of the model are understandable 

and reflect radiologists' difficulties. 

7. Future Work 
The use of unified DWT+ViT+KELM presents several 

research opportunities in the future. First of all, three-

dimensional versions of the ViT could be explored to process 

the entire volumetric MRI, rather than representative slices. 

Recent attempts in applying Swin transformers to volumetric 

data have suggested that 3D patching can be used to capture 

more robust contextual information about anatomy.  

Second, multi-modal fusion, respectively combining MRI 

with perfusion, diffusion, PET, or clinical biomarkers, may 

allow for better classification and also better survival 

prediction.  

Third, federated learning (privacy-preserving training on 

multi-institutional data) and privacy-preserving learning 

might enable this to be done, training using multi-institutional 

datasets, without having to share the raw patient data.  

Fourth, an ordinal regression formulation of survival 

could supersede the discrete categories employed here; this 

would allow levels of prognostic estimate with the potential to 

be finer grained. Finally, the unified architecture could be 

extended for other tasks such as tumour segmentation, 

treatment response prediction, or cognitive impairment 

assessment in AD. By adding appropriate heads, the backbone 

can be used as a general feature extractor for neuroimaging. 

7.1. Limitations & Bias 

Despite promising results, this study has several 

constraints that must be recognized. First, the tumor 
classification experiments are conducted on 2D MRI slices, 

which may not fully capture three-dimensional tumor 

morphology. While this choice enables larger sample sizes 
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and reduced computational cost, future work should 

thoroughly investigate 3D transformer architectures. Second, 

survival prediction is evaluated on the BraTS 2020 dataset, 

which contains a finite quantity of annotated cases, potentially 

introducing dataset-specific bias and limiting generalizability 

across institutions. 

Additionally, the use of publicly available datasets may 

reflect inherent acquisition and demographic biases that are 

not representative of real-world clinical populations. Although 

data augmentation and cross-validation mitigate overfitting, 

potential multi-center validation is necessary to verify 

robustness. Finally, while explainability methodologies, 

including Grad-CAM and attention mechanism rollout, 

provide qualitative insights, they do not guarantee causal 

interpretability, and clinical decision-making should not rely 

solely on model explanations. 

8. Conclusion 
A single architecture is presented here that achieves both 

tumor classification and survival prediction on multi-

institutional MRI data. The model is used to simultaneously 

perform four-class tumour classification and three-category 

survival prediction using a combination of wavelet-based pre-

processing, transformer feature extraction, and closed-form 
KELM classifiers. On the FigshareImages and BraTS2020 

data sets, the method obtained 98.02% and 94.67% 

classification and survival prediction accuracy, respectively. 

Breaking the classical CNN and transformer baselines and 

closing in on the recently reported fine-tuned ViT results. 

Ablation studies showed that both DWT and KELM are 

important components. Interpretability using Grad-CAM and 

attention rollout showed the focus of the model on tumour 

areas and clinically relevant structures. This cohesive and 

computable approach holds promise for integrated 

neuroimaging analysis. Future research will involve 

volumetric transformers, multi-modal fusion, and challenges 

of inter-institutional federated training. 
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