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Abstract - Labeled graphs serve as a versatile mathematical model with diverse applications in engineering fields. A bijective 

function 𝜗: 𝑉(𝐺) → {1, 2, … , 𝑛} is a distance antimagic labeling of a graph G with n vertices such that the vertex weights 

determined by 𝜔(𝑎) =  ∑ 𝜗(𝑏)𝑏𝜖𝑁(𝑎)  Are unique i.e. 𝜔(𝑎) ≠ 𝜔(𝑏) for distinct vertices 𝑎, 𝑏 𝜖 𝑉(𝐺) where N(a) is the open 

neighbourhood of vertex a in G. This paper demonstrates that distance antimagic labeling and inclusive distance antimagic 

labeling exist for certain special graph constructions- specifically Mycielskian graphs, splitting graphs, and shadow graphs 

when applied to fundamental graph classes like cycles, paths, crown graph and star graphs. Furthermore, the uniqueness of the 

calculated vertex weights is confirmed through a Python-Based Computational Algorithm. 

Keywords - Inclusive Distance Antimagic Labeling, Distance antimagic labeling, Splitting graph, Shadow graph, Mycielski 

Graph.

1. Introduction  
Graph labeling introduced by Rosa [1] in 1967 is the 

process of allocating integers to vertices, edges, or both under 

specified conditions. Labeled graphs act as a mathematical 

tool, finding applications in fields like astronomy, 

cryptography, communication networks, and various 

optimization problems. 

Radio labeling provides an effective approach for 

reducing computational time in sensor network applications 

[2]. Such networks are commonly modeled as chain graphs, 

where sensors are sequentially interconnected. In contrast, 

antimagic labeling represents a distinct class of graph labeling 

techniques that is primarily employed to strengthen data 

transmission security by supporting different encryption 

mechanisms [3]. 

The distance antimagic labeling schemes developed in 

this work offer a practical and adaptable approach for 
industrial and engineering applications that involve 

constructing networks or interconnections analogous to the 

graph structures analyzed in this study. 

The idea of distance magic labeling emerged as a result 

of the study of magic squares. Distance magic labeling was 

introduced by Vilfred [4] and is a bijection 𝜗: 𝑉(𝐺) →
{1, 2, … , 𝑛}  such that there exists a positive integer m and the 

vertex weight  𝜔(𝑝) =  ∑ 𝜗(𝑟)𝑟𝜖𝑁(𝑝)  For any vertex p in 𝑉(𝐺) 

with n vertices, where 𝑁(𝑝) is the set consisting of vertices in 

the open neighbourhood of vertex p in 𝑉(𝐺). Distance magic 

labeling naturally leads to distance antimagic labeling given 

by Kamatchi and Arumugam [5], in which the vertex weights 

𝜔(𝑎) ≠ 𝜔(𝑏) for any pair of distinct vertices a and b in 𝑉(𝐺). 

Further, Dafik [6] initiated the notion of inclusive Distance 

antimagic labeling. 

Definition 1.1 ([5]) Let ϑ: V(G) → {1, 2, … , n} be a 
bijection for a graph G with n vertices. Define vertex weight 

ω(p) =  ∑ ϑ(r)rϵN(p)  for any vertex p in V(G). If ω(p) ≠

ω(q) for every pair of unique vertices p, q in V(G), then ϑ is 

said to be Distance Antimagic. Any graph G that allows this 

type of labeling is referred to as a Distance Antimagic graph. 

Definition 1.2 ([6]) Let ϑ: V(G) → {1, 2, … , n} be a 
bijection for a graph G with n vertices. Define vertex weight 

φ(p) = ϑ(p) +  ∑ ϑ(r)rϵN(p)  for any vertex p in V(G). If 

φ(p) ≠ φ(q) for every pair of unique vertices p, q in V(G), 

then ϑ is said to be Inclusive Distance Antimagic. Any graph 

G that allows this type of labeling is referred to as an Inclusive 

Distance Antimagic graph. 

A Mycielskian graph is obtained by iteratively applying 

the Mycielski construction to an initial triangle-free graph. 

This construction, introduced by Mycielski [5], established 

the: 
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Fig. 1 Example for distance antimagic labeling of a Sun graph and 

inclusive distance antimagic labeling of a Star graph, where vertex 

labels are written as usual, and vertex weights are given within 

brackets. 

Existence of graphs that are free of triangles yet possess 

arbitrarily large chromatic numbers. A key feature of the 

construction is that it preserves the triangle-free nature of the 

original graph while strictly increasing its chromatic number 

at each iteration. 

A Mycielski graph obtained from a simple, finite, 

triangle-free graph inherits several important structural and 

coloring properties. The Mycielski construction preserves the 

triangle-free nature of the original graph while increasing its 

chromatic number by exactly one; that is, if G is a graph with 

chromatic number χ(G), then its Mycielskian M(G) satisfies 

χ(M(G)) = χ(G)+1. The construction also maintains simplicity, 
introducing neither loops nor multiple edges, and preserves 

connectivity whenever the initial graph is connected. 

Structurally, the Mycielskian M(G) contains 2∣V(G)∣+1 

vertices, with an edge set expanded in a systematic manner 

from that of G. Moreover, the clique number remains 

unchanged under the construction; in particular, starting from 

a triangle-free graph ensures that the resulting Mycielski graph 

has maximum clique size two. Repeated application of this 

construction therefore produces an infinite class of graphs that 

are triangle-free yet exhibit unbounded chromatic number, 
highlighting the significance of Mycielski graphs in graph 

coloring theory and extremal graph theory. 

Definition 1.3 Let G be a graph with vertex set 

{a1, a2, … , an}. The Mycielski graph associated with G, 

denoted by M(G), is constructed by enlarging the vertex set to 

include an additional copy of each original vertex together 

with one extra vertex. Thus, V(M(G)) =

{a1, a2, … , an, a1
, , a2

, , … , an
, , a} so that M(G) has 2n+1 vertices. 

The edge set of M(G) consists of all edges of the original graph 

G, along with edges joining each new vertex ai
,
  to all 

neighbours of aiin G, and edges connecting the additional 

vertex a to every vertex ai
,
, for 1 ≤ i ≤ n. 

E. Sampathkumar and Walikar [9] gave the notion of the 

splitting graph of a graph. 

Definition 1.4 ([9]) For every vertex a of a graph G, take 

another point a, and join a, To all vertices of G adjacent to a. 

The graph Sl(G) thus obtained is called the splitting graph of 

G. 

Definition 1.5 The shadow graph of a graph G, denoted 

by Sh(G), is constructed by taking a duplicate copy G′ of G 

and then connecting each vertex of G′ to all those vertices in 
G that are adjacent to its corresponding vertex in the original 

graph. 

Distance antimagic labeling is a relatively recent 

extension of classical antimagic labeling, in which vertices are 

assigned distinct integers such that the induced vertex 

weights-defined as the sum of labels of vertices at a specified 

distance-are pairwise distinct. This labeling paradigm has 

attracted attention due to its applicability in modeling 

interference-free communication networks, frequency 

assignment, and distributed system design. Although distance 

magic and distance antimagic labelings have been investigated 

for several standard graph families, the impact of graph 
transformations on Distance antimagic properties remains 

insufficiently understood, particularly for constructions such 

as Mycielskian graphs, splitting graphs, and shadow graphs. 

Existing research on Mycielskian graphs has primarily 

concentrated on chromatic properties and, more recently, on 

distance magic labeling, with only limited results available for 

Distance antimagic labeling [9, 10]. Similarly, antimagic 

labeling of splitting and shadow graphs has been addressed 

mainly for specific graph classes or under restricted distance 

conditions [11, 12]. For instance, distance-2 antimagic 

labeling of shadow graphs of cycles and complete bipartite 
graphs has been established, demonstrating that shadow graph 

operations can preserve antimagic behavior under certain 

constraints [11]. However, these studies are fragmented and 

do not provide a unified analysis across different graph 

operations or for fundamental graph families such as paths, 

stars, and crown graphs. Moreover, comparative results 

linking Mycielskian, splitting, and shadow constructions 

within the same Distance antimagic framework are largely 

absent from the literature. 

In view of these gaps, this paper presents a systematic 

investigation of Distance antimagic labeling for Mycielskian 

graphs, splitting graphs, and shadow graphs derived from 

basic classes of graphs, including paths, cycles, star graphs, 

and crown graphs. The novelty of this work lies in extending 

distance antimagic labeling results simultaneously to multiple 

graph transformations and previously underexplored graph 

families. In addition, a Python-based computer-aided 

procedure is employed at the beginning of each section to 

verify the uniqueness of vertex weights, thereby providing 
computational validation alongside theoretical proofs. This 

integrated approach not only enhances the reliability of the 

results but also aligns with the applied and algorithmic 

orientation, offering a scalable methodology for future studies 

in graph labeling and network modeling. 
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2. Results and Discussion  
2.1. Distance Antimagic Labelling of Mycielski and Splitting 

Graph of Graphs 

This section examines the existence of Distance 

antimagic labelings for Mycielskian and splitting graph 

constructions derived from basic graph classes, namely paths, 

cycles, star graphs, crown graphs, and friendship graphs. 

Theorem 2.1.1 Mycielskian graph of the path Pn Is 

Distance antimagic when n is even. 

Proof Consider a path G = Pn where n is even. 

Let {a1, a2, … , an} be the vertex set of Pn. Let 

{a1, a2, … , an, a1
, , a2

, , … , an
, , a} be the vertex set of Mycielskian 

graph M(G) of G such that aj
,
 is connected to all the vertices 

adjacent to aj and a is connected to aj
,
 for 1 ≤ j ≤ n. If n = 2, 

then M(G)) is a cycle C5 Which is Distance antimagic [3]. For 

n ≠ 2, let ϑ: V(M(G)) → {1, 2, … ,2n + 1} be a labeling 

function such that  

𝜗(𝑎𝑗) = 2𝑗  

𝜗(𝑎𝑗
, ) = 2𝑗 − 1   

𝜗(𝑎) = 2𝑛 + 1  

where 1 ≤ j ≤ n. It is evident that 𝜗 is a bijective mapping, 

and the corresponding vertex weights are defined as  

𝜔(𝑎𝑗) = {
7          ∶  𝑗 = 1
8𝑗 − 6 ∶ 2 ≤ 𝑗 ≤ 𝑛 − 1
4𝑛 − 5 ∶ 𝑗 = 𝑛

  

𝜔(𝑎𝑗
, ) = {

2𝑛 + 5       ∶  𝑗 = 1
4𝑗 + 𝑛 + 1 ∶ 2 ≤ 𝑗 ≤ 𝑛 − 1
4𝑛 − 1       ∶ 𝑗 = 𝑛

  

𝜔(𝑎) = 𝑛2  

As unique vertex weights are obtained, so the 

Mycielskian graph of path M(G) is Distance antimagic when 

n is even. 

 
Fig. 2 Example for distance antimagic labeling of the mycielskian graph 

of 𝑷𝟖. The labels are written as usual, and vertex weights are given in 

brackets. 

The algorithm described below is validated using a 

Python-based computational approach to confirm the 

distinctness of vertex weights. 

 

 
 

Theorem 2.1.2 Mycielskian graph of the cycle Cn Is 

Distance antimagic when n is odd. 

Proof Consider a path G = Cn where n is odd. 

Let {a1, a2, … , an} be the vertex set of Cn.  

Let {a1, a2, … , an, a1
, , a2

, , … , an
, , a} be the vertex set of 

Mycielskian graph M(G) of G such that aj
,
 is connected to all 

the vertices adjacent to aj and a is connected to aj
,
 for 1 ≤ j ≤ 

n.  Let ϑ: V(M(G)) → {1, 2, … ,2n + 1} be a labeling function 

such that: 
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ϑ(aj) = 2j  

ϑ(aj
, ) = 2j + 1  

ϑ(a) = 1  

Where 1 ≤ j ≤ n. It is evident that ϑ is a bijective mapping, 

and the corresponding vertex weights are defined as 

ω(aj) = {
4n + 10      ∶  j = 1
8j + 2         ∶ 2 ≤ j ≤ n − 1
4n + 2        ∶ j = n

  

The flowchart for the description of the algorithm 

validating the uniqueness of vertex weights of Distance 

antimagic labelling of Mycielskian graph is described below:  

 
Fig. 3 Flow chart 

Start

Read integer n

Is n=2 or n is 
odd

Yes

Print: The result 
holds for even 

n.

Stop

No

Set V=2n+1.                              
Initialize Va, Vai, Vai

,

empty.

Loop i=1 to 2n+1                        
If i odd add i to  Vai.                       

Else add i to Vai

Assign Va=2n+1                   
Wa=0, Wai=0, Wai

,=0

Call Find_Wai. For i =1 to 
n       if i=1 Wai=7                               
elif i=n Wai=4n-5                           

else Wai=8i-2

Call Find_Wai
,.   For i =1 

to n    if i=1 Wai
,=2n+5                        

elif i=n Wai
,=4n-1                    

else Wai
,=4i+2n+1

Compute Wa=n2

Are all 
elements in 

Wai and Wai
, 

distinct?

Yes

Output distinct 
elements

Stop

No

Output identical 
elements

Stop
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𝜔(𝑎𝑗
, ) = {

2𝑛 + 5 ∶  𝑗 = 1
4𝑗 + 1  ∶ 2 ≤ 𝑗 ≤ 𝑛 − 1
2𝑛 + 1 ∶ 𝑗 = 𝑛

  

𝜔(𝑎) = (𝑛 + 1)2 − 1  

As unique vertex weights are obtained, so the 

Mycielskian graph of cycle M(G) is Distance antimagic when 

n is odd. 

 
Fig. 4 Example for distance antimagic labeling of mycielskian graph of 

cycle 𝑪𝟕. 

Theorem 2.1.3 Splitting graph of the path Pn is Distance 

antimagic when n is even. 

Proof Consider a path G = Pn where n is even. 

Let {a1, a2, … , an} be the vertex set of Pn. Let {a1
, , a2

, , … , an
, } 

be the corresponding vertex set such that aj
,
 is connected to all 

the vertices adjacent to aj for 1 ≤ j ≤ n. Let Sl(G) be the 

splitting graph of path G = Pn. Define a labelling function 

ϑ: V(Sl(G)) → {1, 2, … ,2n} such that:  

ϑ(aj) = 2j  

ϑ(aj
, ) = 2j − 1  

where 1 ≤ j ≤ n. Clearly, the function ϑ establishes a one-

to-one correspondence, and the associated vertex weights are 

determined by:  

ω(aj) = {
7                  ∶  j = 1
8j − 2         ∶ 2 ≤ j ≤ n − 1
4n − 5        ∶ j = n

  

ω(aj
, ) = {

4            ∶  j = 1
4j           ∶ 2 ≤ j ≤ n − 1
2n − 2  ∶ j = n

  

As each vertex is assigned a distinct weight, it follows that 

the splitting graph of the path admits a distance antimagic 

labeling. 

 
Fig. 5 Example for distance antimagic labeling of the splitting graph of 

path 𝑷𝟏𝟎 

Theorem 2.1.4 Splitting graph of the cycle Cn is Distance 

antimagic when n is odd. 

Proof Consider a cycle G = Cn where n is odd. 

Let {a1, a2, … , an} be the vertex set of Cn. Let 

{a1, a2, … , an, a1
, , a2

, , … , an
, } be the vertex set of Splitting graph 

Sl(G) of G such that aj
,
 is connected to all the vertices adjacent 

to aj for 1 ≤ j ≤ n. Let ϑ: V(Sl(G)) → {1, 2, … ,2n} be a function 

such that:  

ϑ(aj) = 2j  

ϑ(aj
, ) = j + n  

Where 1 ≤ j ≤ n. The function ϑ establishes a one-to-one 
correspondence, and the associated vertex weights are 

determined by:  

ω(aj) = {
4n + 4      ∶  j = 1
2n + 4j    ∶ 2 ≤ j ≤ n − 1
4n              ∶ j = n

  

ω(aj
, ) = {

n + 2       ∶  j = 1
2j              ∶ 2 ≤ j ≤ n − 1
4n             ∶ j = n

  

As unique vertex weights are obtained, the splitting graph 

of cycle Sl(G) is Distance antimagic when n is odd. 

 
Fig. 6 Example for distance antimagic labeling of the splitting graph of 

cycle 𝑪𝟗 
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Theorem 2.1.5 Splitting graph of the complete graph Kn 

is Distance Antimagic. 

Proof Consider a complete graph G = Kn. 

Let {a1, a2, … , an} be the vertex set of Kn. Let {a1
, , a2

, , … , an
, } 

be the corresponding vertex set such that aj
,
 is connected to all 

the vertices adjacent to aj for 1 ≤ j ≤ n. Let Sl(G) be the 

splitting graph of Kn. Let ϑ: V(Sl(G)) → {1, 2, … ,2n} be a 

function such that  

𝜗(𝑎𝑗) = 𝑗  

𝜗(𝑎𝑗
, ) = 𝑗 + 𝑛  

where 1 ≤ j ≤ n. It is evident that 𝜗 is a bijective function, 

and the vertex weights are defined as: 

𝜔(𝑎𝑗) = 2(𝑛2 − 𝑗)  

𝜔(𝑎𝑗
, ) =

𝑛(𝑛+1)

2
− 𝑗  

As the vertex weights are monotonically decreasing, they 

are distinct. Hence, the Splitting graph Sl(G) of a complete 

graph is Distance antimagic. 

Crown graph of order n for n ≥ 3 is a graph G with vertex 

set {𝑎1, 𝑎2, … , 𝑎𝑛 , 𝑏1, 𝑏2, … , 𝑏𝑛} and edge set {(𝑎𝑟𝑏𝑠): 1 ≤
𝑟, 𝑠 ≤ 𝑛, 𝑟 ≠ 𝑠}. 

Theorem 2.1.6 Splitting Graph of the Crown Graph is 

Distance Antimagic. 

Proof Consider a crown graph G = 𝐻𝑛,𝑛. 

Let {𝑎1, 𝑎2, … , 𝑎𝑛 , 𝑏1, 𝑏2, … , 𝑏𝑛} be the vertex set of 𝐺. Let 

{𝑎1
, , 𝑎2

, , … , 𝑎𝑛
, , 𝑏1

, , 𝑏2
, , … , 𝑏𝑛

, } be the corresponding vertex set 

such that 𝑎𝑗
,
 is connected to all the vertices adjacent to 𝑎𝑗  and 

𝑏𝑗
,  is connected to all vertices adjacent to 𝑏𝑗  for 1 ≤ j ≤ n. 

Let Sl(G) be the splitting graph of 𝐺. Define a function 

𝜗: 𝑉(𝑆𝑙(𝐺)) → {1, 2, … ,4𝑛} such that  

𝜗(𝑎𝑗) = 𝑗  

𝜗(𝑎𝑗
, ) = 𝑗 + 2𝑛  

𝜗(𝑏𝑗) = 𝑗 + 𝑛  

𝜗(𝑏𝑗
, ) = 𝑗 + 3𝑛  

where 1 ≤ j ≤ n. Clearly, 𝜗 establishes a one-to-one 

correspondence, and the vertex weights are determined by 

𝜔(𝑎𝑗) = 𝑛(5𝑛 − 3) − 2𝑗  

𝜔(𝑎𝑗
, ) =

𝑛(3𝑛−1)

2
− 𝑗  

𝜔(𝑏𝑗) = 𝑛(3𝑛 − 1) − 2𝑗  

𝜔(𝑏𝑗
, ) =

𝑛(𝑛+1)

2
− 𝑗  

Since the vertex weights form a strictly decreasing 

sequence, they are all distinct. Hence, the Splitting graph Sl(G) 

of the crown graph is Distance antimagic. 

 
Fig. 7 Example for distance antimagic labeling of the splitting graph of 

the crown graph 𝑯𝟓,𝟓 

2.2. Inclusive Distance Antimagic Labeling of Splitting and 

Shadow Graph of Graphs 

This section is devoted to the study of inclusive Distance 

antimagic labeling of the splitting and shadow graphs 

associated with basic graph classes, namely paths, cycles, and 

star graphs. 

Theorem 2.2.1 Splitting graph of the path Pn Is inclusive 

Distance antimagic. 

Proof Consider a path G = 𝑃𝑛. Let {𝑎1, 𝑎2, … , 𝑎𝑛} be the 

vertex set of 𝑃𝑛 . Let {𝑎1
, , 𝑎2

, , … , 𝑎𝑛
, } be the corresponding 

vertex set such that 𝑎𝑗
,
 is connected to all the vertices adjacent 

to 𝑎𝑗  for 1 ≤ j ≤ n. Let Sl(G) be the splitting graph of path G = 

𝑃𝑛 . Let 𝜗: 𝑉(𝑆𝑙(𝐺)) → {1, 2, … ,2𝑛} be a labelling function 

such that  

𝜗(𝑎𝑗) = 1 + 2𝑛 − 𝑗  

𝜗(𝑎𝑗
, ) = 𝑗  

Where 1 ≤ j ≤ n. It is evident that 𝜗 is a bijection, and the 

vertex weights are computed as 

 𝜑(𝑎𝑗) = {
4𝑛 + 1             ∶  𝑗 = 1
6𝑛 + 3 − 𝑗      ∶ 2 ≤ 𝑗 ≤ 𝑛 − 1
3𝑛 + 2             ∶ 𝑗 = 𝑛

 

𝜑(𝑎𝑗
, ) = {

2𝑛                        ∶  𝑗 = 1
4𝑛 − 𝑗 + 2         ∶ 2 ≤ 𝑗 ≤ 𝑛 − 1
2𝑛 + 2                ∶ 𝑗 = 𝑛
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As we obtain unique vertex weights, the Splitting graph 

of the path Sl(G) is inclusive Distance antimagic. 

 
Fig. 8 Example for inclusive distance antimagic labeling of the splitting 

graph of  𝑷𝟏𝟏 

Theorem 2.2.2 Splitting Graph of the Cycle 𝐂𝐧 Is 

inclusive Distance Antimagic. 

 
 

Proof Consider a cycle G = 𝐶𝑛. Let {𝑎1, 𝑎2, … , 𝑎𝑛} be the 

vertex set of 𝐶𝑛 . Let {𝑎1, 𝑎2, … , 𝑎𝑛 , 𝑎1
, , 𝑎2

, , … , 𝑎𝑛
, } be the vertex 

set of Splitting graph Sl(G) of G such that 𝑎𝑗
,
 is connected to 

all the vertices adjacent to 𝑎𝑗  for 1 ≤ j ≤ n. Consider a labelling 

function 𝜗: 𝑉(𝑆𝑙(𝐺)) → {1, 2, … ,2𝑛} such that  

𝜗(𝑎𝑗) = 𝑗  

𝜗(𝑎𝑗
, ) = 2𝑛 + 1 − 𝑗  

where 1 ≤ j ≤ n. 𝜗 establishes a one-to-one 

correspondence, and the associated vertex weights are 

determined by 

𝜑(𝑎𝑗) = 4𝑛 + 2 + 𝑗  

𝜑(𝑎𝑗
, ) = {

3𝑛 + 2            ∶  𝑗 = 1
2𝑛 + 1 + 𝑗     ∶ 2 ≤ 𝑗 ≤ 𝑛 − 1
2𝑛 + 1            ∶ 𝑗 = 𝑛

  

As unique vertex weights are obtained, the splitting graph 

of cycle Sl(G) is inclusive Distance Antimagic. 

The algorithm is outlined below for confirming the 

distinctness of the vertex weights of the Splitting graph of a 

path. 

The star graph denoted by 𝐾1,𝑛 Is a graph with a central 

vertex a and connected to (n + 1) vertices of degree 1 each. 

Theorem 2.2.3 Splitting Graph of the Star Graph K1,n Is 

inclusive Distance Antimagic. 

Proof Consider a star graph G = 𝐾1,𝑛. Let a be the central 

vertex connected to (n + 1) vertices {𝑎1, 𝑎2, … , 𝑎𝑛+1}. Let 𝑎, 

and {𝑎1
, , 𝑎2

, , … , 𝑎𝑛+1
, } be the corresponding vertices such that 

𝑎, is connected to all vertices adjacent to a and 𝑎𝑗
,
 is connected 

to all the vertices adjacent to 𝑎𝑗  for 1 ≤ j ≤ n respectively. Let 

Sl(G) be the splitting graph of the star graph G = 𝐾1,𝑛. 

Consider a labelling function 𝜗: 𝑉(𝑆𝑙(𝐺)) → {1, 2, … ,2(𝑛 +
2)} such that: 

𝜗(𝑎) = 1  

𝜗(𝑎𝑗) = 𝑛 + 3 + 𝑗  

ϑ(𝑎,) = 𝑛 + 3  

𝜗(𝑎𝑗
, ) = 1 + 𝑗  

where 1 ≤ j ≤ n. Clearly, 𝜗 establishes a one-to-one 

correspondence, and the associated vertex weights are 

determined by: 
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𝜑(𝑎) = 2𝑛2 + 8𝑛 + 7  

𝜑(𝑎𝑗
, ) = 2 + 𝑗  

𝜑(𝑎,) =
(𝑛+2)(3𝑛+7)

2
  

𝜑(𝑎𝑗) = 2𝑛 + 7 + 𝑗   

As we obtain unique vertex weights, the Splitting graph 

Sl(G) of the star graph is inclusive Distance antimagic. 

 
Fig. 9 Example for inclusive distance antimagic labeling of the splitting 

graph of the star graph  𝑲𝟏,𝟔 

Theorem 2.2.4 Shadow graph of the path Pn Is inclusive 

Distance antimagic. 

Proof Consider a path G = 𝑃𝑛. Let {𝑎1, 𝑎2, … , 𝑎𝑛} be the 

vertex set of 𝑃𝑛 . Let {𝑎1
, , 𝑎2

, , … , 𝑎𝑛
, } be the vertex set of a copy 

of 𝑃𝑛 .  

Let Sh(G) be the shadow graph of path G = 𝑃𝑛 with vertex 

set {𝑎1, 𝑎2, … , 𝑎𝑛 , 𝑎1
, , 𝑎2

, , … , 𝑎𝑛
, }. Consider a labeling function 

𝜗: 𝑉(𝑆ℎ(𝐺)) → {1, 2, … ,2𝑛} such that  

𝜗(𝑎𝑗) = 𝑗  

𝜗(𝑎𝑗
, ) = 2𝑛 + 1 − 𝑗  

where 1 ≤ j ≤ n. It is evident that 𝜗 is a bijection, and the 

vertex weights are computed as 

 𝜑(𝑎𝑗) = {
2𝑛 + 2             ∶  𝑗 = 1
4𝑛 + 2 + 𝑗      ∶ 2 ≤ 𝑗 ≤ 𝑛 − 1
3𝑛 + 1             ∶ 𝑗 = 𝑛

  

𝜑(𝑎𝑗
, ) = {

1 + 4𝑛               ∶  𝑗 = 1
3 + 6𝑛 − 𝑗       ∶ 2 ≤ 𝑗 ≤ 𝑛 − 1
3𝑛 + 2                ∶ 𝑗 = 𝑛

  

Since each vertex in the shadow graph is assigned a 

unique weight, the path shadow graph Sh(G) admits inclusive 

Distance antimagic. 

Theorem 2.2.5 Shadow Graph of the Cycle Cn Is Inclusive 

Distance Antimagic. 

Proof Consider a cycle G = 𝐶𝑛 with vertex 

set {𝑎1, 𝑎2, … , 𝑎𝑛}. Let {𝑎1
, , 𝑎2

, , … , 𝑎𝑛
, } be the vertex set of a 

copy of 𝐶𝑛. Let Sh(G) be the shadow graph of G with vertex 

set. {𝑎1, 𝑎2, … , 𝑎𝑛 , 𝑎1
, , 𝑎2

, , … , 𝑎𝑛
, }. Let 𝜗: 𝑉(𝑆ℎ(𝐺)) →

{1, 2, … ,2𝑛} be a labelling function such that  

𝜗(𝑎𝑗) = 𝑗  

𝜗(𝑎𝑗
, ) = 2𝑛 + 1 − 𝑗  

where 1 ≤ j ≤ n. It is evident that 𝜗 is a bijective function, 

and the vertex weights are determined as 

 𝜑(𝑎𝑗) = {
4𝑛 + 3            ∶  𝑗 = 1
4𝑛 + 2 + 𝑗      ∶ 2 ≤ 𝑗 ≤ 𝑛 − 1
5𝑛 + 2             ∶ 𝑗 = 𝑛

  

𝜑(𝑎𝑗
, ) = {

2 + 6𝑛               ∶  𝑗 = 1
3 + 6𝑛 − 𝑗       ∶ 2 ≤ 𝑗 ≤ 𝑛 − 1
5𝑛 + 3              ∶ 𝑗 = 𝑛

  

As we obtain unique vertex weights, the Shadow graph of 

the cycle Sh(G) is inclusive Distance antimagic. 

2.3. Practical Applications 

Distance antimagic labeling of graphs, where distinct 

vertex labels from 1 to |V(G)| produce unique sums of labels 

on neighbours for every vertex pair, has garnered interest for 

its structural properties and potential applications, particularly 

in constructions like splitting graphs, shadow graphs, and 

Mycielskian graphs .  

This labeling ensures vertex distinguishability via 

distance weights, with research extending to practical uses in 
cryptography and graph coloring. Practical applications of 

Distance antimagic labeling include data encryption schemes, 

where splitting graphs of paths generates prime-based vertex 

weights for RSA integration. Local variants induce proper 

vertex colorings, bounding chromatic numbers for generalized 

Mycielskian graphs of Regular graphs, while D-distance 

antimagic properties in shadow graphs classify labelings over 

specific distance sets like {1} or {0,2}, supporting broader 

conjectures. 
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Splitting graphs demonstrate robust practicality for 

cryptographic protocols due to consistent labelings, whereas 

Mycielskian graphs underscore non-preservation under 

construction, contrasting shadow graphs' adaptability in 

distance-specific contexts. 

3. Conclusion 
This paper investigates Distance antimagic and inclusive 

distance antimagic labelings for specific graph classes, 

including Mycielskian graphs, splitting graphs, and shadow 

graphs derived from paths, cycles, complete graphs, crown 

graphs, and stars. Key findings establish the existence of 

Distance antimagic labelings for Mycielskian graphs of paths 
and cycles, as well as splitting graphs of paths, cycles, 

complete graphs, crown graphs, and friendship graphs. 

Additionally, inclusive Distance antimagic labelings are 

proven for splitting and shadow graphs of paths, cycles, and 

stars, with vertex weight uniqueness rigorously verified 

through Python computations. These results highlight the 

robustness of Distance antimagic properties under 

Mycielskian and splitting constructions for basic graphs, 

contrasting with selective applicability in shadow graphs, 

thereby resolving open conjectures on labeling preservation. 
The computational validation via Python underscores 

practical verifiability, enhancing methodological rigor in 

combinatorial graph theory.  

Implications extend to cryptographic protocols, where 

splitting graph labelings generates distinct prime-based 

weights for secure encryption schemes, and to bounding 

chromatic numbers in local variants for generalized 

Mycielskians. This work advances graph labeling theory by 

classifying antimagic behaviors across constructions, 

informing future research on supermagic generalizations and 

algorithmic optimizations in network design and coding 

theory. 
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