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Abstract - Labeled graphs serve as a versatile mathematical model with diverse applications in engineering fields. A bijective
function 9:V(G) - {1, 2, ...,n} is a distance antimagic labeling of a graph G with n vertices such that the vertex weights
determined by w(a) = Xpen(ay9(b) Are unique i.e. w(a) # w(b) for distinct vertices a, b € V(G) where N(a) is the open
neighbourhood of vertex a in G. This paper demonstrates that distance antimagic labeling and inclusive distance antimagic
labeling exist for certain special graph constructions- specifically Mycielskian graphs, splitting graphs, and shadow graphs
when applied to fundamental graph classes like cycles, paths, crown graph and star graphs. Furthermore, the uniqueness of the
calculated vertex weights is confirmed through a Python-Based Computational Algorithm.

Keywords - Inclusive Distance Antimagic Labeling, Distance antimagic labeling, Splitting graph, Shadow graph, Mycielski

Graph.

1. Introduction

Graph labeling introduced by Rosa [1] in 1967 is the
process of allocating integers to vertices, edges, or both under
specified conditions. Labeled graphs act as a mathematical
tool, finding applications in fields like astronomy,
cryptography, communication networks, and various
optimization problems.

Radio labeling provides an effective approach for
reducing computational time in sensor network applications
[2]. Such networks are commonly modeled as chain graphs,
where sensors are sequentially interconnected. In contrast,
antimagic labeling represents a distinct class of graph labeling
techniques that is primarily employed to strengthen data
transmission security by supporting different encryption
mechanisms [3].

The distance antimagic labeling schemes developed in
this work offer a practical and adaptable approach for
industrial and engineering applications that involve
constructing networks or interconnections analogous to the
graph structures analyzed in this study.

The idea of distance magic labeling emerged as a result
of the study of magic squares. Distance magic labeling was
introduced by Vilfred [4] and is a bijection 9:V(G) -
{1, 2,...,n} such that there exists a positive integer m and the
vertex weight w(p) = X,y 9(r) For any vertex p in V(G)

0[S]O)

with n vertices, where N (p) is the set consisting of vertices in
the open neighbourhood of vertex p in V(G). Distance magic
labeling naturally leads to distance antimagic labeling given
by Kamatchi and Arumugam [5], in which the vertex weights
w(a) # w(b) for any pair of distinct vertices aand b in V' (G).
Further, Dafik [6] initiated the notion of inclusive Distance
antimagic labeling.

Definition 1.1 ([5]) Let 9:V(G) - {1,2,..,n} be a
bijection for a graph G with n vertices. Define vertex weight
w(p) = Xrengyd(r) for any vertex p in V(G). If w(p) #
w(q) for every pair of unique vertices p, g in V(G), then 9 is
said to be Distance Antimagic. Any graph G that allows this
type of labeling is referred to as a Distance Antimagic graph.

Definition 1.2 ([6]) Let 9:V(G) - {1,2,..,n} be a
bijection for a graph G with n vertices. Define vertex weight
@) = 9(p) + Lrengy9(r) for any vertex p in V(G). If
@(p) # ¢(q) for every pair of unique vertices p, g in V(G),
then 9 is said to be Inclusive Distance Antimagic. Any graph
G that allows this type of labeling is referred to as an Inclusive
Distance Antimagic graph.

A Mycielskian graph is obtained by iteratively applying
the Mycielski construction to an initial triangle-free graph.
This construction, introduced by Mycielski [5], established
the:
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Fig. 1 Example for distance antimagic labeling of a Sun graph and
inclusive distance antimagic labeling of a Star graph, where vertex
labels are written as usual, and vertex weights are given within
brackets.

Existence of graphs that are free of triangles yet possess
arbitrarily large chromatic numbers. A key feature of the
construction is that it preserves the triangle-free nature of the
original graph while strictly increasing its chromatic number
at each iteration.

A Mycielski graph obtained from a simple, finite,
triangle-free graph inherits several important structural and
coloring properties. The Mycielski construction preserves the
triangle-free nature of the original graph while increasing its
chromatic number by exactly one; that is, if G is a graph with
chromatic number y(G), then its Mycielskian M(G) satisfies
x(M(G)) = x(G)+1. The construction also maintains simplicity,
introducing neither loops nor multiple edges, and preserves
connectivity whenever the initial graph is connected.
Structurally, the Mycielskian M(G) contains 2|V(G)|+1
vertices, with an edge set expanded in a systematic manner
from that of G. Moreover, the clique number remains
unchanged under the construction; in particular, starting from
a triangle-free graph ensures that the resulting Mycielski graph
has maximum clique size two. Repeated application of this
construction therefore produces an infinite class of graphs that
are triangle-free yet exhibit unbounded chromatic number,
highlighting the significance of Mycielski graphs in graph
coloring theory and extremal graph theory.

Definition 1.3 Let G be a graph with vertex set
{a;,ay, ...,a,}. The Mycielski graph associated with G,
denoted by M(G), is constructed by enlarging the vertex set to
include an additional copy of each original vertex together
with  one extra  vertex. Thus, V(M(G))=
{a;,ay,...,a,, @y, a5, ..., @y, a} so that M(G) has 2n+1 vertices.
The edge set of M(G) consists of all edges of the original graph
G, along with edges joining each new vertex a; to all
neighbours of a;in G, and edges connecting the additional
vertex a to every vertex aj, for 1 <i<n.

E. Sampathkumar and Walikar [9] gave the notion of the
splitting graph of a graph.

Definition 1.4 ([9]) For every vertex a of a graph G, take
another point a and join a' To all vertices of G adjacent to a.
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The graph SI(G) thus obtained is called the splitting graph of
G.

Definition 1.5 The shadow graph of a graph G, denoted
by Sh(G), is constructed by taking a duplicate copy G’ of G
and then connecting each vertex of G’ to all those vertices in
G that are adjacent to its corresponding vertex in the original
graph.

Distance antimagic labeling is a relatively recent
extension of classical antimagic labeling, in which vertices are
assigned distinct integers such that the induced vertex
weights-defined as the sum of labels of vertices at a specified
distance-are pairwise distinct. This labeling paradigm has
attracted attention due to its applicability in modeling
interference-free communication  networks, frequency
assignment, and distributed system design. Although distance
magic and distance antimagic labelings have been investigated
for several standard graph families, the impact of graph
transformations on Distance antimagic properties remains
insufficiently understood, particularly for constructions such
as Mycielskian graphs, splitting graphs, and shadow graphs.
Existing research on Mycielskian graphs has primarily
concentrated on chromatic properties and, more recently, on
distance magic labeling, with only limited results available for
Distance antimagic labeling [9, 10]. Similarly, antimagic
labeling of splitting and shadow graphs has been addressed
mainly for specific graph classes or under restricted distance
conditions [11, 12]. For instance, distance-2 antimagic
labeling of shadow graphs of cycles and complete bipartite
graphs has been established, demonstrating that shadow graph
operations can preserve antimagic behavior under certain
constraints [11]. However, these studies are fragmented and
do not provide a unified analysis across different graph
operations or for fundamental graph families such as paths,
stars, and crown graphs. Moreover, comparative results
linking Mycielskian, splitting, and shadow constructions
within the same Distance antimagic framework are largely
absent from the literature.

In view of these gaps, this paper presents a systematic
investigation of Distance antimagic labeling for Mycielskian
graphs, splitting graphs, and shadow graphs derived from
basic classes of graphs, including paths, cycles, star graphs,
and crown graphs. The novelty of this work lies in extending
distance antimagic labeling results simultaneously to multiple
graph transformations and previously underexplored graph
families. In addition, a Python-based computer-aided
procedure is employed at the beginning of each section to
verify the uniqueness of vertex weights, thereby providing
computational validation alongside theoretical proofs. This
integrated approach not only enhances the reliability of the
results but also aligns with the applied and algorithmic
orientation, offering a scalable methodology for future studies
in graph labeling and network modeling.
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2. Results and Discussion
2.1. Distance Antimagic Labelling of Mycielski and Splitting
Graph of Graphs

This section examines the existence of Distance
antimagic labelings for Mycielskian and splitting graph
constructions derived from basic graph classes, namely paths,
cycles, star graphs, crown graphs, and friendship graphs.

Theorem 2.1.1 Mycielskian graph of the path P, Is
Distance antimagic when n is even.

Proof Consider a path G P, where n is even.
Let{a,,a,,..,a,} be the wvertex set of P, Let
{ay,a,, ...,ay, 2}, @5, ..., @y, a} be the vertex set of Mycielskian
graph M(G) of G such that a; is connected to all the vertices
adjacent to a; and a is connected to a; for I <j <n.Ifn=2,
then M(G)) is a cycle Cs Which is Distance antimagic [3]. For
n # 2, let 9:V(M(G)) - {1,2,...,2n+ 1} be a labeling
function such that

9(a;) = 2j
9(a) =2j—1
9(a) =2n+1

where 1 <j <n. Itis evident that 9 is a bijective mapping,
and the corresponding vertex weights are defined as

7 1 j=1
w(a)=1{8j—-6:2<j<n-1
n—-5:j=n
2n+5 j=1
w(@)={4+n+1:2<j<n-1
in—-1 j=n
w(a) =n?

As unique vertex weights are obtained, so the
Mycielskian graph of path M(G) is Distance antimagic when
nis even.

1(6) 4(14) 6(22)  8(30) 1038)  12(46)  14(56)  16(27)
121 1531)
17(64)

Fig. 2 Example for distance antimagic labeling of the mycielskian graph
of Pg. The labels are written as usual, and vertex weights are given in
brackets.
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The algorithm described below is validated using a
Python-based computational approach to confirm the
distinctness of vertex weights.

ALGORITHM 7: ALGORITHM TO VERIFY DISTINCTNESS OF VERTEX WEIGHTS OF G
Input: Positive integer n
Quitput: Weight matrix W
If (n==2)or(n%2!=0) then
‘ Print (“ The result holds for even values of n > 2.”)
Else
l Number of vertices = 2n + 1
Ve=[]
V=11
V=[]
Fori—1to(2*n+1)do
[1f (1% 2 ==1) then
| V., -append(i)
‘ Else
I V,.append(i)

I
]

=2*n+1
=[]
Wa=11
Wa‘: [1
def find_ W, ()
Foriinrange (1 to(n+ 1)) do
[If (i == 1) then
| W..append(7)
[ Else if (i == n) then
l W,.append(4 +n - 5)
[ Else
i W, append(8 +i—2)

S

End
Return W,
deffind_W,()
Foriinrange (Ito (n+ 1)) do
[ If (i == 1) then
[ W(,l.appeml(Z *n+35)
| Else if (i ==n) then
1 Wa‘.appendM #n-1)
[ Else
] Wu‘.append(tl *¥i+2*xn+1)

End

Return W,

W.=n’

lf(len(Wuv) == leil(seI(Wu))) and (len(W,) == len(set(W,,))) then
[ Distinct elements

Else
[ Similar elements

Theorem 2.1.2 Mycielskian graph of the cycle C, Is
Distance antimagic when n is odd.

Proof Consider a path G = C, where n is odd.
Let {a;,a,,...,a,} be the vertex set of C,,.

Let {a,,a,,...,ay,a},a5, ..., a,,a} be the vertex set of
Mycielskian graph M(G) of G such that a; is connected to all
the vertices adjacent to a; and a is connected to a; for 1 <j <

n. Let9:V(M(G)) — {1, 2,...,2n + 1} be a labeling function
such that:
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9(a;) = 2j
9(ay) =2j+1
9@) =1

Where 1 <j<n. Itisevident that 9 is a bijective mapping,

and the corresponding vertex weights are defined as

v

Read integer n

N4

4n+10 :j=1
w(aj):{81'+2 :2<j<n-1
4n+ 2 tj=n

The flowchart for the description of the algorithm
validating the uniqueness of vertex weights of Distance
antimagic labelling of Mycielskian graph is described below:

Print: The result
holds for even
n.

' v

v

Set V=2n+1.
Initialize Va, Va; Va;
empty.

v

Loop i=1to 2n+1
If i odd add i to Va;
Elseadd i to Va;

v

Assign Va=2n+1
Wa=0, Wa;=0 Wa;=0

Compute Wa=n?

v

v——v

No

Output distinct Output identical
elements elements

Stop

Fig. 3 Flow chart
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2n+5:j=1
w(@)={4+1 :2<j<n-1
2Zn+1:j=n

w@=mn+1%*-1

As unique vertex weights are obtained, so the
Mycielskian graph of cycle M(G) is Distance antimagic when
n is odd.

10(42) 8(34)
Fig. 4 Example for distance antimagic labeling of mycielskian graph of
cycle C,.

Theorem 2.1.3 Splitting graph of the path P, is Distance
antimagic when n is even.

Proof Consider a path G P, where n is even.
Let {a;,a,,...,a,} be the vertex set of P,. Let {a},a,, ..., a;}
be the corresponding vertex set such that a is connected to all
the vertices adjacent to a; for 1 <j < n. Let SI(G) be the
splitting graph of path G = P,. Define a labelling function

9: V(SI(G)) — {1, 2, ...,2n} such that:
98(a)) =2
9(a)) =2j— 1
where 1 <j <n. Clearly, the function 9 establishes a one-

to-one correspondence, and the associated vertex weights are
determined by:

7 j=1
w(a)) =18 -2 2<j<n-1

4n -5 j=n

4 ji=1
w(a'j)=4j 2<j<n-1

2n—2 :j=n

As each vertex is assigned a distinct weight, it follows that
the splitting graph of the path admits a distance antimagic
labeling.
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14G0)  4(14)  6(22)  8(30)  1038) 1246)  14(54) 16(62) 18(70) 20(35)

1(4) 38)  5(12)  7(16)  920)  11(24)  13(28)  15(32) 17(36)  19(18)

Fig. 5 Example for distance antimagic labeling of the splitting graph of
path P4,

Theorem 2.1.4 Splitting graph of the cycle C,, is Distance
antimagic when n is odd.

Proof Consider a cycle G = C, where n is odd.
Let{a,,a;,..,a,} be the wvertex set of C, Let
{ay,ay, ..., ap, a7, @5, ..., @, } be the vertex set of Splitting graph
SI(G) of G such that a; is connected to all the vertices adjacent
toa; for 1 <j<n. Let9: V(SI(G)) - {1,2, ...,2n} be a function
such that:

S(a'j) =j+n
Where 1 <j <n. The function 9 establishes a one-to-one

correspondence, and the associated vertex weights are
determined by:

4n+4 j=
w(a)={2n+4j :2<j<n-1

4n j=n

n+2 j=1
w(a;) =12j 2<j<n-1

4n j=n

As unique vertex weights are obtained, the splitting graph
of cycle SI(G) is Distance antimagic when n is odd.

6(42)

Fig. 6 Example for distance antimagic labeling of the splitting graph of
cycle Cq
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Theorem 2.1.5 Splitting graph of the complete graph K,
is Distance Antimagic.

Proof Consider a complete graph G K,.
Let {a;,ay,...,a,} be the vertex set of K,,. Let {a}, a3, ..., a,
be the corresponding vertex set such that a; is connected to all
the vertices adjacent to a; for 1 < j < n. Let SI(G) be the
splitting graph of K,. Let 9: V(SI(G)) - {1, 2,...,2n} be a
function such that

9(a;) = J

19(a]'-) =j+n

where 1 <j <n. Itis evident that 9 is a bijective function,
and the vertex weights are defined as:

w(a) =2(M%-))

) _ n(n+1) .
o(g)==—-J

As the vertex weights are monotonically decreasing, they
are distinct. Hence, the Splitting graph SI(G) of a complete
graph is Distance antimagic.

Crown graph of order n for n> 3 is a graph G with vertex
set {a;,a,, ..., a,, by, by, ...,b,} and edge set {(a,b;):1 <
r,s <n, r # s}

Theorem 2.1.6 Splitting Graph of the Crown Graph is
Distance Antimagic.

Proof Consider a crown graph G = H,,.
Let{a,,ay, ..., an, by, by, ..., b, } be the vertex set of G. Let
{a),a,, ..., a,, by, by, ..., by} be the corresponding vertex set
such that a; is connected to all the vertices adjacent to a; and
b]’. is connected to all vertices adjacentto b; for 1 < j < n.

Let SI(G) be the splitting graph of G. Define a function
9:V(SI(G)) - {1, 2, ...,4n} such that

9(q) =
9(a) =j+2n
(b)) =j+n
9(b;) =j +3n

where 1 < j < n. Clearly, 9 establishes a one-to-one
correspondence, and the vertex weights are determined by

w(a) =n(Gn-3)-2j

w(a) =

n(3n-1) .
2
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w(b;)=n(Bn—1) —2j

nn+1) o
2

w(b]'-) =

Since the vertex weights form a strictly decreasing
sequence, they are all distinct. Hence, the Splitting graph SI(G)
of the crown graph is Distance antimagic.

15(30) 20(10)
Fig. 7 Example for distance antimagic labeling of the splitting graph of
the crown graph Hs 5

2.2. Inclusive Distance Antimagic Labeling of Splitting and
Shadow Graph of Graphs

This section is devoted to the study of inclusive Distance
antimagic labeling of the splitting and shadow graphs
associated with basic graph classes, namely paths, cycles, and
star graphs.

Theorem 2.2.1 Splitting graph of the path P, Is inclusive
Distance antimagic.

Proof Consider a path G = P,. Let {a,,a,, ..., a,} be the
vertex set of B,. Let {a},a,,...,a,} be the corresponding
vertex set such that a; is connected to all the vertices adjacent
to a; for 1 <j <n. Let SI(G) be the splitting graph of path G =
B,. Let 9:V(SI(G)) - {1,2,...,2n} be a labelling function
such that

I(a)=1+2n—j
9(a) =J

Where 1 <j <n. Itisevident that 9 is a bijection, and the
vertex weights are computed as

in+1 j=1
<p(a]-)={6n+3—j 2<j<n-1

3n+2 j=n

2n j=1
<p(a]’-)={4n—j+2 2<j<n-1

2n+ 2 j=n



Anjali Yadav & Minirani S/ IJETT, 74(1), 298-306, 2026

As we obtain unique vertex weights, the Splitting graph
of the path SI(G) is inclusive Distance antimagic.

20(45) 21(67) 20(66) 19(65) 18(64) 17(63) 16(62) 15(61) 14(60) 13(59) 12(35)

100 )2(44) 3(43) 442) 5(41) 6(d0) 7(39) 10(36) 11(34)

Fig. 8 Example for inclusive distance antimagic labeling of the splitting
graph of Py,

8(38) 9(37)

Theorem 2.2.2 Splitting Graph of the Cycle C, Is
inclusive Distance Antimagic.

ALGORITHM 8: ALGORITHM TO VERIFY DISTINCTNESS OF VERTEX WEIGHTS OF G
Input: Positive integer n
Output: Weight matrix W
Number of vertices = 2n
Vo= []
V=[]
Foriinrange (I to (n+ 1)) do
Va,f append(i)
Vi.append(2 ¥n + 1 -i)

End
Wy =11
Wa:: [1
def find_Wy, ()
Foriinrange (1 to (n+ 1)) do
[If(i==1) then
| Wy append(4 xn + 1)
| Else If (i == n) then
| Wy append(3 *n +2)
| Else
| Weappend (6 xn +3 1)

End
Return Wy,
deffind_ Wa{( )
Foriinrange (L to (n+ 1)) do
[If(i==1) then
| Walg.append(.? *n)
| Elseif (i==n) then
Walf.app('ndﬂ *n+2)
| Else
| W append(4 xn = i+2)

End

Return W

If (len(W ‘lf) == len(set(Wal{ ))) and (len(Wg,) == len(set(Wy,) then
| Distinct elements

Else
[ Similar elements

Proof Consider a cycle G = C,,. Let {a,, a,, ..., a, } be the
vertex set of C,,. Let {a,, a,, ..., a,,a;, a,, ..., a;, } be the vertex
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set of Splitting graph SI(G) of G such that a; is connected to
all the vertices adjacent to a; for 1 <j <n. Consider a labelling
function 9: V(S1(G)) — {1, 2, ...,2n} such that

9(q;) = J

19(a]'-)=2n+1—j

where 1 < j < n. 9 establishes a one-to-one
correspondence, and the associated vertex weights are

determined by

<p(aj)=4n+2+j

3n+2 tj=1
<p(a]'-)=2n+1+j 12<j<sn-1
2n+1 tj=n

As unique vertex weights are obtained, the splitting graph
of cycle SI(G) is inclusive Distance Antimagic.

The algorithm is outlined below for confirming the
distinctness of the vertex weights of the Splitting graph of a
path.

The star graph denoted by K ,, Is a graph with a central
vertex a and connected to (n + 1) vertices of degree 1 each.

Theorem 2.2.3 Splitting Graph of the Star Graph K, ,, Is
inclusive Distance Antimagic.

Proof Consider a star graph G = K, ,,. Let a be the central
vertex connected to (n + 1) vertices {a,, a,, ..., @41 }. Let @
and {a;, a;, ..., a,,,} be the corresponding vertices such that
a is connected to all vertices adjacent to aand a; is connected
to all the vertices adjacent to a; for 1 <j < n respectively. Let
SI(G) be the splitting graph of the star graph G = K, ,,.
Consider a labelling function 9:V(SL(G)) = {1,2,...,2(n +
2)} such that:

(@) =1
19(a]-)=n+3+j
9(a)=n+3
(a) =1+

where 1 < j < n. Clearly, 9 establishes a one-to-one
correspondence, and the associated vertex weights are
determined by:
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p(a) =2n>+8n+7

o(g)=2+j

go(a') — (n+2);3n+7)
go(aj) =2n+7+j

As we obtain unique vertex weights, the Splitting graph
SI(G) of the star graph is inclusive Distance antimagic.

45 1! 6(7)

34

2(3)

10zQ) 16(26)

Fig. 9 Example for inclusive distance antimagic labeling of the splitting
graph of the star graph K ¢

Theorem 2.2.4 Shadow graph of the path P, Is inclusive
Distance antimagic.

Proof Consider a path G = B,. Let{a,, a,, ..., a,} be the
vertex set of B,. Let {a}, a;, ..., a;,} be the vertex set of a copy
of P,.

Let Sh(G) be the shadow graph of path G = B, with vertex

set {a;, ay, ..., an, a;, a,, ..., a, ). Consider a labeling function
9:V(Sh(G)) - {1, 2, ...,2n} such that

9(q) =j
(@) =2n+1—-)

where 1 <j <n. It is evident that 9 is a bijection, and the
vertex weights are computed as

2n+2 1 j=1
p(a)=14n+2+j :2<j<n-1
3n+1 tj=n
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1+4n j=1
p(a)=13+6n—j 2<j<n-1
3n+2 j=n

Since each vertex in the shadow graph is assigned a
unique weight, the path shadow graph Sh(G) admits inclusive
Distance antimagic.

Theorem 2.2.5 Shadow Graph of the Cycle C,, Is Inclusive
Distance Antimagic.

Proof Consider a cycle G C, with vertex
set{ay, ay, ...,a,}. Let {a}, a,, ..., a,} be the vertex set of a
copy of C,,. Let Sh(G) be the shadow graph of G with vertex
set.  {ay,ay, ..,a,,a;,a,,...,a,}. Let 9:V(Sh(G)) -
{1, 2, ...,2n} be a labelling function such that

9(q) =
19(a]'-)=2n+1—j

where 1 <j <n. Itis evident that 9 is a bijective function,
and the vertex weights are determined as

in+3 1 j=1
(p(aj)={4n+2+j 12<j<n-1
5n+2 tj=n
2+6n 1j=1
(p(a]‘.)={3+6n—j :12<j<n-1
5Sn+3 tj=n

As we obtain unique vertex weights, the Shadow graph of
the cycle Sh(G) is inclusive Distance antimagic.

2.3. Practical Applications

Distance antimagic labeling of graphs, where distinct
vertex labels from 1 to |V(G)| produce unique sums of labels
on neighbours for every vertex pair, has garnered interest for
its structural properties and potential applications, particularly
in constructions like splitting graphs, shadow graphs, and
Mycielskian graphs .

This labeling ensures vertex distinguishability via
distance weights, with research extending to practical uses in
cryptography and graph coloring. Practical applications of
Distance antimagic labeling include data encryption schemes,
where splitting graphs of paths generates prime-based vertex
weights for RSA integration. Local variants induce proper
vertex colorings, bounding chromatic numbers for generalized
Mycielskian graphs of Regular graphs, while D-distance
antimagic properties in shadow graphs classify labelings over
specific distance sets like {1} or {0,2}, supporting broader
conjectures.
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Splitting graphs demonstrate robust practicality for
cryptographic protocols due to consistent labelings, whereas
Mycielskian graphs underscore non-preservation under
construction, contrasting shadow graphs' adaptability in
distance-specific contexts.

3. Conclusion

This paper investigates Distance antimagic and inclusive
distance antimagic labelings for specific graph classes,
including Mycielskian graphs, splitting graphs, and shadow
graphs derived from paths, cycles, complete graphs, crown
graphs, and stars. Key findings establish the existence of
Distance antimagic labelings for Mycielskian graphs of paths
and cycles, as well as splitting graphs of paths, cycles,
complete graphs, crown graphs, and friendship graphs.
Additionally, inclusive Distance antimagic labelings are
proven for splitting and shadow graphs of paths, cycles, and
stars, with vertex weight uniqueness rigorously verified
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classifying antimagic behaviors across constructions,
informing future research on supermagic generalizations and
algorithmic optimizations in network design and coding
theory.
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