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Abstract - Image captioning, a problem at the intersection of natural language processing and computer vision, remains a
difficult problem due to the inherent challenge in converting visual semantics to semantically rich text descriptions. Metaheuristic
optimization in combination with neural network architectures has recently been shown to have excellent potential in bridging
this gap. In this work, we present AttenTAVO-Cap, a novel hybrid image captioning model integrating an Attention-based
Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) architecture with the recently
proposed Taylor African Vulture Optimization (TAVO) algorithm. The TAVO algorithm, inspired by African vultures’
cooperative hunting behavior and augmented by Taylor series convergence properties, is utilized to optimize model
hyperparameters very effectively. To completely assess the performance, experiments were conducted on two benchmark
standards, Flickr8k and Flickr30k, with three versions of optimizers: TAVO, Genetic Algorithm (GA), and Particle Swarm
Optimization (PSO). The outcome validated that AttenTAVO-Cap (TAVO) performed better than all the other models on a suite
of evaluation metrics overall, with a BLEU-4 score of 0.29, METEOR of 38, and CIDEr of 194 and ROUGE-L of 67 on the
Flickr8k corpus, and 0.29, 35, 191, and 63, respectively, on Flickr30k. Compared to baseline approaches, such as HABGRU +
AVOA, the approach outlined here made considerable improvements, especially in semantic alignment and human-consensus-
based measures. Results exhibit that hybrid Deep Learning (DL) and nature-inspired optimization can produce captions that are
more accurate and human-like. Additionally, the present study provides possibilities to explore the explainability and
generalizability of captioning models.

Keywords - Deep Learning, Flickr8k, Flickr30k, Genetic Algorithm (GA), Image Captioning, Metaheuristic Optimization,
RoBERTa Embeddings, Taylor-African Vulture Optimization Algorithm (TAVO), Particle Swarm Optimization (PSO), Neural
Architecture Optimization, Visual Attention, Bidirectional LSTM (BiLSTM).

1. Introduction

In the fields of computer vision and natural language
processing, image captioning, the act of describing an input
image in text, is a well-studied research topic. It aims to
convert more expressive visual information into natural
language so that images can be processed by machines like
humans. This capability is crucial in assistive technology for
the blind, intelligent image search, self-driving cars, and
human-robot communication. Early work in this domain
utilized encoder-decoder models, where CNNs were
employed to learn hierarchical spatial and semantic features
from images and Recurrent Neural Networks (RNNS),
specifically Long Short-Term Memory (LSTM) units, to
generate coherent sequences of text [11, 15]. Though they
performed well at first, these approaches were thoroughly
challenged in model parameter tuning for good models,
semantic faithfulness of the produced captions, and scalability
to large and varied datasets. Current advancements in image
captioning have followed two broad trends: metaheuristic
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model tuning for deep learning configurations and vision-
language models based on transformers. Metaheuristic
techniques based on natural inspiration, such as the African
Vulture Optimization Algorithm (AVOA) or its Taylor-series
improved version, Taylor-series enhanced VOA (TAVOA),
have been rendering good results when combined with highly
capable CNN architectures such as InceptionResNetv2 or
sequence models such as hybrid attention bidirectional GRUs.
There are many advantages to metaheuristic model tuning
over gradient-based model tuning in gradient descent, which
include combating overfitting, escaping the local minima, or
facilitating smooth objectives even for complex, high-
dimensional, and non-convex objective functions as exist in
training tasks. Metaheuristic-based image captioning models
remain relatively uninvestigated, especially when combined
with reliable semantic representations of language. At the
same time, transformer models have radically changed the
field of image captioning with the introduction of self-
attention mechanics that are well-suited for modeling complex
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interactions between visual and text data. Models
incorporating multi-view vision features, attention layers, and
vision-and-language scale Al pretraining models achieved
new state-of-the-art performance on scaled-up vision-and-
language corpora such as the MS COCO or Flickr30k data sets
[1-3]. External knowledge graphs can also be leveraged to
anchor image captions in real-world knowledge [4].
Nonetheless, such models appear to require truly massive data
sets, intensive computation, and complicated models for
effective training, which might make these models less useful
or scalable in real-world applications [5].

The complexity of the model, the efficiency and
explainability of the training, and the deployability process for
the final solution. Experiments comparing CNN encoders with
encoder-decoders imply that while there are some tiny
improvements in accuracy, the computation and flexibility
increase [6, 8]. Another stream underscores the challenge to
scale vision-language pretraining to hundreds of millions of
image-text pairs, as demonstrated in the LEMON model,
which achieves state-of-the-art performance on benchmarks
like COCO and nocaps [7]. Some research on semantic
ordering, captioning for multiple languages, and improved
decoding focuses on the coherence and grammatical
correctness of the story. However, these problems are
typically addressed through multiple, disconnected parts of
the captioning process, rather than through the simultaneous
increase in semantic complexity and efficiency of the solution.
Existing image captioning models rely either on huge
transformers and associated high computational costs or on
deep learning models that lack adaptive global optimization of
hyperparameters and models. Look for a framework that
encompasses strong image abstraction learning, semantically
powerful language modeling, adaptive decoding guided by
attention mechanisms, and efficient global hyperparameter
optimization. Even with significant advancements in image
captioning, current methods still have to balance practical
deployability, computational economy, and caption
quality. Furthermore, there is still a lack of research on the
effects of various metaheuristic optimization techniques on
training dynamics and caption production quality in a
controlled architectural environment.

The following research questions should now be clearly
summarized in order to address this:

1. In order to improve semantic alignment and caption
quality, exactly how may metaheuristic optimization be
appropriately combined with deep image captioning
structures?

2. Can TAVO produce measurable advantages over
traditional metaheuristics like GA and PSO for captioning
model tuning?

3. In what ways does the suggested hybrid architecture
balance computational viability, performance, and
generalization on the benchmark?

The following are this study’s principal contributions:

e We present AttenTAVO-Cap, a hybrid image captioning
architecture that combines InceptionResNetv2-based
visual encoding, ROBERTa-based semantic embeddings,
and an attention-guided BiLSTM decoder optimized
using the TAVO algorithm.

e We present a metaheuristic-based hyperparameter
optimization method designed explicitly for caption
decoding, enabling sufficient global exploration along
with local refinement without using gradients.

e  We will conduct a controlled comparison using the same
architecture but with different optimizers (TAVO, GA,
and PSO), isolating the impact of caption optimization
strategies.

e On the Flickr8k and Flickr30k datasets, we continuously
improve human-consensus-based metrics, including
CIDEr and METEOR, indicating sounder expression and
semantic relevance in captions.

In contrast to transformer-based models that require
substantial training, AttenTAVO-Cap uses lightweight,
expressive hybrid modeling to deliver competitive and often
superior semantic performance. The suggested TAVO-based
tuning technique is superior to gradient-based optimization
because it prevents local optima from forming and enables the
framework to achieve better generalization.

2. Literature Review

Captioning in images involves integrating natural
language processing and computer vision to generate natural-
language descriptions of images. In the early stages, most of
the work involved using encoder-decoder networks, CNNs for
image feature extraction, and an RNN, particularly an LSTM,
for captioning. However, despite significant advancements,
challenges remain in model parameter optimization, semantic
consistency, and size and scaling. The current DL model
renaissance, combined with the impact of metaheuristic
optimization and the rise of transformer models, has had an
extraordinary influence on captioning in the current period.

Metaheuristics have entered the mainstream as effective
alternatives to gradient-based methods for fine-tuning deep
neural networks for image captioning. The Attend More
Times (AMT) framework was presented by Du et al. [1] to
improve photo captioning performance by leveraging visual
attention on a constant basis during the prediction of the next
word. The goal of this model is to use a dual-LSTM decoder
and a CNN-based encoder to extract image features. The
model consistently focuses on the visual regions of images and
shows relevance in boosting the semantic aspect of image
captioning using the MS-COCO dataset. The repeated
attention to visual areas is relevant for increasing the semantic
accuracy of images and improving the descriptive accuracy of
captioning. The model improves upon previous baselines
using BLEU-4, METEOR, ROUGE-L, and CIDEr. Later,



Chengamma Chitteti & K. Reddy Madhavi/ IJETT, 74(1), 333-354, 2026

Castro [2] and Yu [4] turned to transformers and leveraged the
advantages of self-attention mechanisms. The idea focused on
avoiding the need for models to depend on each other or their
interactions. The Multimodal Transformer model by Yu has
focused on multi-view representations of images and has
based its approach on enhanced deep interactions with
cognitive semantics. The focus of this model has been on
improved performance on the MS COCO benchmark and on
establishing cognitive semantics through deeper interactions.
The concept has been further enhanced by Huang [4], who
focuses on external knowledge graphs for knowledge
reasoning. The focus of this concept has been on strengthening
semantic matching between image and text areas.  Zeng [5]
has further contributed to this concept by focusing on
enhancing human-computer interaction. The idea has focused
on improving domain shifts and the unobserved data in deep
learning models.

Extensive evaluations by Xu [14] and Stefanini [6] offer
crucial summaries that put the quick development in picture
captioning into perspective. Stefanini’s survey closely
examines the development of training paradigms, language-
generating models, and visual encoders. It emphasizes how
critical multimodal connections and BERT-like early-fusion
methods have been to recent advances. Xu’s research
advances this vision by exploring use beyond natural images,
specifically medical image captioning, where domain-specific
challenges such as semantic complexity and interpretability
heavily affect the model structures that need to be converted.
The scalability challenges unearthed by Hu [7], who
empirically studied record-scale vision-language pretraining,
also shed light on the trade-offs among model size, data size,
and generalization. Hu’s state-of-the-art LEMON model,
which was trained on 200 million transformer-sized image-
text pairs with up to 675 million parameters, also highlights
several computational costs and data curation issues
associated with training at this scale.

The parallel efforts by Li [8] focus on the semantic
ordering and understanding of complex linguistic structures
within images, investigating architectures that explicitly
represent semantic coherence to enhance caption quality.
More specialized studies by Mahajan [9], Manikumar [10],
and Maaz [11] have examined performance variability
induced by architectural modifications using different CNN
backbones, such as Inception V3, ResNet, and VGG16/19, as
well as encoder-decoder fusion approaches on metric
performance.

They note that more complex models tend to be more
accurate, but their training time, computational cost, and data
size significantly impact deployment in real-world scenarios.
Xia [12] sought to fill a crucial gap in low-resource,
multilingual captioning by developing mechanisms for fusion
attention to generate image captions in Tibetan, thereby
opening the door to further integration of linguistic
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experiences in the development of captioning systems. Lastly,
Nguyen [13] proposes a CNN-LSTM hybrid model with beam
search decoding, demonstrating that decoding methods are
crucial for determining the semantic richness and
grammaticality of output captions, thereby increasing BLEU
scores on the Flickr8k corpus.

All in all, these papers empower a multifaceted trajectory
of advancement in image captioning, including architectural
innovation, optimisation methods, increased data, and
multilingualism. Whereas the best current practices in
captioning models are deep convolutional and transformer
models, other essentials driving performance frontiers include
reliance on metaheuristic optimization, knowledge reasoning
from the global world, and horizontally scalable training
pipelines. While improving the balance between
computational tractability issues, semantic consistency, and
domain-invariant generalization requires further effort to
build models not just that learn but also understand and
generalize across a vast range of environments, this line of
study forms the foundational land for new hybrid techniques
that will take the strengths of existing paradigms and give up
their inherent weaknesses to open the field for future research
to take further toward more generalizable and human-like
image captioning models.

The research makes clear that there has been a gradual
evolution from traditional to more complex architectures that
incorporate attention, leverage knowledge beyond current
training data, pretrain on large datasets, and employ
metaheuristic optimization. There are still problems with
interpretation,  efficiency, semantic  coherence, and
achievement in new domains, even though transfer
interpretability of convolutional algorithms is now frequently
used to provide state-of-the-art results. To make image
captioning jobs more human-like and generalizable, some
issues—such as hybrid models that combine powerful visual
features with complex language models, adaptive decoding,
and global optimization algorithms—need  further
investigation.

2.1. Summary of Gaps and Challenges

Despite immense advances in DL architecture-based
image captioning, metaheuristic optimization, and vast
corpora, numerous essential gaps and challenges remain to
hinder the creation of extremely robust, generalizable, and
semantically coherent captioning systems.

2.1.1. Computational Complexity and Scalability

Advanced models, particularly large transformer-based
models pretrained on extremely large image-text datasets [7],
[3], are computationally and memory-hungry. This is
especially problematic for deployment in resource-
constrained environments, such as mobile phones or real-time
systems. Lightweight models and efficient training are an
open research direction.
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2.1.2. Semantic Consistency and Contextual Understanding

While knowledge graph integration and multi-view
attention mechanisms have improved semantic alignment
between generated captions and visual information [4, 8],
Deep contextual comprehension and narrative coherence over
longer captions are still difficult. Models tend to generate
generic or somewhat relevant captions in complex scene
layouts or domain transfer [5]

2.1.3. Domain Generalization and Robustness

Most caption models are trained and tested on precisely
selected datasets like Flickr8Kk, Flickr30k, or MS COCO, and
this restricts their performance on out-of-distribution, diverse,
or real images. Domain shift and robustness against novel data
distributions remain issues that constitute an ongoing
challenge [5, 6].

2.1.4. Multilingual Support and Scarcity of Data

While large datasets can facilitate powerful learning,
technical fields (e.g., medical or cultural) and low-resource
languages have limited captioned image datasets. Recent
studies, such as Tibetan captioning with fusion attention
mechanisms [12], highlight the need for adaptive structures
that can learn effectively in data-scarce scenarios.

2.1.5. Balancing Accuracy and Interpretability
Deep models, especially those involving the employment
of attention and transformer modules, work very much like

black boxes, and it is thus not simple to explain or interpret
the captioning operation in critical usage. This interpretability
slows down trust and adoption, particularly in sensitive usage.

2.1.6. Optimization Trade-Offs

Metaheuristic algorithms, such as Taylor-African Vulture
Optimization (TAVO), are promising for hyperparameter
tuning and evading local optima; however, they are
computationally expensive and add complexity. Discovering
good approaches to achieving efficient tuning and model
performance is a subject of further research.

2.1.7. Decoding and Language Generation

Decoding techniques like beam search improve fluency
and grammaticality at the cost of trade-offs between
computational cost and possible high-frequency bias in
phrases, reducing the diversity of captions [13]. The open
issue is to balance decoding algorithms between quality and
diversity.

Filling these gaps offers promising research directions for
the future. Hybrid strategies that combine the strength of
convolutional backbones, transformer semantic encoders, and
metaheuristic optimization methods—along with
explainability and domain adaptation—have the potential to
bring image captioning nearer to human-like comprehension
and generation capabilities. Table 1 presents an overview of
the existing works.

Table 1. An overview of the existing works

Reference Datasets Model/ Methodology Result Limitations
Cs't\leN_:t?zg(tjic?:(;?n%errjlﬁllt-r:_rsn#m " | METEOR: 28.3, CIDEr: | Performance depends
[1] MS-COCO P : 126.1, ROUGE-L: 58.0, | heavily on attention step
decoder (Attend-More-Times ) .
BLEU-4: 38.1% selection.
model)
Transformer-based visual . 0 Trade-off between
[2] MS COCO, attention with ResNext-101 BLEU-4: 20'1(_) %, TOp-5 model size and
Flickr30k o Accuracy: ~73 .
encoder + Adam optimizer computational cost
. . High model complexity
Multimodal Transformer with Ranked 1st on MS . .
[3] MS COCO multi-view visual features COCO leaderhoard reqm:r(.a;iﬁiggnswe
[4] MS COCO, Word attention + external State-of-the-art (SOTA) in tgorrgt?:]exé%:nal
Flickr30k knowledge graph injection on COCO and Flickr30k g g
knowledge
[5] Corel5K, PASCAL DL with human-computing- Efficient on the domain- ca I;It)rir;:zedoz‘elgslf)rr]rllg?jels
VOC inspired methods shift scenario P y
. . . Lack of a conclusive
[6] Multiple (survey) Survey of visual encoders and text | Comparative analysis of solution, open
generators SOTA
challenges
[14] Natural and medical | Review of DNN and GAN-based Qualitative & Challenges in the medical
image datasets models guantitative comparisons domain adaptation
ALT200M (200M . New SOTA on COCO, . .
. X Large-scale vision-language High computational
[7] Image-text pairs), retraining (LEMON) nocaps, Conceptual resources, data noise
COCO, nocaps P 9 Captions '
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COS-Net: Semantic . _—
; . CIDEr: 141.1 (Karpathy | Requires sophisticated
[8] MS COCO comprehending and ordering : U
network test split) semantic filtering
[9] Flickr 8k CNN + LSTM encoder-decoder Competitive BLEU Limited by dataset size
score and complex scenes
. . Generalization
. Inception V3 + BiLSTM + GloVe Improved BLEU and -
[10] Flickr 8k embeddings ROUGE-L scores challenge_s, varlable
embedding sizes
Sensitivity to training
[11] Flickr 8k VGG16 vs VGG19 CNN + LSTM | Comparable BLEU score epochs, model
convergence
[12] Flickr8k, Flickr30k- CNN + LSTM with fusion Improved BLEU and Low-resource language
tic Tibetan captions attention for Tibetan captions ROUGE-L scores data scarcity
- Trade-off between
. Merge model combining CNN and BLEU-1 and beam e
[13] Flickr 8k LSTM + beam search decoding search scores > 60 accura(rzr)]/e?gr;[/rammg

3. Methodology

The proposed AttenTAVO-Cap framework is a DL based
pipeline for automated image caption generation, integrating
visual, semantic, and sequential modeling components with
optimization. After extracting and aligning the feature
representations, the system operates as a singular caption

generation engine by interacting with visual features and
BERT-based embeddings through attention-enforced
BiLSTM decoding. The final captions are produced in a
sequential manner and cross-evaluated with standard
linguistic metrics. Figure 1 systematically illustrates each
stage of the proposed AttenTAVO-Cap framework, from
image preprocessing to final caption generation.

Input Image

L4 1®

h 4

Feature
Extraction using
Inception
ResNetV2

Y

Image
Preprocessing

Features

Text Processing
and Word
Embedding

Visual

using ROBERTa

4

Image captioning

using BILSTM
Decoder

with Visual
Attention

process

Performance
Ewvaluation

Hyperparameter
tuning using
(TAVO)

-

I

Fig. 1 Workflow of this research
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3.1. Data Collection

The Flickr8k and Flickr30k data sets are widely used
training and testing corpora for image captioning algorithms.
Flickr8k contains 8,000 images, while Flickr30k includes over
31,000 images, all of which are linked to five descriptive
captions written by humans. The data sets contain a vast range
of objects and scenes, offering linguistic structural variability
that makes them excellent for training generalization-capable
models. All the images are available in RGB format and vary
in size and resolution. The databases are available for research
and provide a realistic and challenging setting for caption
generation tasks. Figure 2 depicts a sample of the dataset.

The publicly accessible benchmark datasets (Flickr8k and
Flickr30k), which are available for scholarly research, are
used in this study. Images and captions were gathered with
proper user authorization in accordance with the original
dataset’s licensing. However, inherent sociological and
cultural biases, such as the overrepresentation of particular
activities, objects, or demographics, may be reflected in these
datasets and have an impact on the caption generation process.
We examined model outputs for systematic errors and biased
descriptions, especially with regard to gendered language,
object attribution, and activity labeling, in order to lessen these
impacts. We found no deliberate amplification beyond dataset
patterns. From a societal standpoint, better picture captioning
improves accessibility and human—computer interaction, but
careful deployment is required to prevent perpetuating
preconceptions.

3.2. Data Preprocessing

Firstly, preprocessed the images and captions from the
Flickr8k and Flickr30k datasets for training. All images were
resized to 299 x 299 x 3 pixels, as that is the input dimension
required for the InceptionResNetV2 encoder. Pixel values
were scale-normalized to [0,1] to stabilize convergence. For
the caption data, first lowercase each sentence, remove
punctuation and special characters, and then tokenize the text.
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To lower the sparsity of vocabulary, very infrequent (< 5
occurrences) words were eliminated. Start and end tokens
were introduced to indicate sentences, and all the sequences
were then transformed into a sequence of integer indices.
When dealing with the input, it is ensured that all elements
have the same length by adding padding with zeros in the
position of the maximum caption length. Besides, to have a
more meaning-oriented input, the tokenized sentences were
also embedded through a RoBERTa language model that had
been pre-trained and thus generated contextualized word-level
representation. At this stage, the vision and linguistic features
representation becomes the reference for the following
attention-guided caption generation.

3.3. Proposed Method

To address the challenge of accurate and fluent image
captioning, a new hybrid DL framework is proposed called
AttenTAVO-Cap. This architecture takes advantage of the
discriminative representation ability of InceptionResNetv2,
the embedding capability of RoOBERTa, and the sequential
learning capability of a Bidirectional LSTM decoder with
visual attention. Hyperparameters of the decoder are tuned
with the Taylor-African Vulture Optimization Algorithm
(TAVO). We enable adaptive decoders and end-to-end
optimization. The joint architecture enables the model to
attend to meaningful parts of the image, match them with
contextual semantic information from text embeddings, and
produce coherent captions that are contextually correct.

3.3.1. RoBERTa Embeddings

By leveraging the RoBERTa [15], which is a robustly
optimized BERT pretraining approach, we convert the
preprocessed captions into high-dimensional semantic
embeddings.

The handlers of each caption are tokenized and sent to the
deep transformer layers of ROBERTa to encode contextual
dependencies among words. These embeddings are
semantically richer inputs to the decoder, thereby facilitating
better alignment between linguistic and visual modalities.

Formally, let a tokenized input caption be represented as:

WhereXtX¢ is the token at position t, and T is the length
of the caption. ROBERTa applies multi-head self-attention
layers and feedforward blocks over this sequence to produce
context-sensitive representations:

H = [hy,hy, .., hyl, heRY

Wherel:h: is the contextualized embedding for the
token XtX¢  and d is the hidden size of the transformer model.
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Txd Txd
The output matrix heR™“% h €R™™ s then used by
the decoder for generating captions.

The attention mechanism inside RoBERTa is defined by:

Qk”
Attention(Q,K,V) = softmax(—)V

/.

Where Q, K, V are the query, key, and value matrices

derived from input embeddings, and dgdy s the dimension
of the key vectors used for scaling.

3.3.2. Feature Extraction via InceptionResNetv2

The AttenTAVO-Cap framework’s feature extraction
phase is adapted from InceptionResNetv2, a deep CNN hybrid
structure with the power of Inception modules for
representation, along with efficient learning of residual
connections. InceptionResNetv2 was proposed by Szegedy et
al. (2016) [16] as an extension of earlier Inception
architectures, following the power to achieve faster
convergence and improved feature reuse. Factorized
convolutions, asymmetric kernels, and residual shortcuts in
InceptionResNetv2 allow it to learn multiscale features
efficiently from input images.

Suppose that the input image is in the form:

Xe R299><299><3

Representing a color image of size 299x299 with three
RGB channels.

The image goes through a set of Inception blocks with
residual connections via the InceptionResNetv2 network, each
of which gives a filtered feature map:

y® = xO 4 FOxO)y

Wheref@f@ is the transformation applied by the I-th
Inception block (e.g., 1x1, 3x3 convolutions, and pooling),
and X X® is the input to that block. The residual addition
supports gradient flow preservation and accelerates learning
in deep networks.

After the final convolutional layer, a Global Average
Pooling (GAP) operation is done to shrink spatial features into
a fixed-length vector:

1
HxW

Zl =

H H
Z Z F(i,j, k), fork=1,...,2048
=1 =1
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WhereF € RH><W><2048F € RH><W><2048

convolutional feature map, and Zx Zk is the average activation
over the spatial domain for the k-th channel.

is the final

This produces a 2048-dimensional feature vector:
Ve R2048

Which is a dense, compressed representation of the
image, containing both low- and high-level semantic and
spatial information. These features are then fed to the decoder
to generate a caption with attention.

Residual connections are a crucial part of the ResNet
architecture, enabling signals to flow smoothly both forward
and backward through the layers. These connections play a
significant role in reducing the vanishing gradient issue that
often arises during the training of deep networks, helping the
model to reach convergence more quickly. The User can think
of the signal movement within a residual unit as something
that can be expressed mathematically:

F(x) )= Wxx;, +a«a (D
(2)
3

The last output of the residual model has the label X1X;

R(F) + h(x;)

i=Rx; +1=R(y)

+1. The value represents the offset. X1Xidenotes the input; w
indicates the weight; R shows the Relu function; Y11 denotes

the sum of two branches; h(XiXi) shows a simple

transformation for input; Fex)(x) signifies the convolution
function; and Relu shows an activation function, which can be
advantageous to the spread of the ladder and prevents the
divergence of the ladder from becoming significantly
attenuated late in the multi-layer convolution.

3.3.3. BiLSTM Decoder with Visual Attention

The system generates natural language descriptions that
represent the input image through this component. The system
performs translation of visual data to linguistic sentences,
which allows visual understanding to become a linguistic
representation.A Bidirectional LSTM decoder with visual
attention mechanisms performs the entire caption generation
task. The attention module at every decoding step generates a
weighted context vector by identifying which visual areas
matter most for current word generation. The BIiLSTM
receives context vectors to model forward and backward
dependencies before generating output word probabilities
through softmax.
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Mathematically, the attention mechanism is defined as:

1. Attention Score Calculation
ey = W,.tanh(W,V; + Wyh,_,)

2. Softmax Attention Weights
__exp(en)
2.; exp (ex)

Qi

3. Context Vector (Weighted Sum)

C: — E € V;

J

Where Vi Vi is the i-th visual feature from the image,
he—1he 1 is the previous hidden state from the BiLSTM
decoder, WaWp, Wi, WoW, Wy is the learnable weight
matrices, tanh tanh js the non-linearity to mix the image
and decoder states. This computes a score €t €ti representing
how relevant the i-th image feature Vi Vi is at the t-th decoding

step, Xt @i converts the raw scores €:i€t into attention

weights @t @ that sum to 1, and Ce ¢ is the context
vector, which is a weighted average of image features that is

weighted by the attention scores. Each decoding step receives
the context vector €t Ct together with the current word

embedding €€t for their processing through the BiLSTM:

4. BiLSTM Input:
[he' hi'] = BiLSTM([e; ;¢ ])

5. Word Prediction
o, = Softmax(W,[hy, he] + b,)

Where he Rt is the forward LSTM output and hi he
backward LSTM output. A complex meaning of previous and
upcoming time step information exists because these elements

combine at time step t, €€t is the embedding of the current

inputword (e.g., “a”, “man”, etc.), and C¢ LS C¢ IS the context
vector from the attention mechanism summarizes what parts
of the image to focus on at this step.

Visual Decodet
Attention / LSTM = LSTM ¢
\ :
: Y
5 -
ff"’ / LSTM =¥ LSTM =— LST™M LSTM LSTM +» LSTM
E—— / |
) \J
I I SN ¢ t
'_H | ! T
ROBERTa L
;'l ‘f Embedding / | "\ 2 HLSTM — LST™M
’J'—f' 3 # ||
\LSTM —> LST™
Embedded
| visualized
EFlcaluljc ——
[Lcuon Visual attention
. with BILSTM
Hypg{pummelﬂ +
uning
(TAVO) /—u—\
‘—
Generated
ge
Caption
ammy

Fig. 3 Schematic representation of the proposed AttenTAVO-Cap framework image captioning

Figure 3 shows an architecture that integrates Inception
ResNetv2 as the visual feature extractor with ROBERTa as the
semantic text embedding module. The features are then
merged and fed into a BiLSTM-based visual attention layer.
The decoder, which is trained with the Taylor-African Vulture
Optimization Algorithm (TAVO), generates context-informed
image captions.
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3.3.4. Metaheuristic Optimization (TAVO, GA, PSO)

To further enhance the performance of the captioning
task, we add metaheuristic optimization techniques to adapt
critical decoder hyperparameters. The first optimizer explored
here is the Taylor-African Vulture Optimization Algorithm
(TAVO), a hybrid algorithm that couples the global search
capability of the African Vulture Optimization Algorithm
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(AVOA) and Taylor series-based local refinement accuracy.
TAVO enhances convergence rate and local exploitation
accuracy with gradient-free, derivative-inspired search
behavior. The optimization process begins by randomly
initializing a population of candidate solutions, each
corresponding to a unique set of decoder hyperparameters
(such as hidden units and learning rate). Figure 4 illustrates
the Flowchart of the TAVO hyperparameter optimization process.

TAVO then Iteratively Updates Each Candidate based on
Two Stages,

e Global exploration: Inspired by the flight behavior of a
vulture, candidate solutions are scattered in the search
space.

e Local exploitation: Taylor series approximations are

utilized for locally refining promising areas around the
current best solutions for fine-tuning adjustment.

Two classic metaheuristics are also employed for
performance benchmarking:
e  Genetic Algorithm (GA): This GA [17] replicates natural
selection through crossover and mutation operators
applied to hyperparameter chromosomes. Selection
occurs based on fitness scores computed against
validation BLEU-4 or CIDEr.
Particle Swarm Optimization (PSO): PSO is an algorithm
[18] that emulates swarm behavior by allowing candidate
solutions (particles) to modify their position and velocity
according to global best and personal best solutions. It is
highly effective for continuous hyperparameter
optimization.

3.3.5. Hyperparameter Search Strategy and Reproducibility

A structured hyperparameter optimization technique is
used since the decoder configuration affects the AttenTAVO-
Cap framework’s performance.

The vector of decoder hyperparameters is defined as:

6={H,n, D, 2}

Where H defines the number of hidden units in the
BILSTM, 1 is the learning rate, D denotes the dropout ratio,
and A is the L2 regularization.

The following are the fixed search ranges:

H e [256, 1024]

ne[1075 1073]

D e [0.2,0.6]

Ae[107¢, 1073
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The validation BLEU-4 score is employed as the primary
fitness function for each candidate solution, and CIDEr is used
for secondary validation. Every optimization run is performed
for a maximum of N = 50 repetitions with a population of P =
20. All experiments are carried out utilizing fixed random
seeds for data shuffling, optimizer population creation, and
weight initialization to guarantee reproducibility. Every
optimization algorithm uses the same batch size, early
stopping conditions, and training/validation splits.

Initialize Population

Calculate Fitness

Set Best Solution

Global Exploration

Local Refinement

Update Fitness

Convergence Check

Return Optimal Hyperparamete

Return Optimal Hyperparameters

Fig. 4 Flowchart of the TAVO hyperparameter optimization process

3.3.6. Convergence Behavior of Metaheuristic Optimizers

TAVO, GA, and PSO convergence is examined by
monitoring the optimal fitness value throughout iterations.
Because of its hybrid search strategy, which combines local
refining based on Taylor series with global exploration to
prevent premature standstill and expedite exploitation close to
ideal regions, TAVO exhibits faster convergence.

The process of optimization ends when either:

The maximum iteration limit is reached, or

The relative advancements in fitness stay below a
predefined threshold e 10~* for five consecutive
iterations.

Figure 5 depicts the detailed attention-based BiLSTM
decoding process with visual feature weighting.
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Image Features Word Embedding

Attention Weights

Context Vector

Forward

Backward

Concatenate [ht; ht; e;; ¢

Softmax

Output Word Prediction

Fig. 5 Detailed attention-based BiLSTM decoding process with visual
feature weighting

Algorithm 1: Taylor-African Vulture Optimization
Algorithm (TAVO)

Input:

o LyUpLlyUy: search space boundaries
P: Population size

e T: Maximum iterations

e f(-): Fitness function
Output:

e X"X": Optimal solution

KX X

Step 1: Initialize a population v
Xy Xppenne 'Xp} of candidate hyperparameter vectors
within Lo UpLpUp

Step 2: Evaluate the fitness F&XDf(X:) of each
individual in the population
Step 3: Identify the current best solution X" X" with the

highest fitness
Step 4: For iterationt=11to T:
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e For each individual X; X;:

o Exploration phase (African Vulture flight behavior):
o XXX n.(n. X" — 1. XD)

X* + 1. (rz.X* — ?‘3.Xit)

Where 71 71,7272,1373~U(0,1)

o Exploitation phase (Taylor-based local refinement):
Apply Taylor series approximation:

Cf&+ A~ fO0a+ 0 2
fX+a)~ f0a+ 222

Use it to guide small local updates around X'X*
o Selection:

X7 = argmin(f (X5, FCGT)

Step 5: Update global best X"X" if a better solution is
found

Step 6: Repeat until convergence or T iterations are
complete

Step 7: Return X'X" as the optimized hyperparameter
configuration

Algorithm 2: Genetic Algorithm (GA) for Hyperparameter
Selection

Input:

o Dimg DcapDimg: Deap: Data input
e P: population size

o CCy: crossover rate

o M, M, : mutation rate

e G: max generations

Step 1: Population initializations from the subset according
to certain constraints.

Randomly initialize the population of hyperparameter

vectors {1, Ha, ... JHp}H{, Hy,....... JHp}
Step 2: For generationg = 1 toGg = 1 to G:
e Compute fitness Fi F; o each individuals GiGj

based on the BLEU-4/CIDEr from BIiLSTM + Attention
caption results

e Choose elite individuals
tournament/roulette selection

e Perform crossover on chosen parents, resulting in
children

e Mutate the offspring to diversify them.

(ranches) by using

e Create new population HyowHyew from offspring and
elites

Step 3: After G generations, return best H™H " and train
final baseline model McaMga
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Algorithm 3: PSO for Hyperparameter Tuning

Input:

Dim.q* DcapDim.q* Dcap: input data,
P: Swarm size

@Ww: Inertia weight

€1 C1: Cognitive coefficient

e (2C2: Social coefficient

e T: Max iteration
Step 1: Particle initialization, each particle is initialized

with a random hyperparameter vector X X;, velocity V.V,
and best position P;P;,

Step 2: Assess the fitness function fX)f (Xi) of each
particle by BLEU-4/CIDEr.

Step 3: Finding the global best position G'G*

Step 4: For iterationt = 1to Tt = 1to T,

e For each particle:
e Update

Vi = w.V; +c;.rand(). (P, — X;) +
c.rand().G* — X;

V; = w.V; +¢.rand().(P; — X;) +
cy.rand().G* — X;

e Update position: X; = X; + Vi X; = X; +V;

e Compute new fitness and update P;P; and GiGi if it is
better suited

velocity:

Step 5: Then Return G" G and train MpsoMpso.

3.4. Baseline Models

To benchmark the performance of the AttenTAVO-Cap
model, selected several baseline models for comparison.
These models share common architecture, but differ in
optimization regimes, or philosophies of design:

HABGRU + AVOA: Habituation-aware BiLSTM with an
African Vulture Optimization Algorithm is a hybrid GRU
model previously listed in captioning literature. This model
serves as a good benchmark model, as it is biologically
inspired and designed with metaheuristic tuning.

AttenTAVO-Cap (GA) is a version of attending with a
vulture for a cape, where hyperparameters are tuned using a
Genetic Algorithm for comparison between one optimization
method versus the proposed Taylor-based wulture
optimization.

AttenTAVO-Cap (PSO) is a different version tuned using
Particle Swarm Optimization, representing an acceptable
baseline under the swarm intelligence taxonomy. Given that
all baseline models use the same backbone architecture,
InceptionResNetv2 for visual features, RoBERTa for
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semantic embedding, and a visual attending BiLSTM decoder,
this creates a level playing field between performance
measures and architecture. All baseline models were also
tested using the exact same performance measures as the
proposed model, e.g., BLEU-1 to BLEU-4, METEOR,
ROUGE-L, and CIDEr were calculated from the Flickr8k and
Flickr30k datasets, and HABGRU + AVOA used Flickr8k.

Using the same testing framework is essential for a fair
performance comparison, as it isolates optimization from
architectural variables.

To ensure the outcomes are accurate and reliable, a
rigorous evaluation method was adopted, including split-data
experiments. For the experiments conducted using data from
the Flickr8k and Flickr30k datasets, the pattern was 80%
training, 10% testing, and 10% validation.

The images were shuffled before division, and all the
captions of an image were in the same group. To compare the
performance scores of AttenTAVO-Cap models with those of
other models on test images, the models’ scores were
compared using a paired t-test with a 95% confidence level (p
< .05) for each test image. The CIDEr and METEOR scores
for the TAVO-optimized models show significant
improvements on test images across both datasets, indicating
that the improvements are not random variations in
performance. In addition to average-score improvements, we
conducted an exploratory analysis of predictive failures.

The predictive failures were categorized into the
following groups: (i) omission of the object, (ii) assignment of
the attribute of color/number, and (iii) assignment of the
relation of the semantic aspect. In both scenarios, our
approach performed better than the others in terms of both the
omission of semantics and the semantics of the relation.

4. Results and Discussion
4.1. Experimental Setup and Implementation

The image captioning architecture, named AttenTAVO-
Cap, has also been assembled for accelerated training
environments using GPU resources to achieve faster
convergence and better DL performance. In building this
architecture utilizing Python 3.9, it depended heavily on
libraries such as PyTorch, Hugging Face Transformers, and
NumPy.

The Google Colab environment with Tesla T4 GPU
resources has been heavily relied upon for training. First, we
would like to highlight the hardware, software, and training
environment used in our experiment as follows: In addition to
the hardware components already mentioned, we used the
Hugging Face RoOBERTa caption tokenizer and the
Torchvision image transform for data preprocessing. For
image feature extraction, InceptionResNetv2 was used, pre-
trained on the ImageNet dataset.
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Table 2. Experimental setup for AttenTAVO-cap image captioning

Training Parameter Value
Batch Size 32
Optimizer Adam
(metaheuristic fully tuned)
Epochs 50
Learning Rate
ReduceLLROnPlateau
Scheduler
Dropout Rate 0.5
Learning Rate 0.0001
BERT Embedding RoBERTa-base
Decoder Units BiLSTM, 128-512 hidden units
Attention Vector Size 64-256

For the entire training process, the forward and backward
passes, calculation of loss, and optimization routines using the
TAVO, GA, and PSO algorithms, were performed on the
GPU. As explained in the sections that follow, we employed a
well-optimized training strategy, backed by powerful
computational resources, to achieve remarkable captioning
performance and reliable convergence within 50 epochs. The
model was trained and tested on two benchmark datasets for
picture captioning: Flickr8k and Flickr30k. Flickr8k contains
8,000 photographs, each with five human-written
descriptions, whereas Flickr30k includes 30,000 images. Both

datasets are common standards for assessing the
generalizability and linguistic fluency of image captioning
models. Table 2 presents the experimental setup for
AttenTAVO-Cap Image Captioning.

4.2. Evaluation Metrics

In this section, we have evaluated AttenTAVO-Cap with
TAVO, GA, and PSO using standard image captioning
metrics on both datasets, Flickr8k and Flickr30k. The
performance of the proposed model was analyzed based on
image captioning metrics: BLEU, METEOR, ROUGE-L, and
CIDEr. Examples of precision-based captioning metrics, such
as BLEU and its subunits, BLEU-1 to BLEU-4, which are
unigrams up to 4-grams, capture basic oversight and structural
interconnection and overall fluency and syntactical similarity.
METEOR is a synonymy-based extension of BLEU, which
does better in correlating to real-life evaluations by humans
due to factors of synonymy, stemming, and penalization based
on the order of words. As for ROUGE-L, it computes the
Longest Common Subsequence (LCS) and is referred to as
structural similarity and fluency. CIDEr is customized for
captioning due to its assessment of consensus among multiple
references pertaining to human citation references through
TF-IDF N-grams, highlighting merit-based content capture
and precision detailing. Tables 3 and 4 showcase the metric
values for the models.

Table 3. Full evaluation metrics on Flickr8k (test set)

Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L | CIDEr
Proposed: AttenTAVO-Cap (TAVO) 0.70 0.54 0.45 0.29 38 67 194
AttenTAVO-Cap (GA) 0.66 0.49 0.41 0.34 35 61 185
AttenTAVO-Cap (PSO) 0.65 0.47 0.39 0.33 37 63 189
HABGRU + AVOA 0.64 0.45 0.36 0.31 33 60 183

Table 4. Full evaluation metrics on Flickr30k (test set)

Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE-L | CIDEr
Proposed: AttenTAVO-Cap (TAVO) 0.68 0.52 0.43 0.29 35 63 191
AttenTAVO-Cap (GA) 0.64 0.47 0.39 0.32 34 59 188
AttenTAVO-Cap (PSO) 0.63 0.45 0.37 0.30 33 61 186
HABGRU + AVOA 0.60 0.43 0.34 0.31 31 57 183

Across both datasets, the AttenTAVO-Cap (TAVO)
model demonstrated a superior advantage over the remaining
variants. The TAVO model achieved the highest scores on the
Flickr8k data with BLEU-1 at 0.70, BLEU-2 at 0.54, BLEU-
3 at 0.45, BLEU-4 at 0.29, METEOR at 38, ROUGE-L at 67,
and CIDEr at 194, as shown above. These metrics suggest that
both the syntactic and semantic relationships with the ground
truth captions are very strong. The GA-tuned AttenTAVO-
Cap scores slightly lower than AttenTAVO-Cap across all
metrics (for example, BLEU-4: 0.34, METEOR: 35, CIDEr:
185), and the PSO-tuned version with scores of BLEU-4: 0.33
and CIDEr: 189, respectively. However, the baseline
HABGRU + AVOA model produces the lowest scores across
all metrics (for example, BLEU-4: 31, METEOR: 60, and
CIDEr: 183), strongly indicating the advantages of the
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AttenTAVO architecture. A similar runnable context can also
be observed across the Flickr30k dataset, as all models
exhibited slightly lower scores due to the additional
complexity and variability of the dataset. Also, reusable
metrics indicate that AttenTAVO-Cap (TAVO) achieved
relatively high baseline scores of BLEU-4: 0.29, METEOR:
35, ROUGE-L: 63, and CIDEr: 191 again. The GA and PSO
models all exhibited a modest drop from TAVO’s scores, with
PSO scoring BLEU-4: 0.30 and CIDEr: 186. Meanwhile,
HABGRU + AVOA, again, scored the lowest across the base
metrics evaluated with BLEU-4: 0.31, METEOR: 31, and
CIDEr: 183. Overall, these comparisons reveal the overall
effectiveness of the TAVO optimization strategy and highlight
the strengths of the AttenTAVO-Cap model based on the size
of the datasets and the complexity of the captioning task.
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4.2.1. Comparison with AVOA-Based and Transformer-Based
Models

In contrast to other AVOA-based approaches, such as the
HABGRU + AVOA model, the proposed TAVO technique
includes an additional Taylor Series Local Refinement step
that runs parallel to the global search conducted through the
African Vulture Optimization algorithm. The hybrid
technique enables the African Vulture Optimization algorithm
to exploit the strongest indicative signals of successful
hyperparameters, resulting in faster convergence, improved
stability, and better overall performance in the semantic
metrics CIDEr, METEOR, and ROUGE-L for both Flickr8k
and Flickr30k. AVOA uses random-driven and population-
level updates, whereas in TAVO, refinements inspired by the
derivative components do not require gradient computations.
However, transformer-based solutions to image captioning

tasks usually perform in the hundreds, thanks to heavy reliance
on the self-attention mechanism and pre-training over massive
datasets, perhaps measured in the hundreds of millions. In the
AttenTAVO-Cap framework, the best use of the capabilities
is aimed at, not the size. This is because transformer-based
models often impose extremely demanding computational
requirements and require enormous, curated datasets, which
may not be feasible in less-than-real-time settings. From our
work, we show that, through expertly designed hybrid models,
semantic alignment can be achieved reasonably with less
massive transformers. To showcase these differences, we have
made an equal comparison in Table 4 between AttenTAVO-
Cap and other AVOA- and transformer-based models for
captioning. Table 5 presents a comparative study of our model
with AVOA-based and transformer-based image captioning
models.

Table 5. Comparative analysis of AttenTAVO-Cap with AVOA-based and transformer-based image captioning models

AVOA-based Transformer-based
Aspect Models Models Proposed TAVO
Lo Gradient-based Hybrid metaheuristic
Optimization Strategy AVOA (Adam/SGD) (AVOA + Taylor refinement)
Local Search Capability Limited Implicit through gradients Explicit Ta}qur—based
exploitation
Model Scale Moderate Very large Moderate
Data Requirement Medium Very high Medium
Computational Cost High Very high Controlled
Semantic Consistency Moderate High High
Generalization on Small Datasets Limited Often weak Strong
Deployment Feasibility Moderate Low High

Table 6. Comparison of evaluation metrics with others

Ref(s) Model / Methodology BLEU-4 (%) (METEOR / ROUGE-L / CIDEr)
Attention-based Two-LSTM Image
[1] Captioning Model (CNN + Multi-Attention 38.1 28.3/58/126.1
+ LSTM)
Transformer + ResNeXt-101 + Adam
(] Optimizer (MS COCO, Flickr30k) 20.10 — ==
[19] Linear-Time Sequence Model (Flickr30k) 59 79/73/130
Advanced Context-Aware Object
[20] Relational Model 44.39 41.58/64/-
Ours AttenTAVO-Cap 29.00 38/67/194

4.3. Comparative Analysis and Discussion

In this section, we interpret the evaluation results and
explain why our model performs the best. Among all models,
AttenTAVO-Cap optimized using Taylor-African Vulture
Optimization (TAVO) showed the best results, as shown in
Table 6. With a CIDEr score of 194 and a BLEU-4 score of
0.29 or 29%, it outperformed all other versions by a wide
margin. The next-best model was an Attention-based two
LSTM image  captioning  model (CNN+Multi-
attention+LSTM) [1], which reached BLEU-4 = 38.1% and
CIDEr 126.1. Conversely, the model (Transformer +
ResNeXt-101 + Adam Optimizer (MS COCO, Flickr30k) [3]
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employed in past research had a somewhat reduced BLEU-4
of 20.10 %. Recently, research in image captioning has
focused on applying novel architectures to improve efficiency
and semantic quality. In study [19], a linear-time sequence
model architecture is used on Flickr30k and achieves very
encouraging results, with BLEU-4 = 59%, METEOR = 79,
and ROUGE-L = 73. However, compared with other methods,
the CIDEr score is relatively low, around 130, indicating that,
although improved in terms of efficiency and semantic
quality, the current caption outcome may still relate less
accurately to human-written captions than the optimization-
based hybrid outcome. In [20], focusing on how object
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relationships and contextual dependencies are implemented in
images, the findings are more pertinent and semantically
significant: ROUGE-L ~ 64, BLEU-4 = 44.39%, and
METEOR = 41.58. These results indicate higher logical and
semantic accuracy and, consequently, better comprehension
of object relationships in the caption. But because it lacks
values for CIDEr metrics, assessing performance on human-
consensus metrics becomes difficult, given CIDEr’s
importance in determining semantic relevance and accuracy
across a variety of captions.

Compared to the above arches, the proposed
AttenTAVO-Cap model yields well-rounded performances.
Moreover, in the context of high CIDEr scores and METEOR
and ROUGE-L evaluations, optimization-driven models have
been a prominent choice for efficiency and relational
understanding.

4.4. Training and Testing Performance

To assess the caption-generating performance of the
suggested  AttenTAVO-Cap  Framework, extensive
comparisons against several baseline models using the same
training arrangements were undertaken. Using the same 80/20
training-validation-test split, the trials were carried out on the
Flickr8k and Flickr30k datasets. Evaluation of caption quality
was based on five major metrics: BLEU (1-4), METEOR,
ROUGE-L, and CIDEr. Figure 6 performance curves show the
training curve of the proposed AttenTAVO-Cap for its 50
epochs of training. The right side presents the loss curve that

depicts all the loss types, thus showing the behavior of both
training loss and validation loss of the model. Initially, the
training loss is quite high, and is about 0.85, and then it is
reduced very fast to nearly 0.03 in the first 20 epochs.
Therefore, the rate of descent is similar to a logarithm; it never
gets nearly straight, and the end is reached with this situation
at the end of the 50th epoch. This is the constant diminishing
of the loss that tells the model was never standing still and was
learning the best attributes internally to make predictions as
accurately as possible in each epoch.

‘Ttaining vs Validation Loss

—Train Loss
\ = = Validation Loss

0.8

0.6

0.2

0.0

0 10 20 30 40 50
Epochs

Fig. 6 Training vs validation loss curve of the AttenTAVO-Cap

Table 7. Performance comparison of captioning models based on BLEU-4 and CIDEr (Flickr8k and CIDEr (Flickr8k)

Optimization Method Model Architecture BLEU-4 | CIDEr
Proposed: AttenTAVO-Cap (TAVO) InceptionResNetv2 + RoOBERTa + BiLSTM + Attention 0.29 194
GA[Baseline] InceptionResNetv2 + ROBERTa + BiLSTM + Attention 0.34 185
PSO[Baseline] InceptionResNetv2 + ROBERTa + BiLSTM + Attention 0.33 189
AVOA + HABGRU [Baseline] InceptionResNet + HABGRU + AVOA 0.31 183

For the validation set, one notices a similar pattern - the
losses started off slightly higher, with the initial loss around
0.88, and were then gradually reduced to about 0.10. The most
important thing, however, is that the gap between the two loss
curves (training and validation) is always kept to a minimum,
displaying no signs of overfitting. In fact, parallelism in the
direction of both lines indicates the model’s good
generalization ability in relation to unseen data. The curves of
both the training loss and the validation loss, which are convex
downward and free from any sudden inclines, accompanied by
up and down steps (because of random gradient updates), are
clear-cut evidence of the steady performance the model is
exhibiting. The trajectory of convergence of the trend assures
that the model indeed extracted the essential features from its
input and subsequently retained all these features well during
the test phase, proving the correctness of the training strategy
and the model itself. Extra indicators, including BLEU-1 to
BLEU-3, METEOR, and ROUGE-L, were evaluated to
provide a more complete picture of linguistic fluency and

semantic coherence. Once again, ranking top among all of
these criteria was the TAVO-optimized model. These findings
highlight how resilient AttenTAVO-Cap is across various
datasets, showcasing its knack for producing high-quality,
contextually relevant captions, even when dealing with larger
and more varied image collections like Flickr30k. The
experimental results reveal that the AttenTAVO-Cap model
not only achieves superior n-gram precision (BLEU) but also
shines in generating captions that are both semantically rich
and fluent, as shown by METEOR, ROUGE-L, and CIDEr.
The model’s impressive performance is attributed to the
powerful combination of InceptionResNetv2’s visual features,
RoBERTa’s contextual embeddings, attention-guided
BiLSTM  decoding, and effective  hyperparameter
optimization through TAVO. These results were consistently
observed across both the Flickr8k and Flickr30k datasets,
reinforcing the generalization capability of the proposed
framework.
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In Table 7, the Performance Comparison of Captioning  datasets. Figures 7 and 8 show the comparative BLEU
Models Based on BLEU-4 and CIDEr is presented for both  inspection of the AttenTAVO-Cap methodology.
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Fig. 7 Comparative analysis of AttenTAVO-Cap approach with other systems (a) BLEU-1, (b) BLEU-2, (c) BLEU-3, and (d) BLEU-4 using Flickr8k
dataset.
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Fig. 8 Comparative analysis of AttenTAVO-Cap approach with other systems (a) BLEU-1, (b) BLEU-2, (c) BLEU-3, and (d) BLEU-4 using Flickr30k
dataset.
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Fig. 9 Comparative analysis of AttenTAVO-Cap approach with other systems METEOR, CIDEr, and Rouge-L using Flickr8K dataset
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Fig. 10 Comparative analysis of AttenTAVO-Cap approach with other systems METEOR, CIDEr, and Rouge-L using the Flickr30K dataset

Figures 9 and 10 show the Comparative analysis of the
AttenTAVO-Cap approach with other systems, METEOR,
CIDEr, and Rouge-L, using both datasets. The comparison
results unequivocally show that the suggested AttenTAVO-
Cap model outperforms a previously developed hybrid model
(HABGRU + AVOA) as well as baseline variants (GA and
PSO).

For both the Flickr8k and Flickr30k datasets,
AttenTAVO-Cap (TAVO) consistently yields the highest
scores across BLEU-4, METEOR, ROUGE-L, and CIDEr
metrics, as indicated in the Figures. It outperforms GA by 5
points and PSO by 6 points, respectively, with a BLEU-4 score
of 0.29 on Flickr8Kk. It continues to Flickr30k with 0.29, while
GA and PSO trail at 0.32 and 0.30. GA leads BLEU-4, but
TAVO leads CIDEr (191 vs 188/186).

According to the CIDEr metric, the model demonstrates
superior relevance and expressiveness compared to GA (185),
PSO (189), and the baseline HABGRU + AVOA (183),
achieving a higher score of 194. Indeed, the model beats all
other approaches on semantic agreement and linguistic
fluency, with METEOR and ROUGE-L scores of 38 and 67,
respectively. The BLEU-4 for AttenTAVO-Cap on Flickr30k
is 0.29, compared to 0.32 and 0.30 for GA and PSO,
respectively. Also, the CIDEr score achieved by the model
surpasses those of all the compared models, reaching a value
of 191. The generated model produces syntactically correct,
semantically dense captions that align with human references,
achieving METEOR scores of 35 and ROUGE-L scores of 63.

4.5. Computational Complexity and Runtime Analysis

This section evaluates the computational overhead on
training efficiency and the practicability of the newly
proposed AttenTAVO-Cap framework, particularly regarding
the performance of TAVO, GA, and PSO optimization
techniques.
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Training Time Comparison: The three different versions
of AttenTAVO-Cap were trained and tested in strictly the
same hardware and software environments on a Tesla T4
GPU. There was a noticeable difference between the
optimizers, even though metaheuristics have more
overhead than fixed hyperparameters. Because of the
constant crossover and mutation between generations, the
GA optimizer was the slowest. Due to velocity
modifications, the training time in PSO was moderate;
however, swarm characteristics could affect it. At the
same time, TAVO reached optimal points more quickly
by avoiding unnecessary population-level updates
through Taylor expansion-based local search. At the same
time, TAVO was found to have a training time equal to or
lower than PSO and superior to GA.

GPU Utilization and Convergence Properties: GPU usage
remained steady across all experiments, as most
computations involved extracting CNN features and
performing BiLSTM decoding. The effect of TAVO on
total training costs was negligible. However, most
importantly, TAVO-optimised models required fewer
effective epochs and exhibited smoother convergence
than GA- and PSO-optimised models.

Feasibility for Real-World Deployment: As far as the
feasibility for deployment is concerned, AttenTAVO-Cap
provides a very positive impression in terms of balance
between performance and computational complexity.
Unlike the transformer-based captioning models, the
proposed approach does not require large-scale training.
Once the optimization is achieved, the complexity at the
inference phase remains the same for the TAVO, GA, and
PSO models. This makes the TAVO-optimized approach
particularly suitable for environments with constrained
computational resources.

Effect of Optimization Strategy on Caption Quality: To
gain better insights into the effect of optimization strategy
in captioning tasks, we performed an ablation study by
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varying just the hyperparameter optimization strategy
while holding the architecture constant. In this work, all
model variations share the same architecture, including
the InceptionResNetv2 encoder, ROBERTa embeddings,
and an attention-based Bi-LSTM decoder. The only
difference between them is how each optimizer handles
hyperparameter optimization.

CIDEr and METEOR reward semantic relevance and
human agreement over superficial n-gram matching. TAVO’s
careful balance between exploration and exploitation helps the
decoder reach conclusions about the choice of
hyperparameters, naturally aligning visual features and
contextual linguistic representations.

Additionally, the use of the Taylor series approximation
in the local refinement enables the careful control of the rates
of learning, hidden units, and dimensions of the attention
vector to result in captions that convey semantic relationships
between objects and the scene more accurately.

This results in higher CIDEr and METEOR scores than
those of the GA and PSO algorithms. GA performance would
sometimes fluctuate across generations due to the mutation
component. In some cases, the PSO would get trapped in a
local optimum.

TAVO ensures good convergence with lower variability.
In conclusion, this analysis shows that it is not only
architectural trends that have led to improvements in
performance, but that the proposed TAVO optimization
method is more significantly instrumental in ensuring the
efficiency of high-quality image captioning.

4.6. Ablation Study: Effect of Optimization Strategy on
Caption Generation

An ablation test was conducted by maintaining the core
architecture and varying only the hyperparameter
optimization algorithm so as to see the effectiveness of the
selected optimization algorithm on the performance of the
captioning model. In all the tests carried out, the attention-
based BiLSTM decoder architecture, semantic embedder
model (RoBERTa), and visual encoder architecture were
maintained as InceptionResNetv2. The TAVO, GA, and PSO
optimizers are the three metaheuristics involved in this
ablation and compared to a previous combination of a hybrid
baseline model and AVOA. The ablation test outcome is
clearer on the fact that the selected optimization algorithm
plays a pivotal part in the determination of a captioning model,
regardless of changes in the backbone network architecture, as
explained in Table 8. The captioning outcome generated by
our new embedder model with TAVO-based optimization
strategy achieves semantically truer and more cohesive and
human-evaluated captions.

Table 8. Ablation analysis highlighting semantic and fluency gains from different optimization strategies
Optimization Semantic Consistency Linguistic Alignment Fluency (ROUGE- Overall Caption
Strategy (CIDEr 1) (METEOR 1) L 1) Quality
TAVO (Proposed) Highest Highest Highest Very Strong
GA Moderate Moderate Lower Medium
PSO High Moderate—High Medium Medium-High
AVOA (Baseline) Lowest Lowest Lowest Weak

In the case of CIDEr, what we notice is that the benefit
brought by TAVO is the ability to get the captions aligned to
the human annotations. This is brought by an effective
combination of exploration and exploitation brought by
TAVO because the search inspired by the African Vulture
Search helps the search avoid being stuck prematurely.

In other words, the search inspired by the Taylor series
helps the adjustment of the decoder parameters. On the flip
side, GA has ensured good n-gram precision, although with
less convergence of hyperparameters because of its stochastic
process involving mutation and crossover. It has ensured that
the captured images have aesthetically pleasing results
concerning their BLEU scores, although less semantic and
with lower CIDEr and METEOR scores, which has been
established in the results section. In comparison with GA,
there is faster convergence for PSO, although its initialization
method sometimes leads to less optimal exploration of its
solution space. The baseline system of HABGRU + AVOA is
consistently beaten on lexical and fluency measures.
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This emphasizes the advantage of the combination of
AttenTAVO-Cap architecture and the Taylor-opt search
procedure over previous biologically inspired architectures.
This ablation experiment clearly justifies that the performance
benefit achieved through the AttenTAVO-Cap is not just an
issue in the model architecture. A key contributing factor for
such improvements is the TAVO optimization method since it
incorporates the capability for converging toward the
informed choice of hyperparameters through the attainment of
improvements in the expressiveness and human alignment
qualities.

4.7. Qualitative Results and Analysis

In this section, we can see the quantitative evaluation
metrics, and the captions produced by the AttenTAVO-Cap
model were scrutinized for qualitative evaluation by
thumbnail visual examination. To demonstrate the model’s
competency in captioning, these samples were drawn from
both Flickr8k and Flickr30k test datasets presented in Tables
9,10, and 11.
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Table 9. Ablation analysis demonstrating the improvements in fluency and semantics from various optimization techniques

Ground Truth Generated Caption (AttenTAVO-Cap)

A child in a pink dress is
climbing up a set of stairs
in an entryway.

A young girl wearing a pink dress climbs
stairs inside a building.

Analysis: The term “child in the pink dress climbing the  can spatially focus on contextually relevant regions, such as
stairs” is captured by the model, which lexically simplifiesa  clothing and stairs, as demonstrated by its semantic
human-created caption. The model’s decoding components  correctness.

Table 10. Semantic and fluency improvements from various optimization techniques are highlighted via ablation analysis
Image Ground Truth Generated Caption (AttenTAVO-Cap)

Captioning Text

A black dog and a white
dog with brown spots are
staring at each other in the
street.

Two dogs, one black and one white, face
each other on a road.

Analysis: The caption upholds several focal aspects: two The description emphasized how visual concentration,
dogs, their colors, and the described interaction. The model’s  effective decoding, and expressing reasoning drive object-to-
language is accurate and demonstrates a grammatically sound  object interactions.
sentence, although it is explained in simple terms.

Table 11. Ablation analysis and semantic and fluency gains from different optimization strategies

Image Ground Truth Generated Caption (AttenTAVO-Cap)

Captioning Text

A man in a hat is displaying
pictures next to a skier in a blue
hat.

A man wearing a hat shows photos beside
another man in skiing gear.

Predicted Captioning Text

A wa  at showsghcts bsie ansther a5 g

Analysis: Contextually, the utterance conveys a man, natural language responses. The attention mechanism plays an
presumably showing off pictures, and another person dressed important role in linking vocabulary with the relevant image,
in skiing attire. Even while details such as “blue hat” tend  and the phrase identification is improved through the use of
towards generalizations in “skiing gear,” the core of the = TAVO hyperparameters.
caption remains in line with the visuals that can be detected. It
picks steam and posture and has details in place. The minor differences between the proposed and ground

truth captions do not impact the contextual correctness of the

The qualitative examples demonstrate the effectiveness of ~ proposed captions and make them equally good as captions in
the proposed AttenTAVO-Cap (TAVO) model in  apractical scenario.
understanding the scene, identifying objects, and creating
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5. Conclusion

This work proposes a general solution for image
captioning with AttenTAVO-Cap, a novel hybrid approach
that combines the attention-driven CNN-BiGRU framework
with the TAVO metaheuristic. The optimization strategy not
only improves the convergence rate but also enhances the
capability to learn more discriminative correlations between
images and texts. The critical analysis performed for the
evaluation process, using the Flickr8k and Flickr30k
benchmarks, determines that AttenTAVO-Cap (TAVO)
obtains SOTA results in captioning in terms of the entire set
of evaluation criteria, thoroughly surpassing the results
obtained with the standard optimization approaches, namely
PSO & GA, as well as HABGRU + AVOA in the SOTA
approaches. That is, the model obtained a CIDEr score of 194
in the Flickr8k database and a score of 191 in the Flickr30k
database, which are signs that indicate a strong consistency
with the human-annotated captions. The BLEU & METEOR
scores also confirm the semantic & syntactical aptness. The
experiment succeeded in determining that metaheuristic
approaches proposed in bio-inspired optimization, like the
proposed TAVO, are sturdy alternatives to the traditional
learning paradigms, namely in the case of captioning, which
corresponds to the search in high-dimensional spaces.
Although the proposed approach obtained outstanding results,
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