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Abstract - Image captioning, a problem at the intersection of natural language processing and computer vision, remains a 

difficult problem due to the inherent challenge in converting visual semantics to semantically rich text descriptions. Metaheuristic 

optimization in combination with neural network architectures has recently been shown to have excellent potential in bridging 

this gap. In this work, we present AttenTAVO-Cap, a novel hybrid image captioning model integrating an Attention-based 

Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) architecture with the recently 

proposed Taylor African Vulture Optimization (TAVO) algorithm. The TAVO algorithm, inspired by African vultures’ 

cooperative hunting behavior and augmented by Taylor series convergence properties, is utilized to optimize model 

hyperparameters very effectively. To completely assess the performance, experiments were conducted on two benchmark 

standards, Flickr8k and Flickr30k, with three versions of optimizers: TAVO, Genetic Algorithm (GA), and Particle Swarm 
Optimization (PSO). The outcome validated that AttenTAVO-Cap (TAVO) performed better than all the other models on a suite 

of evaluation metrics overall, with a BLEU-4 score of 0.29, METEOR of 38, and CIDEr of 194 and ROUGE-L of 67 on the 

Flickr8k corpus, and 0.29, 35, 191, and 63, respectively, on Flickr30k. Compared to baseline approaches, such as HABGRU + 

AVOA, the approach outlined here made considerable improvements, especially in semantic alignment and human-consensus-

based measures. Results exhibit that hybrid Deep Learning (DL) and nature-inspired optimization can produce captions that are 

more accurate and human-like. Additionally, the present study provides possibilities to explore the explainability and 

generalizability of captioning models.  

Keywords - Deep Learning, Flickr8k, Flickr30k, Genetic Algorithm (GA), Image Captioning, Metaheuristic Optimization, 

RoBERTa Embeddings, Taylor-African Vulture Optimization Algorithm (TAVO), Particle Swarm Optimization (PSO), Neural 

Architecture Optimization, Visual Attention, Bidirectional LSTM (BiLSTM). 

1. Introduction  

In the fields of computer vision and natural language 

processing, image captioning, the act of describing an input 

image in text, is a well-studied research topic. It aims to 

convert more expressive visual information into natural 

language so that images can be processed by machines like 

humans. This capability is crucial in assistive technology for 

the blind, intelligent image search, self-driving cars, and 
human-robot communication. Early work in this domain 

utilized encoder-decoder models, where CNNs were 

employed to learn hierarchical spatial and semantic features 

from images and Recurrent Neural Networks (RNNs), 

specifically Long Short-Term Memory (LSTM) units, to 

generate coherent sequences of text [11, 15]. Though they 

performed well at first, these approaches were thoroughly 

challenged in model parameter tuning for good models, 

semantic faithfulness of the produced captions, and scalability 

to large and varied datasets. Current advancements in image 

captioning have followed two broad trends: metaheuristic 

model tuning for deep learning configurations and vision-
language models based on transformers. Metaheuristic 

techniques based on natural inspiration, such as the African 

Vulture Optimization Algorithm (AVOA) or its Taylor-series 

improved version, Taylor-series enhanced VOA (TAVOA), 

have been rendering good results when combined with highly 

capable CNN architectures such as InceptionResNetv2 or 

sequence models such as hybrid attention bidirectional GRUs. 

There are many advantages to metaheuristic model tuning 

over gradient-based model tuning in gradient descent, which 

include combating overfitting, escaping the local minima, or 

facilitating smooth objectives even for complex, high-
dimensional, and non-convex objective functions as exist in 

training tasks. Metaheuristic-based image captioning models 

remain relatively uninvestigated, especially when combined 

with reliable semantic representations of language. At the 

same time, transformer models have radically changed the 

field of image captioning with the introduction of self-

attention mechanics that are well-suited for modeling complex 

https://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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interactions between visual and text data. Models 

incorporating multi-view vision features, attention layers, and 

vision-and-language scale AI pretraining models achieved 

new state-of-the-art performance on scaled-up vision-and-

language corpora such as the MS COCO or Flickr30k data sets 
[1-3]. External knowledge graphs can also be leveraged to 

anchor image captions in real-world knowledge [4]. 

Nonetheless, such models appear to require truly massive data 

sets, intensive computation, and complicated models for 

effective training, which might make these models less useful 

or scalable in real-world applications [5]. 

The complexity of the model, the efficiency and 

explainability of the training, and the deployability process for 

the final solution. Experiments comparing CNN encoders with 

encoder-decoders imply that while there are some tiny 

improvements in accuracy, the computation and flexibility 

increase [6, 8]. Another stream underscores the challenge to 
scale vision-language pretraining to hundreds of millions of 

image-text pairs, as demonstrated in the LEMON model, 

which achieves state-of-the-art performance on benchmarks 

like COCO and nocaps [7]. Some research on semantic 

ordering, captioning for multiple languages, and improved 

decoding focuses on the coherence and grammatical 

correctness of the story. However, these problems are 

typically addressed through multiple, disconnected parts of 

the captioning process, rather than through the simultaneous 

increase in semantic complexity and efficiency of the solution. 

Existing image captioning models rely either on huge 
transformers and associated high computational costs or on 

deep learning models that lack adaptive global optimization of 

hyperparameters and models. Look for a framework that 

encompasses strong image abstraction learning, semantically 

powerful language modeling, adaptive decoding guided by 

attention mechanisms, and efficient global hyperparameter 

optimization. Even with significant advancements in image 

captioning, current methods still have to balance practical 

deployability, computational economy, and caption 

quality.  Furthermore, there is still a lack of research on the 

effects of various metaheuristic optimization techniques on 

training dynamics and caption production quality in a 

controlled architectural environment.  

The following research questions should now be clearly 

summarized in order to address this: 

 

1. In order to improve semantic alignment and caption 

quality, exactly how may metaheuristic optimization be 

appropriately combined with deep image captioning 

structures?  

2. Can TAVO produce measurable advantages over 

traditional metaheuristics like GA and PSO for captioning 

model tuning?  
3.  In what ways does the suggested hybrid architecture 

balance computational viability, performance, and 

generalization on the benchmark?  

The following are this study’s principal contributions:  

 We present AttenTAVO-Cap, a hybrid image captioning 

architecture that combines InceptionResNetv2-based 

visual encoding, RoBERTa-based semantic embeddings, 

and an attention-guided BiLSTM decoder optimized 
using the TAVO algorithm. 

 We present a metaheuristic-based hyperparameter 

optimization method designed explicitly for caption 

decoding, enabling sufficient global exploration along 

with local refinement without using gradients. 

 We will conduct a controlled comparison using the same 

architecture but with different optimizers (TAVO, GA, 

and PSO), isolating the impact of caption optimization 

strategies. 

 On the Flickr8k and Flickr30k datasets, we continuously 

improve human-consensus-based metrics, including 
CIDEr and METEOR, indicating sounder expression and 

semantic relevance in captions.  

In contrast to transformer-based models that require 

substantial training, AttenTAVO-Cap uses lightweight, 

expressive hybrid modeling to deliver competitive and often 

superior semantic performance. The suggested TAVO-based 

tuning technique is superior to gradient-based optimization 

because it prevents local optima from forming and enables the 

framework to achieve better generalization.  

2. Literature Review  
Captioning in images involves integrating natural 

language processing and computer vision to generate natural-

language descriptions of images. In the early stages, most of 

the work involved using encoder-decoder networks, CNNs for 

image feature extraction, and an RNN, particularly an LSTM, 

for captioning. However, despite significant advancements, 

challenges remain in model parameter optimization, semantic 

consistency, and size and scaling. The current DL model 

renaissance, combined with the impact of metaheuristic 

optimization and the rise of transformer models, has had an 

extraordinary influence on captioning in the current period. 

Metaheuristics have entered the mainstream as effective 
alternatives to gradient-based methods for fine-tuning deep 

neural networks for image captioning. The Attend More 

Times (AMT) framework was presented by Du et al. [1] to 

improve photo captioning performance by leveraging visual 

attention on a constant basis during the prediction of the next 

word. The goal of this model is to use a dual-LSTM decoder 

and a CNN-based encoder to extract image features. The 

model consistently focuses on the visual regions of images and 

shows relevance in boosting the semantic aspect of image 

captioning using the MS-COCO dataset. The repeated 

attention to visual areas is relevant for increasing the semantic 

accuracy of images and improving the descriptive accuracy of 
captioning. The model improves upon previous baselines 

using BLEU-4, METEOR, ROUGE-L, and CIDEr. Later, 
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Castro [2] and Yu [4] turned to transformers and leveraged the 

advantages of self-attention mechanisms. The idea focused on 

avoiding the need for models to depend on each other or their 

interactions. The Multimodal Transformer model by Yu has 

focused on multi-view representations of images and has 
based its approach on enhanced deep interactions with 

cognitive semantics. The focus of this model has been on 

improved performance on the MS COCO benchmark and on 

establishing cognitive semantics through deeper interactions. 

The concept has been further enhanced by Huang [4], who 

focuses on external knowledge graphs for knowledge 

reasoning. The focus of this concept has been on strengthening 

semantic matching between image and text areas.     Zeng [5] 

has further contributed to this concept by focusing on 

enhancing human-computer interaction. The idea has focused 

on improving domain shifts and the unobserved data in deep 

learning models. 

Extensive evaluations by Xu [14] and Stefanini [6] offer 

crucial summaries that put the quick development in picture 

captioning into perspective. Stefanini’s survey closely 

examines the development of training paradigms, language-

generating models, and visual encoders. It emphasizes how 

critical multimodal connections and BERT-like early-fusion 

methods have been to recent advances. Xu’s research 

advances this vision by exploring use beyond natural images, 

specifically medical image captioning, where domain-specific 

challenges such as semantic complexity and interpretability 

heavily affect the model structures that need to be converted. 
The scalability challenges unearthed by Hu [7], who 

empirically studied record-scale vision-language pretraining, 

also shed light on the trade-offs among model size, data size, 

and generalization. Hu’s state-of-the-art LEMON model, 

which was trained on 200 million transformer-sized image-

text pairs with up to 675 million parameters, also highlights 

several computational costs and data curation issues 

associated with training at this scale.  

The parallel efforts by Li [8] focus on the semantic 

ordering and understanding of complex linguistic structures 

within images, investigating architectures that explicitly 

represent semantic coherence to enhance caption quality. 
More specialized studies by Mahajan [9], Manikumar [10], 

and Maaz [11] have examined performance variability 

induced by architectural modifications using different CNN 

backbones, such as Inception V3, ResNet, and VGG16/19, as 

well as encoder-decoder fusion approaches on metric 

performance.  

They note that more complex models tend to be more 

accurate, but their training time, computational cost, and data 

size significantly impact deployment in real-world scenarios. 

Xia [12] sought to fill a crucial gap in low-resource, 

multilingual captioning by developing mechanisms for fusion 
attention to generate image captions in Tibetan, thereby 

opening the door to further integration of linguistic 

experiences in the development of captioning systems. Lastly, 

Nguyen [13] proposes a CNN-LSTM hybrid model with beam 

search decoding, demonstrating that decoding methods are 

crucial for determining the semantic richness and 

grammaticality of output captions, thereby increasing BLEU 

scores on the Flickr8k corpus. 

All in all, these papers empower a multifaceted trajectory 

of advancement in image captioning, including architectural 

innovation, optimisation methods, increased data, and 

multilingualism. Whereas the best current practices in 

captioning models are deep convolutional and transformer 

models, other essentials driving performance frontiers include 

reliance on metaheuristic optimization, knowledge reasoning 

from the global world, and horizontally scalable training 

pipelines. While improving the balance between 

computational tractability issues, semantic consistency, and 

domain-invariant generalization requires further effort to 
build models not just that learn but also understand and 

generalize across a vast range of environments, this line of 

study forms the foundational land for new hybrid techniques 

that will take the strengths of existing paradigms and give up 

their inherent weaknesses to open the field for future research 

to take further toward more generalizable and human-like 

image captioning models. 

The research makes clear that there has been a gradual 

evolution from traditional to more complex architectures that 

incorporate attention, leverage knowledge beyond current 

training data, pretrain on large datasets, and employ 
metaheuristic optimization. There are still problems with 

interpretation, efficiency, semantic coherence, and 

achievement in new domains, even though transfer 

interpretability of convolutional algorithms is now frequently 

used to provide state-of-the-art results. To make image 

captioning jobs more human-like and generalizable, some 

issues—such as hybrid models that combine powerful visual 

features with complex language models, adaptive decoding, 

and global optimization algorithms—need further 

investigation.  

2.1. Summary of Gaps and Challenges 

Despite immense advances in DL architecture-based 
image captioning, metaheuristic optimization, and vast 

corpora, numerous essential gaps and challenges remain to 

hinder the creation of extremely robust, generalizable, and 

semantically coherent captioning systems. 

2.1.1. Computational Complexity and Scalability 

Advanced models, particularly large transformer-based 

models pretrained on extremely large image-text datasets [7], 

[3], are computationally and memory-hungry. This is 

especially problematic for deployment in resource-

constrained environments, such as mobile phones or real-time 

systems. Lightweight models and efficient training are an 

open research direction. 
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2.1.2. Semantic Consistency and Contextual Understanding 

While knowledge graph integration and multi-view 

attention mechanisms have improved semantic alignment 

between generated captions and visual information [4, 8], 

Deep contextual comprehension and narrative coherence over 
longer captions are still difficult. Models tend to generate 

generic or somewhat relevant captions in complex scene 

layouts or domain transfer [5] 

2.1.3. Domain Generalization and Robustness 

Most caption models are trained and tested on precisely 

selected datasets like Flickr8k, Flickr30k, or MS COCO, and 

this restricts their performance on out-of-distribution, diverse, 

or real images. Domain shift and robustness against novel data 

distributions remain issues that constitute an ongoing 

challenge [5, 6]. 

2.1.4. Multilingual Support and Scarcity of Data 

While large datasets can facilitate powerful learning, 
technical fields (e.g., medical or cultural) and low-resource 

languages have limited captioned image datasets. Recent 

studies, such as Tibetan captioning with fusion attention 

mechanisms [12], highlight the need for adaptive structures 

that can learn effectively in data-scarce scenarios. 

2.1.5. Balancing Accuracy and Interpretability 

Deep models, especially those involving the employment 

of attention and transformer modules, work very much like 

black boxes, and it is thus not simple to explain or interpret 

the captioning operation in critical usage. This interpretability 

slows down trust and adoption, particularly in sensitive usage. 

2.1.6. Optimization Trade-Offs 

Metaheuristic algorithms, such as Taylor-African Vulture 
Optimization (TAVO), are promising for hyperparameter 

tuning and evading local optima; however, they are 

computationally expensive and add complexity. Discovering 

good approaches to achieving efficient tuning and model 

performance is a subject of further research. 

2.1.7. Decoding and Language Generation 

Decoding techniques like beam search improve fluency 

and grammaticality at the cost of trade-offs between 

computational cost and possible high-frequency bias in 

phrases, reducing the diversity of captions [13]. The open 

issue is to balance decoding algorithms between quality and 

diversity. 

Filling these gaps offers promising research directions for 

the future. Hybrid strategies that combine the strength of 

convolutional backbones, transformer semantic encoders, and 

metaheuristic optimization methods—along with 

explainability and domain adaptation—have the potential to 

bring image captioning nearer to human-like comprehension 

and generation capabilities. Table 1 presents an overview of 

the existing works. 

Table 1. An overview of the existing works 

Reference Datasets Model/ Methodology Result Limitations 

[1] MS-COCO 

CNN-based encoder with multi-

step attention and dual-LSTM 

decoder (Attend-More-Times 

model) 

METEOR: 28.3, CIDEr: 

126.1, ROUGE-L: 58.0, 

BLEU-4: 38.1% 

Performance depends 

heavily on attention step 

selection. 

[2] 
MS COCO, 

Flickr30k 

Transformer-based visual 

attention with ResNext-101 

encoder + Adam optimizer 

BLEU-4: 20.10%, Top-5 

Accuracy: ~73 

Trade-off between 

model size and 

computational cost 

[3] MS COCO 
Multimodal Transformer with 

multi-view visual features 

Ranked 1st on MS 

COCO leaderboard 

High model complexity 

requires extensive 

training 

[4] 
MS COCO, 

Flickr30k 

Word attention + external 

knowledge graph injection 

State-of-the-art (SOTA) 

on COCO and Flickr30k 

Complexity in 
integrating external 

knowledge 

[5] 
Corel5K, PASCAL 

VOC 

DL  with human-computing-

inspired methods 

Efficient on the domain-

shift scenario 

Limited reasoning 

capability of DL models 

 

[6] Multiple (survey) 
Survey of visual encoders and text 

generators 

Comparative analysis of 

SOTA 

Lack of a conclusive 

solution, open 

challenges 

[14] 
Natural and medical 

image datasets 

Review of DNN and GAN-based 

models 

Qualitative & 

quantitative comparisons 

Challenges in the medical 

domain adaptation 

[7] 

ALT200M (200M 

image-text pairs), 

COCO, nocaps 

Large-scale vision-language 

pretraining (LEMON) 

New SOTA on COCO, 

nocaps, Conceptual 

Captions 

High computational 

resources, data noise 
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[8] MS COCO 

COS-Net: Semantic 

comprehending and ordering 

network 

CIDEr: 141.1 (Karpathy 

test split) 

Requires sophisticated 

semantic filtering 

[9] Flickr 8k CNN + LSTM encoder-decoder 
Competitive BLEU 

score 

Limited by dataset size 

and complex scenes 

[10] Flickr 8k 
Inception V3 + BiLSTM + GloVe 

embeddings 

Improved BLEU and 

ROUGE-L scores 

Generalization 

challenges, variable 

embedding sizes 

[11] Flickr 8k VGG16 vs VGG19 CNN + LSTM Comparable BLEU score 
Sensitivity to training 

epochs, model 

convergence 

[12] 
Flickr8k, Flickr30k-

tic Tibetan captions 

CNN + LSTM with fusion 

attention for Tibetan captions 

Improved BLEU and 

ROUGE-L scores 

Low-resource language 

data scarcity 

[13] Flickr 8k 
Merge model combining CNN and 

LSTM + beam search decoding 

BLEU-1 and beam 

search scores > 60 

Trade-off between 

accuracy and training 

memory 

3. Methodology  
The proposed AttenTAVO-Cap framework is a DL based 

pipeline for automated image caption generation, integrating 

visual, semantic, and sequential modeling components with 

optimization. After extracting and aligning the feature 

representations, the system operates as a singular caption 

generation engine by interacting with visual features and 

BERT-based embeddings through attention-enforced 

BiLSTM decoding. The final captions are produced in a 

sequential manner and cross-evaluated with standard 

linguistic metrics. Figure 1 systematically illustrates each 

stage of the proposed AttenTAVO-Cap framework, from 

image preprocessing to final caption generation. 

 
Fig. 1 Workflow of this research 
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3.1. Data Collection  

The Flickr8k and Flickr30k data sets are widely used 

training and testing corpora for image captioning algorithms. 

Flickr8k contains 8,000 images, while Flickr30k includes over 

31,000 images, all of which are linked to five descriptive 
captions written by humans. The data sets contain a vast range 

of objects and scenes, offering linguistic structural variability 

that makes them excellent for training generalization-capable 

models. All the images are available in RGB format and vary 

in size and resolution. The databases are available for research 

and provide a realistic and challenging setting for caption 

generation tasks. Figure 2 depicts a sample of the dataset. 

 

 
Fig. 2 Sample images from the dataset 

The publicly accessible benchmark datasets (Flickr8k and 

Flickr30k), which are available for scholarly research, are 

used in this study. Images and captions were gathered with 

proper user authorization in accordance with the original 

dataset’s licensing. However, inherent sociological and 

cultural biases, such as the overrepresentation of particular 

activities, objects, or demographics, may be reflected in these 

datasets and have an impact on the caption generation process. 
We examined model outputs for systematic errors and biased 

descriptions, especially with regard to gendered language, 

object attribution, and activity labeling, in order to lessen these 

impacts. We found no deliberate amplification beyond dataset 

patterns. From a societal standpoint, better picture captioning 

improves accessibility and human–computer interaction, but 

careful deployment is required to prevent perpetuating 

preconceptions.  

3.2. Data Preprocessing 

Firstly, preprocessed the images and captions from the 

Flickr8k and Flickr30k datasets for training. All images were 

resized to 299 × 299 × 3 pixels, as that is the input dimension 
required for the InceptionResNetV2 encoder. Pixel values 

were scale-normalized to [0,1] to stabilize convergence. For 

the caption data, first lowercase each sentence, remove 

punctuation and special characters, and then tokenize the text. 

To lower the sparsity of vocabulary, very infrequent (⩽ 5 

occurrences) words were eliminated. Start and end tokens 

were introduced to indicate sentences, and all the sequences 

were then transformed into a sequence of integer indices. 
When dealing with the input, it is ensured that all elements 

have the same length by adding padding with zeros in the 

position of the maximum caption length. Besides, to have a 

more meaning-oriented input, the tokenized sentences were 

also embedded through a RoBERTa language model that had 

been pre-trained and thus generated contextualized word-level 

representation. At this stage, the vision and linguistic features 

representation becomes the reference for the following 

attention-guided caption generation. 

3.3. Proposed Method 

To address the challenge of accurate and fluent image 

captioning, a new hybrid DL framework is proposed called 
AttenTAVO-Cap. This architecture takes advantage of the 

discriminative representation ability of InceptionResNetv2, 

the embedding capability of RoBERTa, and the sequential 

learning capability of a Bidirectional LSTM decoder with 

visual attention. Hyperparameters of the decoder are tuned 

with the Taylor-African Vulture Optimization Algorithm 

(TAVO). We enable adaptive decoders and end-to-end 

optimization. The joint architecture enables the model to 

attend to meaningful parts of the image, match them with 

contextual semantic information from text embeddings, and 

produce coherent captions that are contextually correct. 

3.3.1. RoBERTa Embeddings 

By leveraging the RoBERTa [15], which is a robustly 

optimized BERT pretraining approach, we convert the 

preprocessed captions into high-dimensional semantic 

embeddings.  

The handlers of each caption are tokenized and sent to the 

deep transformer layers of RoBERTa to encode contextual 

dependencies among words. These embeddings are 

semantically richer inputs to the decoder, thereby facilitating 

better alignment between linguistic and visual modalities. 

Formally, let a tokenized input caption be represented as: 

 

Where  is the token at position t, and T is the length 

of the caption. RoBERTa applies multi-head self-attention 

layers and feedforward blocks over this sequence to produce 

context-sensitive representations: 

 

Where  is the contextualized embedding for the 

token  , and d is the hidden size of the transformer model. 
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The output matrix  is then used by 

the decoder for generating captions. 

The attention mechanism inside RoBERTa is defined by: 

 

Where Q, K, V are the query, key, and value matrices 

derived from input embeddings, and  is the dimension 

of the key vectors used for scaling. 

3.3.2. Feature Extraction via InceptionResNetv2 

The AttenTAVO-Cap framework’s feature extraction 

phase is adapted from InceptionResNetv2, a deep CNN hybrid 

structure with the power of Inception modules for 

representation, along with efficient learning of residual 

connections. InceptionResNetv2 was proposed by Szegedy et 

al. (2016) [16] as an extension of earlier Inception 

architectures, following the power to achieve faster 

convergence and improved feature reuse. Factorized 
convolutions, asymmetric kernels, and residual shortcuts in 

InceptionResNetv2 allow it to learn multiscale features 

efficiently from input images. 

Suppose that the input image is in the form: 

 

Representing a color image of size 299×299 with three 

RGB channels. 

The image goes through a set of Inception blocks with 

residual connections via the InceptionResNetv2 network, each 

of which gives a filtered feature map: 

 

Where  is the transformation applied by the l-th 

Inception block (e.g., 1×1, 3×3 convolutions, and pooling), 

and X(l) X(l) is the input to that block. The residual addition 

supports gradient flow preservation and accelerates learning 

in deep networks. 

After the final convolutional layer, a Global Average 

Pooling (GAP) operation is done to shrink spatial features into 

a fixed-length vector: 

 

Where  is the final 

convolutional feature map, and  is the average activation 

over the spatial domain for the k-th channel. 

This produces a 2048-dimensional feature vector: 

 

Which is a dense, compressed representation of the 

image, containing both low- and high-level semantic and 

spatial information. These features are then fed to the decoder 

to generate a caption with attention. 

Residual connections are a crucial part of the ResNet 

architecture, enabling signals to flow smoothly both forward 

and backward through the layers. These connections play a 

significant role in reducing the vanishing gradient issue that 

often arises during the training of deep networks, helping the 

model to reach convergence more quickly. The User  can think 

of the signal movement within a residual unit as something 

that can be expressed mathematically: 

 

 

 

The last output of the residual model has the label 

+1. The value represents the offset. denotes the input; w 

indicates the weight; R shows the Relu function;  denotes 

the sum of two branches; h( ) shows a simple 

transformation for input; F  signifies the convolution 

function; and Relu shows an activation function, which can be 

advantageous to the spread of the ladder and prevents the 

divergence of the ladder from becoming significantly 

attenuated late in the multi-layer convolution. 

3.3.3. BiLSTM Decoder with Visual Attention 
The system generates natural language descriptions that 

represent the input image through this component. The system 

performs translation of visual data to linguistic sentences, 

which allows visual understanding to become a linguistic 

representation.A Bidirectional LSTM decoder with visual 

attention mechanisms performs the entire caption generation 

task. The attention module at every decoding step generates a 

weighted context vector by identifying which visual areas 

matter most for current word generation. The BiLSTM 

receives context vectors to model forward and backward 

dependencies before generating output word probabilities 

through softmax. 
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Mathematically, the attention mechanism is defined as: 

1. Attention Score Calculation 

 

2. Softmax Attention Weights 

 

3. Context Vector (Weighted Sum) 

 

Where  is the i-th visual feature from the image,

 is the previous hidden state from the BiLSTM 

decoder,  is the learnable weight 

matrices,  is the non-linearity to mix the image 

and decoder states. This computes a score  representing 

how relevant the i-th image feature  is at the t-th decoding 

step, converts the raw scores  into attention 

weights   that sum to 1, and   is the context 

vector, which is a weighted average of image features that is 

weighted by the attention scores. Each decoding step receives 

the context vector   together with the current word 

embedding  for their processing through the BiLSTM: 

4. BiLSTM Input: 

 

5. Word Prediction 

 

Where  is the forward LSTM output and  

backward LSTM output. A complex meaning of previous and 

upcoming time step information exists because these elements 

combine at time step 𝑡,  is the embedding of the current 

input word (e.g., “a”, “man”, etc.), and the context 

vector from the attention mechanism summarizes what parts 

of the image to focus on at this step. 

 
Fig. 3 Schematic representation of the proposed AttenTAVO-Cap framework image captioning 

Figure 3 shows an architecture that integrates Inception 

ResNetv2 as the visual feature extractor with RoBERTa as the 
semantic text embedding module. The features are then 

merged and fed into a BiLSTM-based visual attention layer. 

The decoder, which is trained with the Taylor-African Vulture 

Optimization Algorithm (TAVO), generates context-informed 

image captions. 

3.3.4. Metaheuristic Optimization (TAVO, GA, PSO) 

To further enhance the performance of the captioning 
task, we add metaheuristic optimization techniques to adapt 

critical decoder hyperparameters. The first optimizer explored 

here is the Taylor-African Vulture Optimization Algorithm 

(TAVO), a hybrid algorithm that couples the global search 

capability of the African Vulture Optimization Algorithm 
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(AVOA) and Taylor series-based local refinement accuracy. 

TAVO enhances convergence rate and local exploitation 

accuracy with gradient-free, derivative-inspired search 

behavior. The optimization process begins by randomly 

initializing a population of candidate solutions, each 
corresponding to a unique set of decoder hyperparameters 

(such as hidden units and learning rate). Figure 4 illustrates 

the Flowchart of the TAVO hyperparameter optimization process. 

TAVO then Iteratively Updates Each Candidate based on 

Two Stages, 

● Global exploration: Inspired by the flight behavior of a 

vulture, candidate solutions are scattered in the search 

space. 

● Local exploitation: Taylor series approximations are 

utilized for locally refining promising areas around the 

current best solutions for fine-tuning adjustment. 

Two classic metaheuristics are also employed for 

performance benchmarking: 

 Genetic Algorithm (GA): This GA [17] replicates natural 

selection through crossover and mutation operators 

applied to hyperparameter chromosomes. Selection 

occurs based on fitness scores computed against 

validation BLEU-4 or CIDEr. 

 Particle Swarm Optimization (PSO): PSO is an algorithm 

[18] that emulates swarm behavior by allowing candidate 

solutions (particles) to modify their position and velocity 

according to global best and personal best solutions. It is 

highly effective for continuous hyperparameter 

optimization. 

3.3.5. Hyperparameter Search Strategy and Reproducibility 

A structured hyperparameter optimization technique is 

used since the decoder configuration affects the AttenTAVO-

Cap framework’s performance.  

The vector of decoder hyperparameters is defined as:  

θ = {H, η, D, λ} 

Where H defines the number of hidden units in the 

BiLSTM, η is the learning rate, D denotes the dropout ratio, 

and λ is the L2 regularization. 

The following are the fixed search ranges: 

H ∊ [256, 1024]   

η ∊ [10−5, 10−3]  

D ∊  [0.2, 0.6] 

λ ∊ [10−6, 10−3] 

The validation BLEU-4 score is employed as the primary 

fitness function for each candidate solution, and CIDEr is used 

for secondary validation. Every optimization run is performed 

for a maximum of N = 50 repetitions with a population of P = 

20. All experiments are carried out utilizing fixed random 
seeds for data shuffling, optimizer population creation, and 

weight initialization to guarantee reproducibility. Every 

optimization algorithm uses the same batch size, early 

stopping conditions, and training/validation splits.  

 
Fig. 4 Flowchart of the TAVO hyperparameter optimization process 

3.3.6. Convergence Behavior of Metaheuristic Optimizers 

TAVO, GA, and PSO convergence is examined by 

monitoring the optimal fitness value throughout iterations. 

Because of its hybrid search strategy, which combines local 

refining based on Taylor series with global exploration to 

prevent premature standstill and expedite exploitation close to 

ideal regions, TAVO exhibits faster convergence. 

The process of optimization ends when either:  

 The maximum iteration limit is reached, or 

 The relative advancements in fitness stay below a 

predefined threshold ∊ 10−4 for five consecutive 

iterations. 

Figure 5 depicts the detailed attention-based BiLSTM 

decoding process with visual feature weighting. 

Initialize Population 

Calculate Fitness 

Set Best Solution 

Global Exploration 

Local Refinement 

Update Fitness 

Convergence Check 

Return Optimal Hyperparamete 

Return Optimal Hyperparameters 

No 
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Fig. 5 Detailed attention-based BiLSTM decoding process with visual 

feature weighting 

Algorithm 1: Taylor-African Vulture Optimization 

Algorithm (TAVO) 

Input: 

● : Search space boundaries 

       P: Population size  

 

● T: Maximum iterations  

 

● f(⋅): Fitness function  

Output: 

● : Optimal solution  

 

Step 1: Initialize a population {

} of candidate hyperparameter vectors 

within  

Step 2: Evaluate the fitness  of each 

individual in the population 

Step 3: Identify the current best solution  with the 

highest fitness 

Step 4: For iteration t = 1 to T: 

● For each individual : 

 

○ Exploration phase (African Vulture flight behavior): 

○  = 

  

Where , , ∼U(0,1) 

○ Exploitation phase (Taylor-based local refinement): 

 Apply Taylor series approximation: 

○ 

 

 Use it to guide small local updates around  

○ Selection: 

 

Step 5: Update global best  if a better solution is 

found 

Step 6: Repeat until convergence or T iterations are 
complete 

Step 7: Return  as the optimized hyperparameter 

configuration 

 

Algorithm 2: Genetic Algorithm (GA) for Hyperparameter 

Selection 

Input: 

●  : Data input 

● P: population size  

● : crossover rate  

●  : mutation rate  

● G: max generations 

Step 1: Population initializations from the subset according 

to certain constraints. 

Randomly initialize the population of hyperparameter 

vectors {  

Step 2: For generation : 

● Compute fitness  of each individuals  

based on the BLEU-4/CIDEr from BiLSTM + Attention 

caption results 

● Choose elite individuals (ranches) by using 

tournament/roulette selection 

● Perform crossover on chosen parents, resulting in 

children 

● Mutate the offspring to diversify them. 

● Create new population  from offspring and 

elites 

Step 3: After G generations, return best  and train 

final baseline model  

 

 

 

Forward 

LSTM 

Backward 

LSTM 

h h

Image Features Word Embedding 

Attention Weights 

Softmax 

Context Vector 

Concatenate [ht
f; ht

f; et; ct] 
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Algorithm 3: PSO for Hyperparameter Tuning 

Input: 

● : input data, 

● P: Swarm size   

● : Inertia weight 

● : Cognitive coefficient  

● : Social coefficient  

● T: Max iteration 

Step 1: Particle initialization, each particle is initialized 

with a random hyperparameter vector , velocity , 

and best position . 

Step 2: Assess the fitness function  of each 

particle by BLEU-4/CIDEr. 

Step 3: Finding the global best position  

Step 4: For iteration  : 

● For each particle: 
● Update velocity: 

 

● Update position:  

● Compute new fitness and update  and  if it is 

better suited 

Step 5: Then Return and train . 

 

3.4. Baseline Models 

To benchmark the performance of the AttenTAVO-Cap 

model, selected several baseline models for comparison. 

These models share common architecture, but differ in 

optimization regimes, or philosophies of design: 

HABGRU + AVOA: Habituation-aware BiLSTM with an 

African Vulture Optimization Algorithm is a hybrid GRU 

model previously listed in captioning literature. This model 

serves as a good benchmark model, as it is biologically 

inspired and designed with metaheuristic tuning.  

AttenTAVO-Cap (GA) is a version of attending with a 

vulture for a cape, where hyperparameters are tuned using a 

Genetic Algorithm for comparison between one optimization 

method versus the proposed Taylor-based vulture 

optimization. 

AttenTAVO-Cap (PSO) is a different version tuned using 

Particle Swarm Optimization, representing an acceptable 

baseline under the swarm intelligence taxonomy. Given that 

all baseline models use the same backbone architecture, 

InceptionResNetv2 for visual features, RoBERTa for 

semantic embedding, and a visual attending BiLSTM decoder, 

this creates a level playing field between performance 

measures and architecture. All baseline models were also 

tested using the exact same performance measures as the 

proposed model, e.g., BLEU-1 to BLEU-4, METEOR, 
ROUGE-L, and CIDEr were calculated from the Flickr8k and 

Flickr30k datasets, and HABGRU + AVOA used Flickr8k.  

Using the same testing framework is essential for a fair 

performance comparison, as it isolates optimization from 

architectural variables. 

To ensure the outcomes are accurate and reliable, a 

rigorous evaluation method was adopted, including split-data 

experiments. For the experiments conducted using data from 
the Flickr8k and Flickr30k datasets, the pattern was 80% 

training, 10% testing, and 10% validation. 

The images were shuffled before division, and all the 

captions of an image were in the same group. To compare the 

performance scores of AttenTAVO-Cap models with those of 

other models on test images, the models’ scores were 

compared using a paired t-test with a 95% confidence level (p 

< .05) for each test image. The CIDEr and METEOR scores 

for the TAVO-optimized models show significant 

improvements on test images across both datasets, indicating 

that the improvements are not random variations in 
performance. In addition to average-score improvements, we 

conducted an exploratory analysis of predictive failures.  

The predictive failures were categorized into the 

following groups: (i) omission of the object, (ii) assignment of 

the attribute of color/number, and (iii) assignment of the 

relation of the semantic aspect. In both scenarios, our 

approach performed better than the others in terms of both the 

omission of semantics and the semantics of the relation. 

4. Results and Discussion  
4.1. Experimental Setup and Implementation  

The image captioning architecture, named AttenTAVO-

Cap, has also been assembled for accelerated training 

environments using GPU resources to achieve faster 

convergence and better DL performance. In building this 

architecture utilizing Python 3.9, it depended heavily on 

libraries such as PyTorch, Hugging Face Transformers, and 

NumPy.  

The Google Colab environment with Tesla T4 GPU 
resources has been heavily relied upon for training. First, we 

would like to highlight the hardware, software, and training 

environment used in our experiment as follows: In addition to 

the hardware components already mentioned, we used the 

Hugging Face RoBERTa caption tokenizer and the 

Torchvision image transform for data preprocessing. For 

image feature extraction, InceptionResNetv2 was used, pre-

trained on the ImageNet dataset. 
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Table 2. Experimental setup for AttenTAVO-cap image captioning 

Training Parameter Value 

Batch Size 32 

Optimizer 
Adam  

(metaheuristic fully tuned) 

Epochs 50 

Learning Rate 

Scheduler 
ReduceLROnPlateau 

Dropout Rate 0.5 

Learning Rate 0.0001 

BERT Embedding RoBERTa-base 

Decoder Units BiLSTM, 128–512 hidden units 

Attention Vector Size 64–256 

For the entire training process, the forward and backward 

passes, calculation of loss, and optimization routines using the 

TAVO, GA, and PSO algorithms, were performed on the 

GPU. As explained in the sections that follow, we employed a 

well-optimized training strategy, backed by powerful 

computational resources, to achieve remarkable captioning 

performance and reliable convergence within 50 epochs. The 

model was trained and tested on two benchmark datasets for 
picture captioning: Flickr8k and Flickr30k. Flickr8k contains 

8,000 photographs, each with five human-written 

descriptions, whereas Flickr30k includes 30,000 images. Both 

datasets are common standards for assessing the 

generalizability and linguistic fluency of image captioning 

models. Table 2 presents the experimental setup for 

AttenTAVO-Cap Image Captioning. 

4.2. Evaluation Metrics 
In this section, we have evaluated AttenTAVO-Cap with 

TAVO, GA, and PSO using standard image captioning 

metrics on both datasets, Flickr8k and Flickr30k. The 

performance of the proposed model was analyzed based on 

image captioning metrics: BLEU, METEOR, ROUGE-L, and 

CIDEr. Examples of precision-based captioning metrics, such 

as BLEU and its subunits, BLEU-1 to BLEU-4, which are 

unigrams up to 4-grams, capture basic oversight and structural 

interconnection and overall fluency and syntactical similarity. 

METEOR is a synonymy-based extension of BLEU, which 

does better in correlating to real-life evaluations by humans 

due to factors of synonymy, stemming, and penalization based 
on the order of words. As for ROUGE-L, it computes the 

Longest Common Subsequence (LCS) and is referred to as 

structural similarity and fluency. CIDEr is customized for 

captioning due to its assessment of consensus among multiple 

references pertaining to human citation references through 

TF-IDF N-grams, highlighting merit-based content capture 

and precision detailing. Tables 3 and 4 showcase the metric 

values for the models.  

Table 3. Full evaluation metrics on Flickr8k (test set) 

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr 

Proposed: AttenTAVO-Cap (TAVO) 0.70 0.54 0.45 0.29 38 67 194 

AttenTAVO-Cap (GA) 0.66 0.49 0.41 0.34 35 61 185 

AttenTAVO-Cap (PSO) 0.65 0.47 0.39 0.33 37 63 189 

HABGRU + AVOA 0.64 0.45 0.36 0.31 33 60 183 

Table 4. Full evaluation metrics on Flickr30k (test set) 

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr 

Proposed: AttenTAVO-Cap (TAVO) 0.68 0.52 0.43 0.29 35 63 191 

AttenTAVO-Cap (GA) 0.64 0.47 0.39 0.32 34 59 188 

AttenTAVO-Cap (PSO) 0.63 0.45 0.37 0.30 33 61 186 

HABGRU + AVOA 0.60 0.43 0.34 0.31 31 57 183 

Across both datasets, the AttenTAVO-Cap (TAVO) 

model demonstrated a superior advantage over the remaining 

variants. The TAVO model achieved the highest scores on the 
Flickr8k data with BLEU-1 at 0.70, BLEU-2 at 0.54, BLEU-

3 at 0.45, BLEU-4 at 0.29, METEOR at 38, ROUGE-L at 67, 

and CIDEr at 194, as shown above. These metrics suggest that 

both the syntactic and semantic relationships with the ground 

truth captions are very strong. The GA-tuned AttenTAVO-

Cap scores slightly lower than AttenTAVO-Cap across all 

metrics (for example, BLEU-4: 0.34, METEOR: 35, CIDEr: 

185), and the PSO-tuned version with scores of BLEU-4: 0.33 

and CIDEr: 189, respectively. However, the baseline 

HABGRU + AVOA model produces the lowest scores across 

all metrics (for example, BLEU-4: 31, METEOR: 60, and 

CIDEr: 183), strongly indicating the advantages of the 

AttenTAVO architecture. A similar runnable context can also 

be observed across the Flickr30k dataset, as all models 

exhibited slightly lower scores due to the additional 
complexity and variability of the dataset. Also, reusable 

metrics indicate that AttenTAVO-Cap (TAVO) achieved 

relatively high baseline scores of BLEU-4: 0.29, METEOR: 

35, ROUGE-L: 63, and CIDEr: 191 again. The GA and PSO 

models all exhibited a modest drop from TAVO’s scores, with 

PSO scoring BLEU-4: 0.30 and CIDEr: 186. Meanwhile, 

HABGRU + AVOA, again, scored the lowest across the base 

metrics evaluated with BLEU-4: 0.31, METEOR: 31, and 

CIDEr: 183. Overall, these comparisons reveal the overall 

effectiveness of the TAVO optimization strategy and highlight 

the strengths of the AttenTAVO-Cap model based on the size 

of the datasets and the complexity of the captioning task. 
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4.2.1. Comparison with AVOA-Based and Transformer-Based 

Models 

In contrast to other AVOA-based approaches, such as the 

HABGRU + AVOA model, the proposed TAVO technique 

includes an additional Taylor Series Local Refinement step 
that runs parallel to the global search conducted through the 

African Vulture Optimization algorithm. The hybrid 

technique enables the African Vulture Optimization algorithm 

to exploit the strongest indicative signals of successful 

hyperparameters, resulting in faster convergence, improved 

stability, and better overall performance in the semantic 

metrics CIDEr, METEOR, and ROUGE-L for both Flickr8k 

and Flickr30k. AVOA uses random-driven and population-

level updates, whereas in TAVO, refinements inspired by the 

derivative components do not require gradient computations. 

However, transformer-based solutions to image captioning 

tasks usually perform in the hundreds, thanks to heavy reliance 

on the self-attention mechanism and pre-training over massive 

datasets, perhaps measured in the hundreds of millions. In the 

AttenTAVO-Cap framework, the best use of the capabilities 

is aimed at, not the size. This is because transformer-based 
models often impose extremely demanding computational 

requirements and require enormous, curated datasets, which 

may not be feasible in less-than-real-time settings. From our 

work, we show that, through expertly designed hybrid models, 

semantic alignment can be achieved reasonably with less 

massive transformers. To showcase these differences, we have 

made an equal comparison in Table 4 between AttenTAVO-

Cap and other AVOA- and transformer-based models for 

captioning. Table 5 presents a comparative study of our model 

with AVOA-based and transformer-based image captioning 

models. 

Table 5. Comparative analysis of AttenTAVO-Cap with AVOA-based and transformer-based image captioning models 

Aspect 
AVOA-based 

Models 

Transformer-based 

Models 
Proposed TAVO 

Optimization Strategy AVOA 
Gradient-based 

(Adam/SGD) 

Hybrid metaheuristic  

(AVOA + Taylor refinement) 

Local Search Capability Limited Implicit through  gradients 
Explicit Taylor-based 

exploitation 

Model Scale Moderate Very large Moderate 

Data Requirement Medium Very high Medium 

Computational Cost High Very high Controlled 

Semantic Consistency Moderate High High 

Generalization on Small Datasets Limited Often weak Strong 

Deployment Feasibility Moderate Low High 

 
Table 6. Comparison of evaluation metrics with others 

Ref(s) Model / Methodology BLEU-4 (%) (METEOR / ROUGE-L / CIDEr) 

[1] 

Attention-based Two-LSTM Image 

Captioning Model (CNN + Multi-Attention 

+ LSTM) 

38.1 28.3 / 58 / 126.1 

[3] 
Transformer + ResNeXt-101 + Adam 

Optimizer (MS COCO, Flickr30k) 
20.10 — / — / — 

[19] Linear-Time Sequence Model (Flickr30k) 59 79/73/130 

[20] 
Advanced Context-Aware Object 

Relational Model 
44.39 41.58/64/- 

Ours AttenTAVO-Cap 29.00 38 / 67 / 194 

4.3. Comparative Analysis and Discussion 

In this section, we interpret the evaluation results and 

explain why our model performs the best. Among all models, 

AttenTAVO-Cap optimized using Taylor-African Vulture 

Optimization (TAVO) showed the best results, as shown in 

Table 6. With a CIDEr score of 194 and a BLEU-4 score of 

0.29 or 29%, it outperformed all other versions by a wide 

margin. The next-best model was an Attention-based two 

LSTM image captioning model (CNN+Multi-

attention+LSTM) [1], which reached BLEU-4 = 38.1% and 

CIDEr = 126.1. Conversely, the model (Transformer + 

ResNeXt-101 + Adam Optimizer (MS COCO, Flickr30k) [3] 

employed in past research had a somewhat reduced BLEU-4 

of 20.10 %. Recently, research in image captioning has 

focused on applying novel architectures to improve efficiency 

and semantic quality. In study [19], a linear-time sequence 

model architecture is used on Flickr30k and achieves very 

encouraging results, with BLEU-4 = 59%, METEOR = 79, 

and ROUGE-L ≈ 73. However, compared with other methods, 

the CIDEr score is relatively low, around 130, indicating that, 

although improved in terms of efficiency and semantic 

quality, the current caption outcome may still relate less 

accurately to human-written captions than the optimization-

based hybrid outcome. In [20], focusing on how object 
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relationships and contextual dependencies are implemented in 

images, the findings are more pertinent and semantically 

significant: ROUGE-L ≈ 64, BLEU-4 = 44.39%, and 

METEOR ≈ 41.58. These results indicate higher logical and 

semantic accuracy and, consequently, better comprehension 
of object relationships in the caption. But because it lacks 

values for CIDEr metrics, assessing performance on human-

consensus metrics becomes difficult, given CIDEr’s 

importance in determining semantic relevance and accuracy 

across a variety of captions.  

Compared to the above arches, the proposed 

AttenTAVO-Cap model yields well-rounded performances. 

Moreover, in the context of high CIDEr scores and METEOR 

and ROUGE-L evaluations, optimization-driven models have 

been a prominent choice for efficiency and relational 

understanding. 

4.4. Training and Testing Performance 
To assess the caption-generating performance of the 

suggested AttenTAVO-Cap Framework, extensive 

comparisons against several baseline models using the same 

training arrangements were undertaken. Using the same 80/20 

training-validation-test split, the trials were carried out on the 

Flickr8k and Flickr30k datasets. Evaluation of caption quality 

was based on five major metrics: BLEU (1-4), METEOR, 

ROUGE-L, and CIDEr. Figure 6 performance curves show the 

training curve of the proposed AttenTAVO-Cap for its 50 

epochs of training. The right side presents the loss curve that 

depicts all the loss types, thus showing the behavior of both 

training loss and validation loss of the model. Initially, the 

training loss is quite high, and is about 0.85, and then it is 

reduced very fast to nearly 0.03 in the first 20 epochs. 

Therefore, the rate of descent is similar to a logarithm; it never 
gets nearly straight, and the end is reached with this situation 

at the end of the 50th epoch. This is the constant diminishing 

of the loss that tells the model was never standing still and was 

learning the best attributes internally to make predictions as 

accurately as possible in each epoch. 

 
Fig. 6 Training vs validation loss curve of the AttenTAVO-Cap  

Table 7. Performance comparison of captioning models based on BLEU-4 and CIDEr (Flickr8k and CIDEr (Flickr8k) 

Optimization Method Model Architecture BLEU-4 CIDEr 

Proposed: AttenTAVO-Cap (TAVO) InceptionResNetv2 + RoBERTa + BiLSTM + Attention 0.29 194 

GA[Baseline] InceptionResNetv2 + RoBERTa + BiLSTM + Attention 0.34 185 

PSO[Baseline] InceptionResNetv2 + RoBERTa + BiLSTM + Attention 0.33 189 

AVOA + HABGRU [Baseline] InceptionResNet + HABGRU + AVOA 0.31 183 

For the validation set, one notices a similar pattern - the 

losses started off slightly higher, with the initial loss around 

0.88, and were then gradually reduced to about 0.10. The most 

important thing, however, is that the gap between the two loss 

curves (training and validation) is always kept to a minimum, 

displaying no signs of overfitting. In fact, parallelism in the 

direction of both lines indicates the model’s good 

generalization ability in relation to unseen data. The curves of 
both the training loss and the validation loss, which are convex 

downward and free from any sudden inclines, accompanied by 

up and down steps (because of random gradient updates), are 

clear-cut evidence of the steady performance the model is 

exhibiting. The trajectory of convergence of the trend assures 

that the model indeed extracted the essential features from its 

input and subsequently retained all these features well during 

the test phase, proving the correctness of the training strategy 

and the model itself. Extra indicators, including BLEU-1 to 

BLEU-3, METEOR, and ROUGE-L, were evaluated to 

provide a more complete picture of linguistic fluency and 

semantic coherence. Once again, ranking top among all of 

these criteria was the TAVO-optimized model. These findings 

highlight how resilient AttenTAVO-Cap is across various 

datasets, showcasing its knack for producing high-quality, 

contextually relevant captions, even when dealing with larger 

and more varied image collections like Flickr30k. The 

experimental results reveal that the AttenTAVO-Cap model 

not only achieves superior n-gram precision (BLEU) but also 
shines in generating captions that are both semantically rich 

and fluent, as shown by METEOR, ROUGE-L, and CIDEr. 

The model’s impressive performance is attributed to the 

powerful combination of InceptionResNetv2’s visual features, 

RoBERTa’s contextual embeddings, attention-guided 

BiLSTM decoding, and effective hyperparameter 

optimization through TAVO. These results were consistently 

observed across both the Flickr8k and Flickr30k datasets, 

reinforcing the generalization capability of the proposed 

framework.  
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In Table 7, the Performance Comparison of Captioning 

Models Based on BLEU-4 and CIDEr is presented for both 

datasets. Figures  7 and 8 show the comparative BLEU 

inspection of the AttenTAVO-Cap methodology. 
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(d) 

Fig. 7 Comparative analysis of AttenTAVO-Cap approach with other systems (a) BLEU-1, (b) BLEU-2, (c) BLEU-3, and (d) BLEU-4 using Flickr8k 

dataset. 
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(c)                                                

 
(d) 

Fig. 8 Comparative analysis of AttenTAVO-Cap approach with other systems (a) BLEU-1, (b) BLEU-2, (c) BLEU-3, and (d) BLEU-4 using Flickr30k 

dataset. 

 

 
Fig. 9 Comparative analysis of AttenTAVO-Cap approach with other systems METEOR, CIDEr, and Rouge-L using Flickr8K dataset 
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Fig. 10 Comparative analysis of AttenTAVO-Cap approach with other systems METEOR, CIDEr, and Rouge-L using the Flickr30K dataset 

Figures 9 and 10 show the Comparative analysis of the 

AttenTAVO-Cap approach with other systems, METEOR, 

CIDEr, and Rouge-L, using both datasets. The comparison 
results unequivocally show that the suggested AttenTAVO-

Cap model outperforms a previously developed hybrid model 

(HABGRU + AVOA) as well as baseline variants (GA and 

PSO).  

For both the Flickr8k and Flickr30k datasets, 

AttenTAVO-Cap (TAVO) consistently yields the highest 

scores across BLEU-4, METEOR, ROUGE-L, and CIDEr 

metrics, as indicated in the Figures. It outperforms GA by 5 

points and PSO by 6 points, respectively, with a BLEU-4 score 

of 0.29 on Flickr8k. It continues to Flickr30k with 0.29, while 

GA and PSO trail at 0.32 and 0.30. GA leads BLEU-4, but 

TAVO leads CIDEr (191 vs 188/186).  

According to the CIDEr metric, the model demonstrates 

superior relevance and expressiveness compared to GA (185), 

PSO (189), and the baseline HABGRU + AVOA (183), 

achieving a higher score of 194. Indeed, the model beats all 

other approaches on semantic agreement and linguistic 

fluency, with METEOR and ROUGE-L scores of 38 and 67, 

respectively. The BLEU-4 for AttenTAVO-Cap on Flickr30k 

is 0.29, compared to 0.32 and 0.30 for GA and PSO, 

respectively. Also, the CIDEr score achieved by the model 

surpasses those of all the compared models, reaching a value 

of 191. The generated model produces syntactically correct, 
semantically dense captions that align with human references, 

achieving METEOR scores of 35 and ROUGE-L scores of 63. 

4.5. Computational Complexity and Runtime Analysis 

This section evaluates the computational overhead on 

training efficiency and the practicability of the newly 

proposed AttenTAVO-Cap framework, particularly regarding 

the performance of TAVO, GA, and PSO optimization 

techniques. 

 Training Time Comparison: The three different versions 

of AttenTAVO-Cap were trained and tested in strictly the 

same hardware and software environments on a Tesla T4 
GPU. There was a noticeable difference between the 

optimizers, even though metaheuristics have more 

overhead than fixed hyperparameters. Because of the 

constant crossover and mutation between generations, the 

GA optimizer was the slowest. Due to velocity 

modifications, the training time in PSO was moderate; 

however, swarm characteristics could affect it. At the 

same time, TAVO reached optimal points more quickly 

by avoiding unnecessary population-level updates 

through Taylor expansion-based local search. At the same 

time, TAVO was found to have a training time equal to or 

lower than PSO and superior to GA. 

 GPU Utilization and Convergence Properties: GPU usage 

remained steady across all experiments, as most 

computations involved extracting CNN features and 

performing BiLSTM decoding. The effect of TAVO on 

total training costs was negligible. However, most 

importantly, TAVO-optimised models required fewer 

effective epochs and exhibited smoother convergence 

than GA- and PSO-optimised models. 

 Feasibility for Real-World Deployment: As far as the 

feasibility for deployment is concerned, AttenTAVO-Cap 

provides a very positive impression in terms of balance 
between performance and computational complexity. 

Unlike the transformer-based captioning models, the 

proposed approach does not require large-scale training. 

Once the optimization is achieved, the complexity at the 

inference phase remains the same for the TAVO, GA, and 

PSO models. This makes the TAVO-optimized approach 

particularly suitable for environments with constrained 

computational resources. 

 Effect of Optimization Strategy on Caption Quality: To 

gain better insights into the effect of optimization strategy 

in captioning tasks, we performed an ablation study by 
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varying just the hyperparameter optimization strategy 

while holding the architecture constant. In this work, all 

model variations share the same architecture, including 

the InceptionResNetv2 encoder, RoBERTa embeddings, 

and an attention-based Bi-LSTM decoder. The only 
difference between them is how each optimizer handles 

hyperparameter optimization.  

 

CIDEr and METEOR reward semantic relevance and 

human agreement over superficial n-gram matching. TAVO’s 

careful balance between exploration and exploitation helps the 

decoder reach conclusions about the choice of 

hyperparameters, naturally aligning visual features and 

contextual linguistic representations.  

Additionally, the use of the Taylor series approximation 

in the local refinement enables the careful control of the rates 

of learning, hidden units, and dimensions of the attention 
vector to result in captions that convey semantic relationships 

between objects and the scene more accurately.  

This results in higher CIDEr and METEOR scores than 

those of the GA and PSO algorithms. GA performance would 

sometimes fluctuate across generations due to the mutation 

component. In some cases, the PSO would get trapped in a 

local optimum.  

TAVO ensures good convergence with lower variability. 

In conclusion, this analysis shows that it is not only 

architectural trends that have led to improvements in 

performance, but that the proposed TAVO optimization 

method is more significantly instrumental in ensuring the 

efficiency of high-quality image captioning. 

4.6. Ablation Study: Effect of Optimization Strategy on 

Caption Generation 

An ablation test was conducted by maintaining the core 

architecture and varying only the hyperparameter 

optimization algorithm so as to see the effectiveness of the 

selected optimization algorithm on the performance of the 

captioning model. In all the tests carried out, the attention-

based BiLSTM decoder architecture, semantic embedder 

model (RoBERTa), and visual encoder architecture were 

maintained as InceptionResNetv2. The TAVO, GA, and PSO 

optimizers are the three metaheuristics involved in this 
ablation and compared to a previous combination of a hybrid 

baseline model and AVOA. The ablation test outcome is 

clearer on the fact that the selected optimization algorithm 

plays a pivotal part in the determination of a captioning model, 

regardless of changes in the backbone network architecture, as 

explained in Table 8. The captioning outcome generated by 

our new embedder model with TAVO-based optimization 

strategy achieves semantically truer and more cohesive and 

human-evaluated captions. 

Table 8. Ablation analysis highlighting semantic and fluency gains from different optimization strategies  

Optimization 

Strategy 

Semantic Consistency 

(CIDEr ↑) 

Linguistic Alignment 

(METEOR ↑) 

Fluency (ROUGE-

L ↑) 

Overall Caption 

Quality 

TAVO (Proposed) Highest Highest Highest Very Strong 

GA Moderate Moderate Lower Medium 

PSO High Moderate–High Medium Medium–High 

AVOA (Baseline) Lowest Lowest Lowest Weak 

In the case of CIDEr, what we notice is that the benefit 

brought by TAVO is the ability to get the captions aligned to 

the human annotations. This is brought by an effective 

combination of exploration and exploitation brought by 

TAVO because the search inspired by the African Vulture 

Search helps the search avoid being stuck prematurely.  

In other words, the search inspired by the Taylor series 

helps the adjustment of the decoder parameters. On the flip 

side, GA has ensured good n-gram precision, although with 

less convergence of hyperparameters because of its stochastic 

process involving mutation and crossover. It has ensured that 

the captured images have aesthetically pleasing results 

concerning their BLEU scores, although less semantic and 

with lower CIDEr and METEOR scores, which has been 

established in the results section. In comparison with GA, 

there is faster convergence for PSO, although its initialization 
method sometimes leads to less optimal exploration of its 

solution space. The baseline system of HABGRU + AVOA is 

consistently beaten on lexical and fluency measures.  

This emphasizes the advantage of the combination of 

AttenTAVO-Cap architecture and the Taylor-opt search 

procedure over previous biologically inspired architectures. 

This ablation experiment clearly justifies that the performance 

benefit achieved through the AttenTAVO-Cap is not just an 
issue in the model architecture. A key contributing factor for 

such improvements is the TAVO optimization method since it 

incorporates the capability for converging toward the 

informed choice of hyperparameters through the attainment of 

improvements in the expressiveness and human alignment 

qualities. 

4.7. Qualitative Results and Analysis 

In this section, we can see the quantitative evaluation 

metrics, and the captions produced by the AttenTAVO-Cap 

model were scrutinized for qualitative evaluation by 

thumbnail visual examination. To demonstrate the model’s 
competency in captioning, these samples were drawn from 

both Flickr8k and Flickr30k test datasets presented in Tables 

9, 10, and 11. 
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Table 9. Ablation analysis demonstrating the improvements in fluency and semantics from various optimization techniques  

Image Ground Truth Generated Caption (AttenTAVO-Cap) 

 

A child in a pink dress is 

climbing up a set of stairs 

in an entryway. 

A young girl wearing a pink dress climbs 

stairs inside a building. 

Analysis: The term “child in the pink dress climbing the 

stairs” is captured by the model, which lexically simplifies a 

human-created caption. The model’s decoding components 

can spatially focus on contextually relevant regions, such as 

clothing and stairs, as demonstrated by its semantic 

correctness.  

Table 10. Semantic and fluency improvements from various optimization techniques are highlighted via ablation analysis  

Image Ground Truth Generated Caption (AttenTAVO-Cap) 

 

 

 

A black dog and a white 

dog with brown spots are 

staring at each other in the 

street. 

 

Two dogs, one black and one white, face 

each other on a road. 

Analysis: The caption upholds several focal aspects: two 

dogs, their colors, and the described interaction. The model’s 

language is accurate and demonstrates a grammatically sound 

sentence, although it is explained in simple terms.  

The description emphasized how visual concentration, 

effective decoding, and expressing reasoning drive object-to-

object interactions.  

 
 

Table 11. Ablation analysis and semantic and fluency gains from different optimization strategies 

Image Ground Truth Generated Caption (AttenTAVO-Cap) 

 

A man in a hat is displaying 

pictures next to a skier in a blue 

hat. 

A man wearing a hat shows photos beside 

another man in skiing gear. 

Analysis: Contextually, the utterance conveys a man, 

presumably showing off pictures, and another person dressed 

in skiing attire. Even while details such as “blue hat” tend 

towards generalizations in “skiing gear,” the core of the 

caption remains in line with the visuals that can be detected. It 

picks steam and posture and has details in place. 

The qualitative examples demonstrate the effectiveness of 

the proposed AttenTAVO-Cap (TAVO) model in 

understanding the scene, identifying objects, and creating 

natural language responses. The attention mechanism plays an 

important role in linking vocabulary with the relevant image, 

and the phrase identification is improved through the use of 

TAVO hyperparameters.  

The minor differences between the proposed and ground 

truth captions do not impact the contextual correctness of the 

proposed captions and make them equally good as captions in 

a practical scenario. 
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5. Conclusion 
This work proposes a general solution for image 

captioning with AttenTAVO-Cap, a novel hybrid approach 

that combines the attention-driven CNN-BiGRU framework 

with the TAVO metaheuristic. The optimization strategy not 

only improves the convergence rate but also enhances the 

capability to learn more discriminative correlations between 

images and texts. The critical analysis performed for the 

evaluation process, using the Flickr8k and Flickr30k 

benchmarks, determines that AttenTAVO-Cap (TAVO) 

obtains SOTA results in captioning in terms of the entire set 

of evaluation criteria, thoroughly surpassing the results 
obtained with the standard optimization approaches, namely 

PSO & GA, as well as HABGRU + AVOA in the SOTA 

approaches. That is, the model obtained a CIDEr score of 194 

in the Flickr8k database and a score of 191 in the Flickr30k 

database, which are signs that indicate a strong consistency 

with the human-annotated captions. The BLEU & METEOR 

scores also confirm the semantic & syntactical aptness. The 

experiment succeeded in determining that metaheuristic 

approaches proposed in bio-inspired optimization, like the 

proposed TAVO, are sturdy alternatives to the traditional 

learning paradigms, namely in the case of captioning, which 
corresponds to the search in high-dimensional spaces. 

Although the proposed approach obtained outstanding results, 

more studies may investigate the extension to the transformer 

framework, cross-lingual captioning, and real-time captioning 

in embedded devices. 

The proposed AttenTAVO-Cap model performs well; 

however, it has only been validated on medium-scale datasets 
and based on the CNN–BiGRU backbone architectures. 

Concerning Q-I, the results confirm that the integration of 

deep captioning architectures and metaheuristics leads to a 

substantial improvement in semantic alignment and 

captioning. Moving on to Q-II, TAVO outperforms GA and 

PSO on all parameters of evaluation in each case. Finally, the 

model achieves a competent trade-off concerning Q-III but 

requires further investigation on real-time feasibility 

concerning transformer-scale scenarios. 

In the future, we will extend the AttenTAVO-Cap model 

using Transformer-based decoders to implement the 

generation of the sequences in the model efficiently. In 
addition, there are plans to utilize multimodal pretraining and 

larger and more diverse datasets, such as the MS-COCO 

dataset, to achieve higher levels of generalization in the 

model. There will also be the inclusion of explanation 

modules, such as Grad-CAM and attention maps, to improve 

the interpretability of the model. 
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