Structural Analysis of RF Sputtered TiO2 Thin Film on Cu Substrate for Various Annealing Temperatures

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2014 by IJETT Journal
Volume-14 Number-2
Year of Publication : 2014
Authors : Shanmugan S. , Mutharasu D. , Haslan A. H


Shanmugan S. , Mutharasu D. , Haslan A. H. "Structural Analysis of RF Sputtered TiO2 Thin Film on Cu Substrate for Various Annealing Temperatures", International Journal of Engineering Trends and Technology (IJETT), V14(2),57-60 Aug 2014. ISSN:2231-5381. published by seventh sense research group


The structural parameters of RF sputtered TiO2 thin film deposited on Cu substrates was tested using XRD spectra. Prepared TiO2 thin film was polycrystalline nature with the mixture of cubic, orthorhombic and tetragonal phases. Orthorhombic phase was preferentially grown on Cu substrate. The crystallite size of the TiO2 thin film was varied depends on the orientations and overall decreased crystallite size was noticed upto 300 °C. The observed residual stress was compressive nature as dominated at all temperature other than 400°C. Crystal defects such as dislocation density was high for cubic phase of TiO2 at higher annealing temperature. Overall, the annealing temperatures influenced the structural parameters with respect to the observed orientations of TiO2 thin film on Cu substrates.


[1] A. Islam, S.P. Singh, and L. Han, “Thiocyanate-Free Panchromatic Ruthenium (II) Terpyridine sensitizer having a Tridentate Diethylenetriamine Ligand for near-IR sensitization of the nanocrystaline TiO2,” Functional Materials Letters, Vol. 4, pp. 21–24, 2011.
[2] J.G. Yu, and X.J. Zhao, “Effect of substrate on the photocatalytic activity of nanometer TiO2 thin films,” Material Research Bulletin, Vol.35, pp. 1293-1301, 2000.
[3] S.C. Sun, and T.F. Chen, “Effects of electrode materials and annealing ambients on the electrical properties of $f TiO_{2}$ thin films by metalorganic chemical vapor deposition,” Japanese Journal of Applied Physics, Vol.36, pp. 1346-1350, 1997.
[4] B. Guo, Z. Liu, L. Hong, H. Jiang, and J. Yang-Lee, “Photocatalytic effect of the sol-gel derived nanoporous TiO2 transparent thin film,” Thin Solid Films, Vol.479, pp.310-315, 2005.
[5] P. Zeman, S. Takabayashi, “Nano-scaled photocatalytic TiO2 thin films prepared by magnetron sputtering,” Thin Solid Films, Vol.433, pp.57-62, 2003.
[6] W. Zhou, X. Zhong, X. Wu, L. Yuan, Q. Shu and Y. Xia, “Structural and Optical Properties of Titanium Oxide Thin Films Deposited on Unheated Substrate at Di?erent Total Pressures by Reactive dc Magnetron Sputtering with a Substrate Bias” Journal of the Korean Physical Society, Vol. 49, No. 5, pp. 2168-2175, 2006
[7] P.R. Mishra, P.K. Shukla, and O.N. Srivastava, “Study of modular PEC solar cells for photoelectrochemical splitting of water employing nanostructured TiO2 photoelectrodes,” International Journal of Hydrogen Energy, Vol.32, pp. 1680-1685, 2007.
[8] M.G. Kang, N.G. Park, K.S. Ryu, S.H. Chang, and K.J. Kim, “A 4.2% efficient flexible dye-sensitized TiO2 solar cell using stainless steel substrate,” Solar Energy Material Solar Cells, Vol.90, pp. 574-581, 2006.
[9] A. Maloney, and E.L. Schoonman, “Gas-Phase synthesis of nanostructured anatase TiO2,” Journal of Chemical Vapor Deposition, Vol.4, pp.109-114, 1998.
[10] J. Krzak-Ro?, J.Filipiak, C. Pezowicz, A. Baszczuk, M. Miller, M. Kowalski, and R. B?dzi?sk, “The effect of substrate roughness on the surface structure of TiO2, SiO2, and doped thin films prepared by the sol gel method,” Acta of Bioengineering and Biomechanics, Vol.11, pp.21-29, 2009.
[11] P. Sun, H. Liu, H. Yang, W. Fu, S. Liu, M. Li, Y. Sui, Y. Zhang, and Y. Li, “Synthesis and characterization of TiO2 thin films coated on metal substrate,” Applied Surface Science, Vol.256, pp.3170-3173, 2010.
[12] A. H. Mayabadi , V. S. Waman , M. M. Kamble, S. S. Ghosh , B. B. Gabhale , S. R. Rondiya , A.V.Rokade , S. S. Khadtare , V. G. Sathe , H. M. Pathan , S. W. Gosavi , and S. R. Jadkar, “Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method,” Journal of Physics and Chemical of Solids, Vol.75, pp.182-187, 2014.
[13] H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka, M. Anpo, P. V. Kamat, “Extending the Photoresponse of TiO2 to the Visible Light Region:? Photoelectrochemical Behavior of TiO2 Thin Films Prepared by the Radio Frequency Magnetron Sputtering Deposition Method” Journal of Physical Chemistry B, Vol. 110, pp. 5537 - 5541 (2006).
[14] H. Hadouda, J. Pouzet, J. C. Bernede, and A. Barreau, “MoS2 thin film synthesis by soft sulfurization of a molybdenum layer,” Material Chemistry and Physics, pp.42, pp.291-297, 1995.
[15] B.D. Cullity, In: Elements of X-Ray Diffraction. 2nd edition. Cohen M, editor. Reading, Mass, USA: Addison-Wesley; 1978.
[16] C. Mehta, J. Abass ,G. Saini, S. Tripathi, “Effect of deposition parameters on the optical and electrical properties of nanocrystalline CdSe”, Chalcogenide Letter., Vol. 11, pp. 133 - 138 2007.
[17] A.J. Perry, “The state of residual stress in TiN films made by physical vapor deposition methods; the state of the art”, Journal of Vacuum Science Technology A., Vol. 8, pp. 1351 – 1358, 1990.
[18] L. Borgese, M. Gelfi, E. Bontempi, P. Goudeau, G. Geandier, D. Thiaudière, and L.E. Depero, “Young modulus and Poisson ratio measurements of TiO2 thin films deposited with atomic layer deposition,” Surface and Coating Technology, Vol.206, pp.2459-2463, 2012.

TiO2 thin film, XRD, Structural properties, residual stress.