Study of base doping rate effect on parallel vertical junction silicon solar cell under magnetic field
Citation
Mohamed lemine OULD CHEIKH , Boureima SEIBOU, Mohamed Abderrahim Ould El Moujtaba , Khady FAYE, Mamadou WADE, Grégoire SISSOKO "Study of base doping rate effect on parallel vertical junction silicon solar cell under magnetic field", International Journal of Engineering Trends and Technology (IJETT), V19(1),44-55 Jan 2015. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group
Abstract
In this work we suggest looking for influences of a constant magnetic field and the base doping rate on a parallel vertical junction silicon solar cell under multispectral illumination in static regime. A study on the coefficient and the length diffusion according to the magnetic field B and the doping rate Nb is made. The minority carriers density in the base was studied according to the depth of the base for various values of the base doping rate and the magnetic field. This study allows us to determine the influences of the doping rate and the magnetic field on the photocurrent density, the photovoltage, the space charge region capacitance.The study of these electrical parameters is done according to the concept of the junction surface recombination velocity of excess minority carriers. The logarithm of the capacitance versus photovoltage leads to transitional capacitance.
References
[1] B. Equer, “ Energie solaires photovoltaïque ”,volume 1, Collection Ellipses, 1993.
[2] R.M. Lago-Aurrekoetxea, C. del Cañizo, I. Pou, and A. Luque“Fabrication process for thin silicon solar cells”, Proc. 17th European PVSEC,(Munich, 2001) 1519-1522.
[3] N. Bordin, L. Kreinin, N. Eisenberg, “Determination of recombination parameters of bifacial silicon cells with a two layerstep-liked effect distribution in the base region”, Proc.17th European PVSEC, (Munich, 2001) 1495-1498.
[4]Daniel. L. Meier, Jeong-Mo Hwang, Robert B. Campbell. IEEE Transactions on Electron Devices, vol. ED-35, No.1, 1988, pp.70 – 78.
[5]A. Hübner, A.G.Aberle, and R. Hezel 20% EfficientBifacial Silicon Solar Cells, 14th European PVSEC, (Munich, 2001) pp 1796 – 1798.
[6] JoseFurlan and SlavkoAmon, “Approximation of the carrier generation rate in illuminated silicon”, Solid State Electr, Vol.28, No.12, pp.1241-1243 (1985)
[7] Harold J. Hovel “semiconductors and semimetals”volume 11 Solar Cells ACADEMIC PRESS New York San Francisco London 1975
[8] M. I.Ngom, B.Zouma, M. Zoungrana, M.Thiame, Z. N.Bako, A. G. Camara, G.Sissoko“ Theoretical study of a parallel vertical multi-junction silicon cell under multispectral illumination: influence of external magnetic field on the electrical parameters” International Journal of Advanced Technology & Engineering Research (IJATER); ISSN No:2250-3536Volume 2,Issue 6, Nov. 2012 pp 101-106.
[9] S. N. Mohammad, An alternative method for the performance analysis of silicon solar cells ,J. Appl. Phys. Vol 61.N0 2 767-772 1987
[10]R.M.Lago-Aurrekoetxea, C.del Can, Izo, I.Pou, and A.Luque, “Fabrication Process for thin silicon solar cells”, Proc.17th European PVSEC. (Munich, 2001) 1519-1522
[11] S. MADOUGOU, F. MADE, M. S. BOUKARY, AND G. SISSOKO I-V Characteristics for Bifacial Silicon Solar Cell studied under a Magnetic field. Advanced Materials Research Vols. 18-19 (2007) pp. 303-312, online at http://www.scientific.net © (2007) Trans Tech Publications, Switzerland - ISSN: 1022-6680 and ISBN: 0-87849-450-2d
[12] Th. Flohr and R. Helbig, “Determination of minority-carrier lifetime and surface recombination velocity by Optical-Beam-Induced- Current measurements at different light wavelengths”, J. Appl. Phys. Vol.66 (7), (1989) pp 3060 – 3065.
[13] A. Dieng, A. Diao, A.S. Maiga, A. Dioum, I. Ly, G. Sissoko, “A Bifacial Silicon Solar Cell Parameters Determination by Impedance Spectroscopy”, Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition (2007), pp.436-440.
[14]D. Mathiot ‘’Dopage et Diffusion dans le Silicium’’Institut d`Électronique du Solide et des Systèmes, InESS, UMR 7163, Laboratoire Commun CNRS – ULP
[15] Th. Pernau, P. Fath. E. BucherPhotovoltaïcspecialists conference, ConferenceRecord of the Twenty- Ninth IEEE, pp 442-445, (2002)
[16]Sissoko G., C. Museruka, A. Corréa, I. Gaye and A. L. Ndiaye, 1996. Light spectral effect on recombination parameters of silicon solar cell. Renewable Energy. 3: 1487-1490.
[17]G. Sissoko, E. Nanema, Y. L. B. Bocande, A. L. Ndiaye, M. Adj World Renewable Energy Congress (WREC) 1996, part III, pp.1594-1597.
[18] H.L.Diallo, A. Wereme, A. S. Maïga and G. Sissoko, 2008. New approach of both junction and back surface recombination velocities in a 3D modelling study of a polycrystalline silicon solar cell.Eur. Phys. J. Appl. Phys.,42: 203–11
[19] M. M. Dione, S. Mbodji, M. L. Samb, M. Dieng, M. Thiame, S. Ndoye, F. I.Barro, G. Sissoko, Vertical junction under constant multispectral light: determination of recombination parameters. Proceedings of the 24th European photovoltaic solar energy conference and exhibition, Hamburg, Germany (sept 2009), 465 – 468.
[20] S. MBODJI, B. MBOW, F. I. BARRO and G. SISSOKO A 3D model for thickness and diffusion capacitance of emitter-base junction determination in a bifacial polycrystalline solar cell under real operating condition Turkish Journal of Physics, 35 (2011) , 281 – 291. http://journals.tubitak.gov.tr/physics/index.php
[21].K. Kotsovos,K. Misiakos,16th European Photovoltaic Solar Energy Conference, 1-5 May 2000, Glasgow, UK
[22] E.SOW, S. MBODJI, B. ZOUMA, M. ZOUNGRANA, I. ZERBO, A. SERE and G. SISSOKO. “Determination in 3D modeling study of the width emitter extension region of the solar cell operating in open circuit condition by the Gauss’s Law.” International Journal of Science, Environment and Technology (IJSET), Volume 1, N°4, pp. 230 – 246, 2012; http://www.ijset.net.
[23] G. Sissoko, B. Dieng, A. Correa, M. Adj and D. Azilinin, ‘‘Silicon Solar Cell Space Charge Region Width Determination by Modelling Study’’, Proceeding of the World Renewable Energy Conference and Exhibition, (1998), pp.1852 – 1855.
Keywords
Parallel vertical junction solar cell – Magnetic field –Doping rate.