Pragmatic Analysis of CNT Interconnects for Nanometer Regime
Citation
Shailendra Mishra, Divya Mishra, R.P. Agarwal"Pragmatic Analysis of CNT Interconnects for Nanometer Regime", International Journal of Engineering Trends and Technology (IJETT), V28(9),432-435 October 2015. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group
Abstract
The present age of nanometer has made it
inevitable to introduce new conventions to meet the ever
growing demand of device scaling and circuit minimising. The
continuous improvement in electronic circuitry has been
assisted by periodic doubling of transistor densities in ICs
over the last few decades. However, as every technology,
material has its limitation so does the conventional
interconnect materials like Cu and Al. Consequently, newer
options are being envisaged to meet the current and future
demands.
To get acquainted with the emerging technologies that
assist the incorporation of interconnect subjected to newer
technology nodes and extent of integrated circuit scaling, here
I review some of them and present as an idea for future
advancements for the same.
References
1) Jack S. Kilby, ?Turning potential into realities: The invention of the
Integrated Circuits, Texas Instruments Incorporated, USA, pp. 574-485,
2000.
2) Gordon E. Moore, ?Cramming more components onto integrated
circuits, Electronics, Volume 38, Number 8, 1965.
3) Robert H. Dennard et al., ?Design of Ion-Implanted MOSFETs with
Very Small Physical Dimensions, IEEE J. Solid State Circuits, pp. 256-
268, 1974.
4) Jussi Putaala,?Reliability and Prognostic monitoring methods of
Electronics Interconnections in Advanced SMD Applications, Ph.D.
dissertation, Faculty of Information Technology and Electrical
engineering, Department of Electrical Engineering, University of Oulu
Graduate School, University of Oulu, 2015.
5) Maly, W., "Future of testing: Reintegration of design, testing and
manufacturing," in European Design and Test Conference, 1996.
ED&TC 96. Proceedings, vol.11, no.14, pp. 19, 1996.
6) M. Haselman, S. Hauck, "The Future of Integrated Circuits: A Survey of
Nanoelectronics", Proceedings of the IEEE, Vol. 98, No. 1, pp. 11-38,
2010.
7) Elgamel, M. et al., ? Crosstalk noise analysis in ultra-deep
submicrometer technologies," in Interconnect Noise Optimization in
Nanometer Technologies, Ist ed., US, Springer,2006, ch. 4, pp. 45-57.
8) Yang, Z.; Mourad, S., "Deep submicron on chip crosstalk [and ANN
prediction]," in Instrumentation and Measurement Technology
Conference, 1999. IMTC/99. Proceedings of the 16th IEEE, vol.3,
pp.1788-1793, 1999.
9) Brajesh Kumar Kaushik, Sankar Sarkar, Rajendra P. Agarwal, and
Ramesh C. Joshi ?Crosstalk noise generated by parasitic inductances in
System-on-Chip VLSI interconnects HAIT Journal of Science and
Engineering B, Volume x, Issue x, pp. 1-17, 2007.
10) Navin Srivastava and Kaustav Banerjee, ?Performance Analysis of
Carbon Nanotube Interconnects for VLSI Applications, in Computer-
Aided Design, ICCAD-2005. IEEE/ACM International Conference,
session 4D.2, pp. 383-390, 2005.
11) Ma, X. & Arce, G. R. Computational Lithography (Wiley, 2011).
12) Bohr, M.T., ?Interconnect scaling-the real limiter to high performance
ULSI, in Electron Devices Meeting, 1995. IEDM `95, pp.241-244,
1995.
13) https://en.wikipedia.org/wiki/10_nanometer.
14) Joel Hruska June 23, 2014. 14nm, 7nm, 5nm: How low can CMOS go?
It depends if you ask the engineers or the economists.
15) Available:
16) http://www.extremetech.com/computing/184946-14nm-7nm-5nm-howlow-
can-cmosgoit-depends-if-you-ask-theengineers-orthe- economists.
17) The International Technology Roadmap For Semiconductors 2007
Edition Interconnect, www.itrs.net.
18) A.K. Goel, High-Speed VLSI Interconnections, 2nd ed. (Wiley-
Interscience; IEEE Press, Hoboken, NJ, 2007).
19) A.K. Goel, IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE 2008) (Niagara Falls, ON 2008 May 4-7, IEEE) p.
189.
20) http://semimd.com/blog/2014/10/31/airgaps-in-copper-interconnectsfor-
logic.
21) J. Gambino, ?Copper Interconnect Technology for the 32 nm node and
beyond, Proc. of IEEE Custom Integrated Circuits Conference,
CICC ’09, pp.141– 149, Sep 2009.
22) Zhifeng Ren et al., ?Properties and Applications of Aligned Carbon
Nnotube Arrays, in Aligned Carbon Nanotubes: Physics, Concepts,
Fabrication and Devices, New York, Springer Link (Online service),
2013, ch.8, pp. 232-238. DOI: 10.1007/978-3-642-30490-3_1.
23) http://www.wired.com/2009/12/1223shockley-bardeen-brattaintransistor/
24) Chih-Tang Sah, ?Bipolar Junction Transistor and Other Bipolar
Transistor Devices, in Fundamentals of Solid-state Electronics, IVth ed.
Singapore, World Scientific Publishing Co. Pte. Ltd., 1994, ch.8, pp.
708.
Keywords
Device scaling, electronmigration, Low-k
Dielectrics, porous low-k ILD materials.