Effect of Processing Parameters on the Biomass Gasification of Coconut Shell

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2016 by IJETT Journal
Volume-42 Number-7
Year of Publication : 2016
Authors : M.Senthil kumar, S.Vivekanandan
DOI :  10.14445/22315381/IJETT-V42P269

Citation 

M.Senthil kumar, S.Vivekanandan "STATCOM based Control and Analysis of De-Icer with Functionality using the Modular Multilevel DC", International Journal of Engineering Trends and Technology (IJETT), V42(7),388-397 December 2016. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group

Abstract
Gasification is one of the most promising technologies for converting biomass into a fuel. The main objective of this research is to study the effect of design and operating parameters, mainly as Bed Temperature (T), Pressure (P), Equivalence Ratio (ER), Feed rate (F) and Particle Size (S) on the performance of the gasification process of coconut shell as biomass in a continuous fixed bed updraft reactor. In the present investigation, an empirical relationship was developed to predict the process of generating fuel gas with better quality through gasification of biomass in a fluidized bed reactor using Response Surface Methodology (RSM). Six major components of the producer gas such as O2, H2, CO, CO2, CH4, and N2 are analyzed in the laboratory along with the evaluation of tar yield and cold gas efficiency. It was observed that the concentrations of Hydrogen, Oxygen Nitrogen and Carbon monoxide were increased with rise in Gasification Temperature, Pressure and Equivalent Ratio (0.2-0.35). On the other hand, higher Equivalence Ratio (0.4-0.5) caused to decrease the concentrations of Hydrogen, Oxygen, Nitrogen and Carbon Monoxide. The developed model was made a good prediction for the experimental data as observed for the gas species concentrations.

 References

1. Bridgwater, A.V. (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel. vol.74, no.3, p. 631–53.
2. Di Blasi, C. (1996) Kinetic and heat transfer control in the slow and flash pyrolysis of solids, Industrial and Engineering Chemistry Research 35 (1), 37–46.
3. Ergudenler, A. (1993) Gasification of wheat straw in a dual distributor type fluidized bed reactor. Unpublished PhD. thesis, Technical University of Nova Scotia, Halifax, Nova Scotia, Canada
4. Mitchell, D. (2008) A note on rising food prices. Policy Research Working Paper 4682, The World Bank Development
5. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M., Kanman, D. M. (2006) Ethanol can contribute to energy and environmental goals. Science, vol. 311, p. 506–509.
6. Rammamorth, R., Kastury, S., Smith, W. H. (2000) Bioenergy: vision for the new millennium. Science Publishers, Enfield
7. Huber, G.W., Iborra, S., Corma, A. (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev, vol. 106, p. 4044–4098.
8. Foust, T.D., Wallace, R., Wooley, R., Sheehan, J., Ibsen, K., Dayton, D., Himmel, M., Ashworth, J., McCormick, R., Hess, J.R., Wright, C., Radtke, C., Perlack, R., Mielenz, J., Wang, M., Synder, S., Werpy, T. (2007) A national laboratory market and technology assessment of the scenario. Technical Report, NREL/TP-510-4094.
9. Czernik, S., Bridgwater, A.V. (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels, vol. 18, no.2, p. 590–598
10. Bergqvist, M.M., Wardh, K.S., Das, A., Ahlgren, E.O. (2008) A techno-economic assessment of rice husk-based power generation in the Mekong River Delta of Vietnam. Int J Energy Res., vol. 32, no. 12, p. 1136-1150.
11. Altafini, C.R., Wander, P.R., Barreto, R.M. (2003) Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Convers Manage. vol. 44, p. 2763–2777.
12. Baratieri, M., Baggio, P., Fiori, L., Grigiante, M. (2008) Biomass as an energy source: thermodynamic constraints on the performance of the conversion process. Bioresour Technol., vol. 99, p. 7063–7073.
13. Zainal, Z., Ali, R., Lean, C., Seetharamu, K. (2008) Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers Manage., vol. 42, p. 1499–1515.
14. Ptasinski, K.J., Prins, M.J., Pierik, A. (2007) Exergetic evaluation of biomass gasification. Energy, vol. 32, p. 568– 74.
15. Prins, M.J., Ptasinski, K.J., Janssen, F. (2007) From coal to biomass gasification: comparison of thermodynamic efficiency. Energy, vol. 32, p. 1248–1259.
16. Mahishi, M.R., Goswami, D. (2007) Thermodynamic optimization of biomass gasifier for hydrogen production. Int J Hydrogen, Energy, vol. 32, p. 3831–3840.
17. De Filippis, P., Borgianni , C., Paolucci , M., Pochetti , F. (2004) Gasification process of Cuban bagasse in a two-stage reactor. Biomass Bioenergy, vol. 27, p. 247–252.
18. Bin Zainal Alauddin, Z.A., Pooya, L., Mohammadi, M., Mohamed, A.R. (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development. A review, Renewable and Sustainable Energy Reviews, vol. 14, p. 2852–2862.
19. Mansaray, K.G., Ghaly, A.E., Al-Taweel, A.M., Hamdullahpur, F. (1999) Air gasification of rice husk in a dual distributor type fluidised bed gasifier. Biomass Bioenergy, vol. 17, p. 315–332.
20. Simin S., Mojtaba Aghajani D., Mohammadreza A. (2013) Investigation of biomass gasification hydrogen and electricity co-production with carbon dioxide capture and storage, International journal of hydrogen energy, vol. 38, pp. 3630- 3639.
21. Koc. R., Kazantzis, N.K., Hua Ma Y. (2011) A process dynamic modeling and control framework for performance assessment of Pd/ alloy-based membrane reactors used in hydrogenproduction. Int J Hydrogen Energy, vol. 36, p. 4934- 4951
22. Mathieu, P., Dubuisson, R. (2002) Performance analysis of a biomass gasifier. Energy Convers. Manage. vol. 43, p. 1291– 1299
23. Lin, C.L., Wey, M.L., You, S.D. (2002) The effect of particle size distribution on minimum fluidization velocity at high temperature. Powder Technol., vol. 126, p. 297–301.
24. Drift, A.V., Doorn, J., Vermeulen, J.W. (2009) Ten residual biomass fuels for circulating fluidized-bed gasification. Biomass Bioenergy, vol. 20, p. 45–56.
25. Luoa, S., Xiao, B., Hua, Z., Liua, S., Guana, Y., Caia, L. (2010) Influence of particle size on pyrolysis and gasification performance of municipal solid waste in a fixedbed reactor. Bioresour Technol. vol. 101, no. 16, p. 6517–6520.
26. Susana Mart?´nez-Lera, Jose´ Torrico Javier, Pallare´s Antonia Gil, (2013) Design and first experimental results of a bubbling fluidized bedfor air gasification of plastic waste, J Mater Cycles Waste Manag. vol. 15, p. 370–380.
27. Risberg, M., Ohrman, O.G.W., Gebart, B.R., Nilsson, P.T., Gudmundsson, A., Sanati, M. (2014) Influence from fuel type on the performance of an air-blown cyclonegasifier, Fuel, vol. 116, p. 751–759.
28. Mansaray, K.G., Ghaly, A.E., Al-Taweel, A.M., Hamdullahpur, F. (1999) Air gasification of rice husk in a dual distributor type fluidised bed gasifier. Biomass Bioenergy, vol. 17, p. 315–332.
29. Kaupp Albrecht. (1984) Gasification of rice hulls: theory and practices. Deutsches Zentrum Fuer Entwicklungs Technologien (GATE): Eschborn.
30. Schiefelbein, G.F. (1989) Biomass thermal gasification research, recent results – UnitedStates DOE’s research program. Biomass, vol. 19, p. 145–59.
31. Bin Zainal Alauddin, Z.A., Pooya, L., Mohammadi, M., Mohamed, A.R. (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development. A review, Renewable and Sustainable Energy Reviews, vol. 14, p. 2852–2862.
32. Hanb, J., Kimb, H., Minamib, H., Shimizuc, W., Wang, T.G (2008), The effect of the particle size of alumina sand on the combustion and emission behavior of cedar pellets in a fluidized bed combustor. Bioresour. Technol. vol. 99, no. 9, p. 3782–3786.
33. Zhao, Y., Sun, S., Zhou, H., Sun, R., Tian, H., Luan, J., Qian, J. (2010), Experimental study onsawdust air gasification in an entrained-flow reactor, Fuel Processing Technology, vol. 91, p. 910–914.
34. Senapati, P.K., Behera, S. (2012) Experimental investigation on an entrained flow type biomass gasification system using coconut coir dust as powdery biomass feedstock, Bioresource Technology, vol. 117, p. 99–106.
35. Wang, L., Weller, C.L., Jones, D.D., Hanna, M.A. (2008) Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenergy, vol. 32, p. 573–81.
36. Mathieu, P., Dubuisson, R. (2002) Performance analysis of a biomass gasifier. Energy Convers. Manage. 43, p. 1291– 1299.
37. Sharma A. K. (2008) Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier. Energy Convers Management, vol. 49, p. 832–42.
38. Vaezi, M., Passandideh-Fard, M., Moghiman, M., Charmchi, M. (2011) Gasification of heavy fuel oils: A thermochemical equilibrium approach. Fuel, vol. 90, p. 878–85.
39. Rapagna, S., Jana, N., Kiennemann, A., Foscolo, P.U. (2000) Steam-gasification of biomass in a fluidized-bed of olivine particles. Biomass Bioenergy, vol. 19, p. 187–197.
40. Franco, C., Pinto, F., Gulyurtlu, I., Cabrita, I. (2003) The study of reactions influencing the biomass steam gasification process. Fuel, vol. 82, p. 835–842.
41. Van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J. (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy, vol. 35, p. 3748–3762.
42. Hayashi, J.I., Hosokai, S., Sonoyama, N. (2006) Gasification of low-rank solid fuels with thermochemical energy recuperation for hydrogen production and power generation. Process Saf. Environ, vol. 84, p. 409–419.
43. Hu, S., Xiang, J., Sun, L., Xu, M., Qiu, J., Fu, P. (2008), Characterization of char from rapid pyrolysis of rice husk. Fuel Process Technol. vol. 89, p. 1096–1105.
44. Lv, D., Xu, M., Liu, X., Zhan, Z., Li, Z., Yao, H. (2010) Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification, Fuel Processing Technology, vol. 91, p. 903–909.
45. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008) Determination of structural carbohydrates and lignin in biomass, Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory Technical Report, NREL/TP-510-42618 NREL Golden, NREL, CO, USA.
46. Ramajo-Escalera, B., Espina, A., García, J.R., Sosa-Arnao, J.H., Nebra, S.A. (2006) Model-free kinetics applied to sugarcane bagasse combustion, Thermochimica Acta, vol. 448, p. 111–116.
47. Gil, M.V., Casal, D., Pevida, C., Pis, J.J., Ribiera, F. (2010) Thermal behaviour and kinetics of coal/biomass blends during co-combustion, Bioresource Technology, vol. 101, p.5601– 5608.
48. Demirbas, A. (2004) Combustion characteristics of different biomass fuels, Progress in Energy and Combustion Science, vol. 30, p. 219–230.
49. Haykiri-Açma, H. (2003) Combustion characteristics of different biomass materials, Energy Conversion and Management, vol. 44, p. 155–162.

Keywords
—Coconut shell; Fluidized Bed Gasifier; Producer Gas; Response Surface Methodology and Equivalent Ratio.