Electrical and Structural Transport characteristics of Ni/Ti Schottky contacts to ntype Indium Phosphide (InP)
Citation
Nagaraj M K, Y. Munikrishna Reddy "Electrical and Structural Transport characteristics of Ni/Ti Schottky contacts to ntype Indium Phosphide (InP)", International Journal of Engineering Trends and Technology (IJETT), V47(3),183-186 May 2017. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group
Abstract
This article mainly studies about the
current transport mechanism of Ni/Ti bilayer contact
on n-InP Schottky barrier Diode. At ?1 V, the
reverse leakage current of the as-deposited Ni/Ti
Schottky contact is 8.829×10-10A. For contacts
annealed at 200 ?C, 300 ?C and 400 ?C, the reverse
leakage current increases. The corresponding values
are 1.111 X 10-9, 1.329 X 10-9 and 1.649 X 10-9A at -
1 V. The investigated value of SBH of the asdeposited
Ni/Ti Schottky contact is 0.81 eV. On
observation, it is found that there is decrease of SBH
for contacts annealed at 200 ?C and 400 ?C. At the
same time, the relevant values are 0.80 eV, 0.79 eV
and 0.78 eV, respectively. The calculations show
that 0.85 eV is the SBH of as-deposited ni/Ti//n-InP
Schottky diodes. The same are 0.83 eV at 200 ?C
and 0.79 eV at 400 ?C annealed contacts
respectively. It is observed that the as-deposited
Ni/Ti/n-InP contact has the highest SBH as
compared to SBH of annealed contacts. Also, these
values are in good agreement with the values
arrived from the I-V method. The annealing effects
on electrical and structural properties are employed
for this study.
References
[1] E.H. Roderick, T.H. Williams, Metal-Semiconductor
Contacts, Oxford, 1988.
[2] M.S. Tyagi, Introduction to Semiconductor materials and
Devices, New York: John Wiley, 1991.
[3] T.P. Chow, R. Tyagi, Wide Bandgap Compound
Semiconductors for Superior High Voltage Unipolar Power
Devices, IEEE Trans. Electron. Dev. 41 (1994) 1481-1486.
[4] J.L. Freeouf and J.M. Woodall, Schottky barriers: An
effective work function model, Appl. Phys. Lett., 39 (1981)
727-729.
[5] Y. Sun, X.M. Shen, J. Wang, D.G. Zhao, G. Feng, Y. Fu,
S.M. Zhang, Z.H. Zhang, Z.H. Feng, Y.X. Bai and H.
Yang, Thermal annealing behaviour of Ni/Au on n-GaN
Schottky contacts , J. Phys. D: Appl. Phys., 35 (2002)
2648-2653.
[6] J.Y. Duboz, F. Binet, N. Laurent, E. Rosencher, F. Scholz,
V. Harle, O. Briot, B. Gil and R.L. Aulombard, Influence
of Surface Defects on the Characteristics of GaN Schottky
Diodes, Mater. Res. Soc. Symp. Proc., 449 (1996) 1085-
1089.
[7] T. Sands, Stability and epitaxy of NiAl and related
intermetallic films on III?V compound semiconductors,
Appl. Phys. Lett. 52 (1988) 197-201.
[8] H. Dogan, N. Yildirim and A. Turut, Thermally annealed
Ni/n-GaAs(Si)/In Schottky barrier diodes, Microelectron.
Eng., 85 (2008) 655-658.
[9] H.S. Soliman, A.A.M. Farag, N. M. Khosifan and T. S.
Solami, Electronic and photovoltaic properties of
Au/pyronine G(Y)/p-GaAs/Au:Zn heterojunction, J. Alloys
Compd., 530 (2012) 157-163.
[10] A. Klein, F. Sauberlich, B. Spath, T. Schulmeyer and D.
Kraft, Non- stoichiometry and electronic properties of
interfaces,J. Mater. Sci, 42 (2007)1890-1900.
[11] V. Lakshmi Devi, I. Jyothi, V. Rajagopal Reddy and C.-J.
Choi, Schottky Barrier Parameters and Interfacial
Reactions of Rapidly Annealed Au/Cu Bilayer Metal
Scheme on N-type InP, Open Appl. Phys. J., 5 (2012) 1-9.
[12] H. Norde, A modified forward I-V plot for Schottky diodes
with high series resistance, J. Appl. Phys., 50 (1979) 5052-
5053.
Keywords
Schottky barrier Diodes; Ni/Ti/n-InP;
I-V Studies; XRD analysis.