Influence of F-PbO2 Doping on the Microstructure, Surface Morphology and Electrochemical Properties of the Electrode for Chlorates Production Cell
Citation
Adam Suleiman Khamiss, Babiker Abdalla Karama, Gurashi Abdullah Gasmelseed "Influence of F-PbO2 Doping on the Microstructure, Surface Morphology and Electrochemical Properties of the Electrode for Chlorates Production Cell", International Journal of Engineering Trends and Technology (IJETT), V50(4),203-210 August 2017. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group
Abstract
Electrode fabricated from graphite felts as basic substrate was doped by lead dioxide (PbO2) and fluorine F- ion through the potentiostatic anode co-deposition method. The fluorine content on the layer controlled and optimized by adjusting different co deposition potential. The influence of fluorine F- ion on the composition, surface morphology and electrochemical properties of the lead dioxide electrode was chracterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray detector (EDX), X-ray Photoelectron Spectroscopy (XPS). Electrochemical experiments of Linear Sweep Voltammetry (LSV), Cyclic Voltammetry (CV) and durability was executed by electrochemical workstation which showed good activity and service life durability. Oxidizing electrolyte of sodium chlorate as one feild of application, showed the electrode with optimized content of F- has better performance than that without doped at prefered condition ranged to PH 6.5,temperture 550C and 4V constant potential. This investigation can contribute to the improvement of electrochemical cells that may use this material as an electrode. Choicing practical graphite substrate added value to improvement of the electric conductivity. The surface modified of the electrode enlarged it`s area from limited smoothing to octahedral surface due to the shape obtained from the doping.
Reference
[1] Electrochemical Reactors: Their Science and Technology,Part A; Ismail, M. I., Ed.; Elsevier: Amsterdam, 1989.
[2] Koryta, J.; Dvorak, J. Principles of Electrochemistry; Wiley: Chichester, 1987.
[3] Greef, R.; Peat, R.; Peter, L. M.; Pletcher, D.; Robinson, J. Instrumental Methods in Electrochemrstry; Ellis Horwood. Chichester, 1985.
[4] K. Chandrasekara Pillai, Tae Ouk Kwon, Bo Bae Park, Il Shik Moon, Studies on process parameters for chlorine dioxide production using IrO2 anode, Journal of Hazardous Materials 164 (2009) 812–819. in an un-divided electrochemical cell.
[5] Kuhn, A. T., Ed. Industrial Electrochemical Processes; El-sevier: Amsterdam. 1971.
[6] Pletcher, D.; Walsh, F. C. Industrial Electrochemistry; Chapman and Hall: London, 1990.
[7] Kinoshita, K. Carbon-Electrochemical and Physicochemical Properties; Wiley: New York, 1988.
[8] Randin, J.-P. In Encyclopedia of the Electrochemistry of the Elements; Bard, A. J., Ed.; Marcel Dekker: New York, 1976. VOl. 7.
[9] J.C. Schumacher;Perchlorates:Their Properties, Manufacture and Use.
[10] Joseph C. Schumacher, David R. Stern, and Paul R. Graham, Electrolytic Production of Sodium Perchlorate Using Lead Dioxide Anode, March 1958.
[11] Donald R. Coughanowr ,Process System Analysis and Control, 1991, McGraw-Hill Book Co.- Singapore
[12] United State Army Material Command 5001, Safety Manual, Eisen Hower Avenue, Alexandria, VA 22333-0001.
[13] Ann Corenell, Electrode Reactions in the Chlorates Process, 2002 Stockholm.
[14] Octave Levenspiel. Chemical Reaction Engineering Third Edition. 1999 John Wiley & Sons, Inc.
[15] L. J. J. JANSSEN, P. D. L. VAN DER HEYDEN, Mechanism of Anodic Oxidation of Chlorate to Perchlorate on Platinum Electrodes. Journal of Applied Electrochemistry 25 (1995) 126-136.
[16] Avinash Gupta, Handbook of Chemical Engineering Calculations, Third Edition, 2004 the McGraw-Hill.
[17] J. E. Dodgen, Design Study on an Alternate Method for Production of Ammonium Perchlorate (U), 17 July 1961.
[18] A.B.Velichenco,R.Amadelli,A.Benedetti,J.Electrochem.Soc.2002,129
[19] K. C. Narasimham, S. Sundararajan and H. V. K. Udupa, Bull. National lnst. Sci. India, 29 (1961) 279.
[20] P. H. Groggins, A. L. Pitman, J. McLaren and F. H. Davis, Chem. andMet. Eng., 44 (1937) 302.
[21] Newman, J. S. Electrochemical Systems; Prentice-Hall: Englewood Cliffs,NJ, 1973.
[22] Martin B. Hocking. Handbook of Chemical Technology and Pollution Control.3d edition. Copyright _ 2005 Elsevier Inc.
[23] K. C. Narasimham, A. Narayanaswami and B. B. Dey, 3". Sci. and lnd. Research (India), 16A (1957) 512,
[24] John O`M Bockris and Ronald A. Fredlein, Aworkbook of Electrochemistry, Plenum Press 1973.
[25] K. Fukuda, C. Iwakura, H. Tamura, Electrochim. Acta 23 (1978) 613.
[26] Sarangapani, S.; Akrid e, J. R.; Schumm, B., Eds. The Electrochemistry of Carbons; Electrochem. SOC. Symp. Ser., 1983.
[27] Nasser,A .G,Mazen,H. Arabian Journal of Chemistry (2016) 9, S821
[28] Pletcher, D. J. A pl. Electrochem. 1984, 14,403.
[29] ]E.R. Kotz, S. Stucki, J. Electroanal. Chem. 228 (1987)407
[30] Pourbaix, M. Lectures on Electrochemical Corrosion; Ple-num Press: New York,1973.
[31] Pickett, D. J. Electrochemical Reactor Design; Elsevier: Amsterdam.1979.
[32] J.C. Go´ mez, A. Jutan and E. Baeyens, Wiener model identification and predictive control of a pH neutralisation process
[33] Source: California Department of Substances Control Web site: www.dtsc.ca.gov.
[34] The Interstate Technology & Regulatory Council Perchlorate Team. Perchlorate: Overview of Issues, Status, and Remedial Options, September 2005.
[35] Jae-Ho Shim, Joo-Young Jeong and Joo Yang Park Int. J. Electrochemical. Sci., 10 (2015) 6338 – 6347.
Keywords
lead dioxide electrode, potentiostatic method, electrochemical properties, oxygen evolution potential.