Mechanical Properties of Twinned Copper Nanowires Under Uniaxial Compression
Citation
Md. Ferdous Alam, Muhammad Rubayat Bin Shahadat "Mechanical Properties of Twinned Copper Nanowires Under Uniaxial Compression", International Journal of Engineering Trends and Technology (IJETT), V57(1),1-5 March 2018. ISSN:2231-5381. www.ijettjournal.org. published by seventh sense research group
Abstract
Molecular dynamics (MD) Simulation has been employed to study the compression behaviour of twinned copper nanowires at fixed strain rate of 1 x 10 10 s-1. FCC structure of copper nanowires are subjected to uniaxial compression at 0.1K temperature. Copper nanowires of varying diameters have been chosen (2.88 nm and 5.76 nm). Embedded Atom Model (EAM) potentials have been used to calculate interatomic potentials among the atoms. The compressive properties and deformation modes have been observed and discussed. The dislocations criteria and change of atomic structures have also been analysed. Two types of twin boundaries have been inserted into the nanowires to investigate their effects. It has been found that nanowires with lower twin boundary spacing show higher yield strength and seemingly different deformation criteria.
Reference
[1] Gleiter h. Nanostructured materials: Basic concepts and microstructure. Acta Mater, 2000, 48(1): 1?29.
[2] Lu L, Shen Y, Chen X, Qian L, Lu K. Ultrahigh strength and high electrical conductivity in copper. Science, 2004, 304(5669): 422?426.
[3] Zhang, H., & Huang, H. (2009). Do twin boundaries always strengthen metal nanowires? Nanoscale research letters, 34-38.
[4] Lucas, M., Leach, A. M., McDowell, M. T., Hunyadi, S. E., Gall, K., Murphy, C. J., &Riedo, E. Plastic deformation of pentagonal silver nanowires: Comparison between afmnano indentation and atomistic simulations. Physical Review B, 2008, 77(24).
[5] Wu H A, Soh A K, Wang X X, Sun Z H., Strength and fracture of single crystal metal nanowire. Key Engineering Materials, 2004, 261?263: 33?38.
[6] Wu, B., Heidelberg, A., & Boland, Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 2005, 4(7), 525-529.
[7] Park H S, Gall K, Zimmerman J A., Shape memory and pseudo elasticity in metal nanowires. Physical Review Letters, 2005, 95(25): 255504.
[8] Park H S, Zimmerman J A., Stable nano bridge formation in (110) gold nanowire under tensile deformation. ScriptaMaterialia, 2006, 54(6): 1127?1132.
[9] Liang W, Zhou M., Atomistic simulations reveal shape memory of FCC metal nanowires. Physical Review, 2006, 73(11): 115409.
[10] Wang, Wei-dong, Cheng-long Yi, and Kang-qi Fan, Transactions of Nonferrous Metals, Society of China, 23 (2013), 3353-3361.
[11] Koh S J A, Lee H P, Lu C, Cheng Q H., Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects [J]. Physical Review, 2005, 72(8): 5414.
[12] Park H S, Gall K, Zimmerman J A., Deformation of FCC nanowires by twinning and slip, Journal of the Mechanics and Physics of Solids, 2006, 54(9): 1862?1881.
[13] García-Mochales P, Paredes R, Peláez S, Serena P A., The formation of pentagonal Ni nanowires: Dependence on the stretching direction and the temperature. Physica Status Solidi A, 2008, 205(6): 1317?1323.
[14] García-Mochales P, Paredes R, Peláez S, Serena P A., Statistical analysis of Ni nanowires breaking processes: A numerical simulation study. Nanotechnology, 2008, 19(22): 225704.
[15] Zheng H, Cao A, Weinberger C R, Huang J Y, Du K,Wang J, Ma Y, Xia Y, Mao S X., Discrete plasticity in sub-10-nm-sized gold crystals. Nature Communications, 2010, 1(144): 1?8.
[16] Lu Y, Song J, Huang J Y, Lou J., Surface dislocation nucleation mediated deformation and ultrahigh strength in Sub-10-nm Gold nanowires. Nano Research, 2011, 4(12): 1261?1267.
[17] Alam, MdFerdous, Shahadat, Muhammad Rubayat Bin, "Temperature and Strain Rate Dependent Mechanical Properties of Ultrathin Metallic Nanowires: A Molecular Dynamics Study." 12th International Conference on Mechanical Engineering (ICME 2017)
[18] Lu Y, Song J, Huang J Y, Lou J, Fracture of Sub-20nm ultrathin gold nanowires. Advanced Functional Materials, 2011, 21(20): 3982?3989.
[19] Kang K, Cai W., Size and temperature effects on the fracture mechanisms of silicon nanowires: Molecular dynamics simulations. International Journal of Plasticity, 2010, 26(9): 1387?1401.
[20] Wu, B., Heidelberg, A., & Boland, J.E. Sader, X. Sun, Y. Li. Microstructure-hardened- silver nanowire, Nano Letter, 6(2006): 468-472.
[21] A. Cao, Y. Wei, Atomistic simulations of the mechanical behavior of fivefold twinned nanowires, Phys. Rev. B 74 (2006) 214108.
[22] H. Liu, J. Zhou, Plasticity in nano twinned polycrystalline Ni nanowires under uniaxial compression. Materials Letters 163 (2016): 179-182.
[23] ZHITING TIAN B.E., Tsinghua University, China, 2007; Nanoscale Heat Transfer In ARGON-Like Solids Via Molecular Dynamics Simulations
[24] M.R.B. Shahadat, A.S. Masnoon, S. Ahmed, AKM M Morshed, “Effect of the orientation of doped nanoparticles on thermal transportation of a solid: A molecular dynamics study” AIP Conference Proceedings 1851, 020084 (2017).
[25] S. J. Plimpton, J. Comp. Phys. 117, 1 (1995); http://lammps.sandia.gov/
[26] Daw M S, Baskes M I., Physical Review Letters, 50(17): 1285?1288 (1983).
keywords
Twin boundary, nanowire, dislocations, aspect ratio