Ways of Intensifying the Heat Exchange Processes in a Single-Well System for Subsoil Deep Thermal Energy Pickup and Transportation

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2020 by IJETT Journal
Volume-68 Issue-11
Year of Publication : 2020
Authors : A.V. Ryzhenkov, A.Y. Likhaeva, S.V. Grigoryev, M.R. Dasaev, I.S. Sokolov
DOI :  10.14445/22315381/IJETT-V68I11P205

Citation 

MLA Style: A.V. Ryzhenkov, A.Y. Likhaeva, S.V. Grigoryev, M.R. Dasaev, I.S. Sokolov  "Ways of Intensifying the Heat Exchange Processes in a Single-Well System for Subsoil Deep Thermal Energy Pickup and Transportation" International Journal of Engineering Trends and Technology 68.11(2020):33-48. 

APA Style:A.V. Ryzhenkov, A.Y. Likhaeva, S.V. Grigoryev, M.R. Dasaev, I.S. Sokolov. Ways of Intensifying the Heat Exchange Processes in a Single-Well System for Subsoil Deep Thermal Energy Pickup and Transportation  International Journal of Engineering Trends and Technology, 68(11),33-48.

Abstract
The main task of a heat supply system is uninterrupted supply of heat energy with the specified parameters to the consumer with minimum losses. The efficiency of heat supply systems largely depends on the heat exchange equipment used. Reducing the weight and dimensions, increasing the amount of heat transferred, and reducing electricity consumption for pumping the heat carrier are the main goals of increasing the efficiency of the heat exchange equipment. This article provides an overview of the traditional and promising methods for intensifying the heat exchange processes in the heat exchange equipment.

Reference

[1] A.K. Sokolsky, Netraditsionnye i vozobnovlyaemye istochniki energii [Nontraditional and renewable energy sources]. Textbook. Moscow, Russia: RGOTUPS, 2006, 104 p.
[2] Solntse, veter, biogaz! Alternativnye istochniki energii: ekologichnost i bezopasnost. Problemy, perspektivy, proizvoditeli [Sun, wind, and biogas! Alternative energy sources: environmental friendliness and safety. Problems, prospects, manufacturers]. Barnaul, Russia: Publishing House of the Altai – 21st Century Foundation, 2005, 174 p.
[3] V. Germanovich, and A. Turilin, Alternativnye istochniki energii. Prakticheskie konstruktsii po ispolzovaniyu energii vetra, solntsa, vody, zemli, biomassy [Alternative energy sources. Practical designs for the use of wind, sun, water, earth, and biomass energy]. St. Petersburg, Russia: Science and Technology, 2011, 320 p.
[4] S.K. Sheryazov, Metodologiya ratsionalnogo sochetaniya traditsionnykh i vozobnovlyaemykh energoresursov v sisteme energosnabzheniya selskokhozyaistvennykh potrebitelei [The methodology for the rational combination of traditional and renewable energy resources in the energy supply system for agricultural consumers], Abstract of dissertation for the degree of Doctor of Technical Sciences, Krasnoyarsk State Agrarian University, Krasnoyarsk, Russia, 2011, 33 p.
[5] B.G. Polyak, and F.A. Makarenko, Teplovoi rezhim nedr SSSR [Thermal subsoil conditions in the USSR]. Moscow, USSR: Science, 1970, 222 p.
[6] V.I. Vlasyuk, D.E. Budanov, L.K. Gorshkov, A.I. Osetskiy, S.Y. Ryabchikov, and V.I. Smirin, Novye tekhnologii v sozdanii i ispolzovanii skvazhin [New technologies in making and using wells]. Moscow, Russia: ZAO Geoinformmark, 2008.
[7] D. Ollinger, C. Baujard, T. Kohl, and I. Moeck, Distribution of thermal conductivities in the Groß Schönebeck (Germany) test site based on 3D inversion of deep borehole data, Geothermics, 39(1) (2010) 46–58.
[8] P.A. Antikayn, M.S. Aronovich and A.M. Baklastov, Rekuperativnye teploobmennye apparaty [Recuperative heat exchangers]. Moscow, Leningrad, USSR: Gosenergoizdat, 1962, 230 p.
[9] V.N. Bobylev, Podbor i raschet trubchatykh teploobmennikov [Selection and calculation of tubular heat exchangers]. Study guide. Moscow, Russia: D. Mendeleev University of Chemical Technology of Russia, 2003, 80 p.
[10] Y.M. Brodov, Teploobmenniki energeticheskikh ustanovok [Heat exchangers of power plants]. Yekaterinburg, Russia: Socrat, 2003.
[11] O.T. Ilchenko, Teploispolzuyushchie ustanovki promyshlennykh predpriyatii [Heat energized installations of industrial enterprises]. Kharkiv, Ukranian SSR : Vysshaya Shkola, 1985, 384 p.
[12] A. Fraas, and M. Ozisik, Heat Exchanger Design. Moscow, USSR: Atomizdat, 1971, 328 p.
[13] A.N. Ivanov, V.N. Belousov and S.N. Smorodin, Teploobmennoe oborudovanie prompredpriyatii [Heat exchange equipment for industrial enterprises]: study guide. St. Petersburg, Russia: Higher School of Technology and Energetics Saint-Petersburg State University of Industrial Technologies and Design, 2016, 184 p.
[14] Y.F. Gortyshov, V.V. Olimpiev, and I.A. Popov, “Effektivnost promyshlenno perspektivnykh intensifikatorov teplootdachi [Efficiency of industrial promising heat transfer intensifiers]”, Bulletin of the Russian Academy of Sciences. Power engineering, No. 3, pp. 102–110, 2002.
[15] G.A. Dreitser, “Problemy sozdaniya kompaktnykh trubchatykh teploobmennykh apparatov [Issues of creating compact tubular heat exchangers]”, Heat power engineering, No. 3, pp. 11–18, 1995.
[16] A.F. Krug, Y.A. Kuzma-Kichta, A.S. Komendantov, and V.V. Glazkov, Obobshchenie eksperimentalnykh dannykh po kriticheskim teplovym nagruzkam pri zakrutke potoka [Generalization of the experimental data on critical heat loads during flow spinning], in Intensification of heat transfer: works of the 4th Russian national conference on heat exchange, Vol. 6. Moscow, Russia: Publishing house of MEI, 2006, p. 226.
[17] M.I. Osipov, R.K. Olesevich, and K.A. Olesevich, Eksperimentalnoe i chislennoe issledovanie teploobmennykh apparatov shnekovogo tipa [Experimental and numerical study of screw-type heat exchangers], in Intensification of heat transfer: works of the 2nd Russian national conference on heat and mass transfer, Vol. 6. Moscow, Russia: MEI, 2002, pp. 159–162.
[18] Y.A. Kuzma-Kitcha, Metody intensifikatsii teploobmena [Heat transfer intensification methods]. Moscow, Russia: Publishing house of MEI, 2001, 112 p.
[19] V.K. Migai, Povyshenie effektivnosti sovremennykh teploobmennikov [Improving the efficiency of modern heat exchangers]. Leningrad, USSR: Energoizdat, 1980, 143 p.
[20] I.K. Shcherbachenko, Issledovanie intensifikatsii teploobmena v trubakh s koltsevymi turbulizatorami plavnoi konfiguratsii [Studying heat transfer intensification in the pipes with smooth-configuration ring turbulators], in Proceedings of the XIV School-Seminar for Young Scientists and Specialists under the guidance of Academician A. I. Leontyev, Vol. 1. Moscow, Russia: Publishing house of MEI, ( 2003) 151–154.
[21] V.F. Yudin, Teploobmen poperechno-orebrennykh trub [Heat exchange in cross-finned pipes]. Leningrad, USSR: Mechanical engineering, 1982, 189 p.
[22] M. Farnam, M. Khoshvaght-Aliabadi, and M.J. Asadollahzadeh, Heat transfer intensification of agitated U-tube heat exchanger using twisted-tube and twisted-tape as passive techniques, Chemical Engineering and Processing – Process Intensification, 133 (2018) 137-147,. https://doi.org/10.1016/j.cep.2018.10.002
[23] A.M.Sh. Abed, H. Majdi, Z. Hussein, D. Fadhil, and A. Abdulkadhim, Numerical analysis of flow and heat transfer enhancement in a horizontal pipe with P-TT and V-Cut twisted tape, Case Studies in Thermal Engineering, 12 (2018) 749-758. https://doi.org/10.1016/j.csite.2018.10.004
[24] A. Hasanpour, M. Farhadi, and K. Sedighi, Experimental heat transfer and pressure drop study on typical, perforated, V-cut and U-cut twisted tapes in a helically corrugated heat exchanger, International Communications in Heat and Mass Transfer, Vol. 71, pp. 126–136, 2016. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.032
[25] S. Xie, Z. Liang, L. Zhang, Y. Wang, H. Ding, and J. Zhang, Numerical investigation on heat transfer performance and flow characteristics in enhanced tube with dimples and protrusions, International Journal of Heat and Mass Transfer, 122 602–613, 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.106
[26] M.H. Cheraghi, M. Ameri, and M. Shahabadi, Numerical study on the heat transfer enhancement and pressure drop inside deep dimpled tubes, International Journal of Heat and Mass Transfer, 147 (2020) 118845,. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118845
[27] T. Dagdevir, O. Keklikcioglu, and V. Ozceyhan, Heat transfer performance and flow characteristic in enhanced tube with the trapezoidal dimples, International Communications in Heat and Mass Transfer, 108 (2019) 104299. https://doi.org/10.1016/j.icheatmasstransfer.2019.104299
[28] M. Li, T.S. Khan, E. Al-Hajri, and Z.H. Ayub, Single phase heat transfer and pressure drop analysis of a dimpled enhanced tube”, Applied Thermal Engineering, 101 (2016) 38–46. https://doi.org/10.1016/j.applthermaleng.2016.03.042
[29] T. Tsukahara, M. Motozawa, D. Tsurumi, and Y. Kawaguchi, PIV and DNS analyses of viscoelastic turbulent flows behind a rectangular orifice, International Journal of Heat and Fluid Flow, 41 (2013) 66-79.
[30] A. Abubakar, T. Al-Wahaibi, Y. Al-Wahaibi, A.R. Al-Hashmi, and A. Al-Ajmi, Roles of drag reducing polymers in single- and multi-phase flows, Chemical Engineering Research and Design, 92(11) (2014) 2153–2181.
[31] W.J. Han, and H.J. Choi, Role of Bio-Based Polymers on Improving Turbulent Flow Characteristics: Materials and Application, Polymers, 9(6) (2017) 2017.
[32] J. Zhang, X. Zhu, M.E. Mondejar, and F. Haglind, A review of heat transfer enhancement techniques in plate heat exchangers, Renewable and Sustainable Energy Reviews, Vol. 101, pp. 305–328, 2019. https://doi.org/10.1016/j.rser.2018.11.017
[33] M.A. Khairul, M. A. Alim, I.M. Mahbubul, R. Saidur, A. Hepbasli, and A. Hossain, Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids, International Communications in Heat and Mass Transfer. 50 (2014) 8–14.
[34] M. Unverdi, and Y. Islamoglu, Characteristics of heat transfer and pressure drop in a chevron-type plate heat exchanger with Al2O3/water nanofluids, Thermal Science, 21(6A) (2017) 2379-2391.
[35] R. Barzegarian, M.K. Moraveji, and A. Aloueyan, Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2-water nanofluid, Experimental Thermal and Fluid Science, 74 (2016) 11–18.
https://doi.org/10.1016/j.expthermflusci.2015.11.018 [36] V. Kumar, A.K. Tiwari, and S.K. Ghosh, Effect of chevron angle on heat transfer performance in plate heat exchanger using ZnO/water nanofluid, Energy Conversion and Management. 118, (2016) 142–154. https://doi.org/10.1016/j.enconman.2016.03.086
[37] D. Huang, Z. Wu, and B. Sunden. “Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger”, International Journal of Heat and Mass Transfer, 89 (2015) 620–626. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.082
[38] M. Bezaatpour, and M. Goharkhah, “Convective heat transfer enhancement in a double pipe mini heat exchanger by magnetic field induced swirling flow”, Applied Thermal Engineering, 167 (2019) 114801,. https://doi.org/10.1016/j.applthermaleng.2019.114801
[39] M. Ashjaee, M. Goharkhah, L.A. Khadem, and R. Ahmadi, Effect of magnetic field on the forced convection heat transfer and pressure drop of a magnetic nanofluid in a miniature heat sink, Heat Mass Transfer, 51 (2015) 953–964.
[40] M. Bezaatpour, and M. Goharkhah, Effect of magnetic field on the hydrodynamic and heat transfer of magnetite ferrofluid flow in a porous fin heat sink”, Journal of Magnetism and Magnetic Matererials. 476 (2019) 506–515.
[41] M. Legay, B. Simony, P. Boldo, N. Gondrexon, S. Le Person, and A. Bontemps, Improvement of heat transfer by means of ultrasound: application to a double-tube heat exchanger. Ultrason Sonochem, 19 (2012) 1194–1200.
[42] M. Setareh, M. Saffar-Avval, and A. Abdullah, Experimental and numerical study on heat transfer enhancement using ultrasonic vibration in a double-pipe heat exchanger, Applied Thermal Engineering. 159 (2019) 113867.
[43] D. Zhang, E. Jiang, J. Zhou, C. Shen, Z. He, and C. Xiao, Investigation on enhanced mechanism of heat transfer assisted by ultrasonic vibration, International Communications in Heat and Mass Transfer, 115 (2020) 104523. https://doi.org/10.1016/j.icheatmasstransfer.2020.104523
[44] N.V. Ryzhenkova, Vliyanie gidrofilizatsii funktsionalnykh poverkhnostei na energoeffektivnost teploobmennogo oborudovaniya [The effect of functional surfaces hydrophilization on the energy efficiency of the heat exchange equipment], abstract of thesis.... candidate of technical sciences: 05.14.04, National Research University of MEI, Moscow, Russia, 2015, 131 p.
[45] Y.A. Rudzin, Mikrogeometriya i kontaktnoe vzaimodeistvie poverkhnostei [Microgeometry and contact interaction of surfaces]. Riga, Latvian SSR: Zinatne, 1975.
[46] E.K. Kalinin, G.A Dreitzer, I.Z. Kopp, and A.S. Myakochin, Effektivnye poverkhnosti teploobmena [Effective heat exchange surfaces]. Moscow, Russia: Energoatomizdat, 1998, 408 p.
[47] M. Zupan?i?, M. Može, P. Gregor?i?, and I. Golobi?, Nanosecond laser texturing of uniformly and nonuniformly wettable micro structured metal surfaces for enhanced boiling heat transfer, Applied Surface Science, 399 (2017) 480–490. https://doi.org/10.1016/j.apsusc.2016.12.120
[48] C.M. Kruse, T. Anderson, C. Wilson, C. Zuhlke, D. Alexander, G. Gogos, and S. Ndao, Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces”, International Journal of Heat and Mass Transfer, 82 (2015) 109–116. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.023
[49] M. Zupan?i?, M. Steinbücher, P. Gregor?i?, and I. Golobi?, Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces, Applied Thermal Engineering, 91 (2015) 288–297. https://doi.org/10.1016/j.applthermaleng.2015.08.026
[50] R. Bertossi, N. Caney, J.A. Gruss, and O. Poncelet, Pool boiling enhancement using switchable polymers coating, Applied Thermal Engineering, 77 (2015) 121–126. https://doi.org/10.1016/j.applthermaleng.2014.11.061
[51] J. Xie, Q. She, J. Xu, C. Liang, and W. Li, “Mixed dropwise-filmwise condensation heat transfer on biphilic surface”, International Journal of Heat and Mass Transfer, Vol. 150, 119273, 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119273
[52] K.-S. Yang, K.-H. Lin, C.-W. Tu, Y.-Z. He, and C.-C. Wang, Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces, International Journal of Heat and Mass Transfer, 115 (2017) 1032–1041. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.112
[53] Y. Shang, Y. Hou, M. Yu, and S. Yao, Modeling and optimization of condensation heat transfer at biphilic interface, International Journal of Heat and Mass Transfer, 122 (2018) 117–127. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.108
[54] A.V. Ryzhenkov, M.R. Dasaev, S.V. Grigoriev, A.V. Kurshakov, O.V. Ryzhenkov, and M.V. Lukin, Hydrophobic brass surfaces created by means of multi-scale relief, International Journal of Mechanical Engineering and Technology, 9(12) (2018) 58–70.
[55] A.V. Ryzhenkov, M.R. Dasaev, A.V. Kurshakov, O.V. Ryzhenkov, S.V. Grigoriev, and M.V. Lukin, Production of Superhydrophobous Surfaces Using Laser Texturing, International Journal of Mechanical Engineering and Technology, 8(11) (2017) 746–755.

Keywords
intensification, heat energy, uninterrupted supply.