Development of an Electronic Circuit for Active Amplification of EMG Signals Using Dry Electrodes

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2020 by IJETT Journal
Volume-68 Issue-9
Year of Publication : 2020
Authors : Ivan V. Krechetov, Arkady A. Skvortsov, Ivan A. Poselsky
DOI :  10.14445/22315381/IJETT-V68I9P213

Citation 

MLA Style: Ivan V. Krechetov, Arkady A. Skvortsov, Ivan A. Poselsky  "Development of an Electronic Circuit for Active Amplification of EMG Signals Using Dry Electrodes" International Journal of Engineering Trends and Technology 68.9(2020):78-83. 

APA Style:Ivan V. Krechetov, Arkady A. Skvortsov, Ivan A. Poselsky. Development of an Electronic Circuit for Active Amplification of EMG Signals Using Dry Electrodes  International Journal of Engineering Trends and Technology, 68(9),78-83.

Abstract
This manuscript describes the development of a circuit for amplifying surface EMG with a high input impedance, designed to control bionic limb prostheses. A peculiarity of using bionic prostheses to control upper and lower limbs is the presence of a high impedance of contact with the skin, while the equality of resistances in both signal lines is not guaranteed, which is due to dryness of the skin. Patients need to be comfortable with bionic prostheses on a daily basis and eliminate the need for special treatment of the stump. The authors present a developed circuit with additional buffering of input signals, the right leg driver circuit, a band-stop filter, and a band pass filter stagger. A software does the control of amplification at the circuit by using a digital potentiometer in the feedback of the output amplifier. The signal is digitized directly on the amplifier board to reduce the effect of noise on analog lines. The authors achieved a noise value of 20 ?V (peak-to-peak) at direct skin contact.

Reference

[1] A. Hiraiwa, N. Uchida, N. Sonehara, K. Shimohara. “EMG pattern recognition by neural networks for prosthetic fingers control-Cyber finger”. Proc. Int`l. Symp. Measurement and control in Robotics, pp. 535-542, 1992.
[2] M. Zardoshti-Kermani, B.C. Wheeler, K. Badie, R.M. Hashemi. “EMG feature evaluation for movement control of upper extremity prostheses”. IEEE Transactions on Rehabilitation Engineering, vol. 3, n. 4, pp. 324-333, 1995.
[3] H.P. Huang, C.Y. Chen. “Development of a myoelectric discrimination system for a multi-degree prosthetic hand”. Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), vol. 3, pp. 2392-2397, 1999.
[4] R. Boostani, M.H. Moradi. “Evaluation of the forearm EMG signal features for the control of a prosthetic hand”. Physiological measurement, vol. 24, n. 2, pp. 309, 2003.
[5] M. Zardoshti-Kermani, B.C. Wheeler, K. Badie, R.M. Hashemi. “EMG feature evaluation for movement control of upper extremity prostheses”. IEEE Transactions on Rehabilitation Engineering, vol. 3, n. 4, pp. 324-333, 1995.
[6] J.D. Bronzino. “Medical devices and systems”. CRC Press, 2006.
[7] G.L. Soderberg, T.M. Cook. “Electromyography in biomechanics”. Physical Therapy, vol. 64, n. 12, pp. 1813- 1820, 1984.
[8] G. Li, Y. Li, L. Yu, Y. Geng. “Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses”. Annals of biomedical engineering, vol. 39, n. 6, pp. 1779-1787, 2011.
[9] V. Florimond. “Basics of surface electromyography applied to physical rehabilitation and biomechanics. Montreal”, Canada: Thought Technology Ltd., 2009. [10] B.B. Winter, J.G. Webster. “Driven-right-leg circuit design”. IEEE Transactions on Biomedical Engineering, vol. 1, pp. 62-66, 1983. [11] E.M. Spinelli, N.H. Martinez, M.A. Mayosky. “A transconductance driven-right-leg circuit”. IEEE transactions on biomedical engineering, vol. 46, n. 12, pp. 1466-1470, 1999.
[12] E.M. Spinelli, R. Pallàs-Areny, M.A. Mayosky. “ACcoupled front-end for biopotential measurements”. IEEE transactions on biomedical engineering, vol. 50, n. 3, pp. 391-395, 2003.
[13] J.H. Nagel. “Biopotential amplifiers. Heart Rate Variability’. Boca Raton: CRC Press LLC., 2000
[14] “Improving Common-Mode Rejection Using the Right-Leg Drive Amplifier, Texas Instruments Application Report”, SBAA188–July 2011. [Online]. Available: https://e2e.ti.com/cfs-file/__key/communityserverdiscussions- components-files/73/Improving- Common_2D00_Mode-Rejection-Using-the- Right_2D00_Leg-Driver-Amplifier.pdf
[15] M. Guermandi, E.F. Scarselli, R. Guerrieri. “A driving right leg circuit (DgRL) for improved common mode rejection in bio-potential acquisition systems”. IEEE transactions on biomedical circuits and systems, vol. 10, n. 2, pp. 507-517, 2015.
[16] M.R. Neuman, J.G. Webster. “Biopotential amplifiers. Medical instrumentation: application and design”, vol. 6, pp. 256-258, 1998.
[17] M.W. Hann. “TI Precision Designs: Verified Design Ultra Low Power, 18 bit Precision ECG Data Acquisition System.” [Online]. Available: http://www.ti.com/lit/pdf/slau516
[18] Y.M. Chi, T.P. Jung, G. Cauwenberghs. “Dry-contact and noncontact biopotential electrodes: Methodological review”. IEEE reviews in biomedical engineering, vol. 3, pp. 106- 119, 2010.
[19] J.D. Bourland, L.A. Geddes, G. Sewell, R. Baker, J. Kruer. “Active cables for use with dry electrodes for electrocardiography”. Journal of Electrocardiology, vol. 11, n. 1, pp. 71-74, 1978.
[20] N. Arango. “EEG/EMG Using Dry Electrodes.” [Online]. Available: http://web.mit.edu/6.101/www/s2015/projects/narango_Proj ect_Final_Report.pdf
[21] D. Bansal. “Design of 50 Hz notch filter circuits for better detection of online ECG”. International Journal of Biomedical Engineering and Technology, vol. 13, n. 1, pp. 30-48, 2013.
[22] E. Criswell. “Cram`s introduction to surface electromyography”. Jones & Bartlett Publishers, 2010.
[23] 13E200 MyoBock electrode. [Online]. Available: https://professionals.ottobock.com.au/Products/Prosthetics/ Prosthetics-Upper-Limb/Adult-Terminal-Devices/13E200- MyoBock-electrode/p/13E200
[24] MCP414X/416X/424X/426X 7/8-Bit Single/Dual SPI Digital POT with Non-Volatile Memory. Datasheet. [Online]. Available: http://ww1.microchip.com/downloads/en/devicedoc/22059b .pdf
[25] ADS8866 16-bit, 100-kSPS, serial interface, micropower, miniature, single-ended input, SAR analog-to-digital converter. [Online]. Available: https://www.ti.com/lit/ds/symlink/ads8866.pdf
[26] STM32F413RG. Arm®-Cortex®-M4 32b MCU+FPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs. [Online]. Available: https://www.st.com/resource/en/datasheet/stm32f413rg.pdf

Keywords
electromyography, biosignal amplifier, active dry electrode, bionic prosthesis control system