Underwater Sediment Layers analysis using Convnet with Adam Optimiser and mapping its reflection coefficient parameter with the Particle Size

Underwater Sediment Layers analysis using Convnet with Adam Optimiser and mapping its reflection coefficient parameter with the Particle Size

  IJETT-book-cover           
  
© 2021 by IJETT Journal
Volume-69 Issue-12
Year of Publication : 2021
Authors : Radhika Surampudi, Kumudham.R, Ebenezer Abishek.B, Rajendran.V
DOI :  10.14445/22315381/IJETT-V69I12P210

How to Cite?

Radhika Surampudi, Kumudham.R, Ebenezer Abishek.B, Rajendran.V, "Underwater Sediment Layers analysis using Convnet with Adam Optimiser and mapping its reflection coefficient parameter with the Particle Size," International Journal of Engineering Trends and Technology, vol. 69, no. 12, pp. 80-87, 2021. Crossref, https://doi.org/10.14445/22315381/IJETT-V69I12P210

Abstract
Underwater sediment analysis is vital for cable and offshore installation, jet trenching, etc. Multiple pieces of research are performed for classifying the sea bed surface. Only fewer people focused on the classification of the sea bed sediment layers. Sub Bottom Profiler (SBP) equipment is utilized for imaging the seabed. SBP pings signal of low frequency and the signal is reflected back by the surface, while a portion of the signal penetrates through the surface and is reflected by the various layers of the sea bed. The sediment layers are classified using Convent with Adam Optimiser. The reflected signal contains information about the reflected object. The reflected coefficient is computed from classified sediment layers and is mapped to the density and particle size.

Keywords
Adam Optimiser, Classification, CNN, Convnet, Reflection, Sediment layer, Sub-bottom profiler.

Reference
[1] Caufield, D.d., Yim, Yung-Chang, Prediction of shallow sub-bottom sediment acoustic impedance while estimating absorption and other losses J.Canad. Soc. Explor. Geophys (1983).
[2] Hamilton, E.L. Bachman, R.T, Berger, W.H.Johnson, T.C.Mayer, Acoustic and related properties of calcareous deep-sea sediments, LA: Petrol 52, 733, 753(1982).
[3] Chivers R.C, Emerson N, Burns D, New acoustic processing for underway surveying Hydrogen. J., 42 (1990).
[4] Eleftherakis Dimitrios, AliReza, Amiri-Simkooei, Mirjam Snellen, Simons, Dick G., Improving riverbed sediment classification using backscatter and depth residual features of multi-beam echo-sounder systems, Acoust. Soc. Am., (2012).
[5] Amiri-Simkooei, Mirjam Snellen, Riverbed sediment classification using multi-beam echo-sounder backscatter data, J. Acoust. Soc. Am., 126(4) (2009) 1724–1738.
[6] Guillon Laurent, Lurton Xavier, Backscattering from buried sediment layers: The equivalent input backscattering strength mode, J. Acoust. Soc. Am., 109 (1) (2001).
[7] Hughes Clarke, J.E., Danforth, B.W., Valentine, P., Areal seabed classification using backscatter angular response at 95 kHz. Lerici, Italy: High-Frequency Acoustics in Shallow Water, NATO SACLANT Undersea Research Centre, (1997).
[8] A. Or?owski, Application of multiple echoes energy measurement for evaluation of bottom type, Oceanologia(1984).
[9] Preston, J.M., Christney, A.C., Beran, L.S., Collins, W.T., Statistical seabed segmentation e from images and echoes to objective clustering(2004).
[10] Sternlicht Daniel. D., De Moustier Christian. P, Time-dependent seafloor acoustic backscatter (10–100 kHz), Acoust. Soc. Am. (2003).
[11] D. R. Jackson, D. P. Winebrenner, and A. Ishimaru, Application of the composite roughness model to high-frequency bottom backscattering, J. Acoust. Soc. Am. 79(5) (1986) 1410–1422.
[12] Theuillon. G, Stéphan. Y., Pacault. A High-resolution geoacoustic characterization of the seafloor using a subbottom profiler, IEEE J. Ocean (2008).
[13] http://www.soilmanagementindia.com/soil/soil-classification/basis-of-soil-classification/13460
[14] Kumudham, R., Rajendran, V., Side Scan Sonar Image Data Mapping with Geographic Reference System, , Special Issue-21, Special Issue on Advance Engineering and Science 7(2.21) (2018) 410-413.
[15] Kumudham, R., Rajendran, V., Side-scan sonar image denoising and classification. Journal of Advanced Research in Dynamical & Control Systems, JARDCS, 13 (2017) 55-65.
[16] Marcelo Zeri , Regina Célia dos Santos Alvalá, Rogério Carneiro, Jose A Marengo, Tools for Communicating Agricultural Drought over the Brazilian Semiarid Using the Soil Moisture Index, (2018), Water 10(10):1421, DOI: 10.3390/w10101421.
[17] Berthold, T., Leichter, A., Rosenhahn, B., Berkhahn, V., & Valerius, J., Seabed sediment classification of side-scan sonar data using convolutional neural networks. (2017) IEEE Symposium Series on Computational Intelligence (SSCI). doi:10.1109/ssci.2017.8285220.
[18] Xiangjin Ran, Linfu Xue, Yanyan Zhang, Zeyu Liu, Xuejia Sang and Jinxin He, Rock Classification from Field Image Patches Analyzed Using a Deep Convolutional Neural Network, Mathematics, 7 (2019) 755. doi:10.3390/math7080755.
[19] Pierre Guy Atangana Njock, Qian Zheng, Ning Zang, Y-Shuang Xu, Perspective review in subsea jet trenching technology and modeling, Journal of marine science and engineering, J. Mar. Sci. Eng. 8 (2020) 460; doi:10.3390/jmse8060460.
[20] Daniel Ierodiaconou, Alexandre C. G. Schimel, David Kennedy, Jacquomo Monk, Grace Gaylard, Mary Young, Markus Diesing, Alex Rattray, Combining pixel and object-based image analysis of ultra-high resolution multibeam bathymetry and backscatter for habitat mapping in shallow marine waters Marine Geophysical Research, (2018), https://doi.org/10.1007/s11001-017-9338-z.
[21] Berthold, T., Leichter, A., Rosenhahn, B., Berkhahn, V., & Valerius, J., Seabed sediment classification of side-scan sonar data using convolutional neural networks. (2017) IEEE Symposium Series on Computational Intelligence (SSCI). doi:10.1109/ssci.2017.8285220
[22] Chen, J., & Zhang, S., Segmentation of Sonar Image on Seafloor Sediments Based on Multiclass SVM. Journal of Coastal Research, (2018) 597-602. Retrieved February 27, 2021, from https://www.jstor.org/stable/26543022
[23] Dell’Aversana, Paolo., Machine Learning for rock classification based on mineralogical and chemical composition. A tutorial (2018).
[24] E.E. Baraboshkin, L.S. Ismailova, D.M. Orlov, E.A. Zhukovskaya, G.A. Kalmykov, O.V. Khotylev, E.Yu. Baraboshkin, D.A. Koroteev Deep Convolutions for In-Depth Automated Rock Typing, arXiv:1909.10227 v 3 [cs.CV] 2 7 ( 2019).
[25] Frederick, C., Villar, S., & Michalopoulou, Z.-H., Seabed classification using physics-based modeling and machine learning, The Journal of the Acoustical Society of America, 148(2) (2020) 859–872. doi:10.1121/10.0001728.