Effects of Process Variables on Biomethane Productivity in Anaerobic Digestion of Market waste co-fermented with Food Waste

Effects of Process Variables on Biomethane Productivity in Anaerobic Digestion of Market waste co-fermented with Food Waste

  IJETT-book-cover           
  
© 2021 by IJETT Journal
Volume-69 Issue-5
Year of Publication : 2021
Authors : Narayana Swamy G, Nageswara Rao T, Venkatesh. G. S, Syed Sameer
DOI :  10.14445/22315381/IJETT-V69I5P216

How to Cite?

Narayana Swamy G, Nageswara Rao T, Venkatesh. G. S, Syed Sameer, "Effects of Process Variables on Biomethane Productivity in Anaerobic Digestion of Market waste co-fermented with Food Waste," International Journal of Engineering Trends and Technology, vol. 69, no. 5, pp. 109-118, 2021. Crossref, https://doi.org/10.14445/22315381/IJETT-V69I5P216

Abstract
The Factors which have a high impact on the production of biomethane from dry, continuous anaerobic digestion of the organic fractions of the market waste containing fruit and vegetable mixture (FVM) co-digested with food waste (FW) are examined. The effects of functional variables such as organic loading rate, hydraulic retention time, C/N ratio, temperature, alkalinity and pH, volatile solid reduction on biomethane productivity were studied in an anaerobic digester with a single stage of plug flow type. In the AD of organic fractions market wastes, substrate-induced volatilities of fruit and vegetable waste (FVW) lead to poor production of biogas. Hence FVW mixture ratio is fixed at 2.2:2.8 for optimum yield and then it is co-fermented with food waste and previous digestate with a 2:1:1 inoculum ratio and results have been investigated. And the AD is operated for a fixed Hydraulic Retention Time (HRT) of 25 days and the optimal organic loading rate ranged between 2.5 to 12 kg VS/m3.d with the moisture content of 76.4 to 82.25 %, Total solid (TS) concentrations of 17.75 to 23.6 %. It is noted, from the results, that the best performance of AD, achieved at OLR 7.5 kg VS/m3.day with 67 % reduction in Volatile Solid and 0.576 m3 of biogas produced per kg VSremoved in loading L3.

Keywords
Anaerobic Digestion, Market waste, organic loading rate, Total solid pH, Volatile Solid reduction, thermophilic conditions.

Reference
[1] D. Wang et al., Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost., Bioresour. Technol., 227(2017) 286–296,doi: 10.1016/j.biortech.2016.12.060.
[2] R. Parajuli, P. A. Østergaard, T. Dalgaard, and G. R. Pokharel., Energy consumption projection of Nepal: An econometric approach., Renew. Energy, 63(2014) 432–444,doi: 10.1016/j.renene.2013.09.048.
[3] F. Shen et al.,Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase., Bioresour. Technol., 144(2013) 80–85, doi: 10.1016/j.biortech.2013.06.099.
[4] S. O. Masebinu, E. T. Akinlabi, E. Muzenda, A. O. Aboyade, and C. Mbohwa., Experimental and feasibility assessment of biogas production by anaerobic digestion of fruit and vegetable waste from Joburg Market., Waste Manag., 75(2018) 236–250, doi: 10.1016/j.wasman.2018.02.011.
[5] A. Khalid, M. Arshad, M. Anjum, T. Mahmood, and L. Dawson., The anaerobic digestion of solid organic waste., Waste Manag., 31(8)(2011) 1737–1744, doi: 10.1016/j.wasman.2011.03.021.
[6] S. Pavi, L. E. Kramer, L. P. Gomes, and L. A. S. Miranda., Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste., Bioresour. Technol., (2017) 228, 362–367 doi: 10.1016/j.biortech.2017.01.003.
[7] I. M. Nasir, T. I. M. Ghazi, and R. Omar., Production of biogas from solid organic wastes through anaerobic digestion: A review., Appl. Microbiol. Biotechnol., 95(2)(2012) 321–329, doi: 10.1007/s00253-012-4152-7.
[8] F. Raposo et al., Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study., J. Chem. Technol. Biotechnol., 86(8)(2011) 1088–1098, doi: 10.1002/jctb.2622.
[9] E. A. Scano, C. Asquer, A. Pistis, L. Ortu, V. Demontis, and D. Cocco., Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant., Energy Convers. Manag., 77(2014) 22–30, doi: 10.1016/j.enconman.2013.09.004.
[10] L. Li, X. Peng, X. Wang, and D. Wu., Anaerobic digestion of food waste: A review focusing on process stability., Bioresource Technology, 248. (2018), doi: 10.1016/j.biortech.2017.07.012.
[11] Y. Wu et al., A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment, Bioresour. Technol., 211(2016) 16–23 doi: 10.1016/j.biortech.2016.03.050.
[12] L. Wang et al., Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies., Waste Manag., 34(12)(2014) 2627–2633,doi: 10.1016/j.wasman.2014.08.005.
[13] G. Alkanok, B. Demirel, and T. T. Onay., Determination of biogas generation potential as a renewable energy source from supermarket wastes., Waste Manag., 34(1)(2014) 134–140,doi: 10.1016/j.wasman.2013.09.015.
[14] H. Bouallagui, R. Ben Cheikh, L. Marouani, and M. Hamdi., Mesophilic biogas production from fruit and vegetable waste in a tubular digester., Bioresour. Technol., 86(1)(2003) 85–89, doi: 10.1016/S0960-8524(02)00097-4.
[15] H. Bouallagui, Y. Touhami, R. Ben Cheikh, and M. Hamdi., Bioreactor performance in anaerobic digestion of fruit and vegetable wastes, Process Biochem., 40(2005) 3–4, 989–995,doi: 10.1016/j.procbio.2004.03.007.
[16] X. Fonoll, S. Astals, J. Dosta, and J. Mata-Alvarez., Anaerobic co-digestion of sewage sludge and fruit wastes: Evaluation of the transitory states when the co-substrate is changed., Chem. Eng. J., 262(2015) 1268–1274, doi: 10.1016/j.cej.2014.10.045.
[17] T. P. T. Pham, R. Kaushik, G. K. Parshetti, R. Mahmood, and R. Balasubramanian, Food waste-to-energy conversion technologies: Current status and future directions., Waste Manag., 38(1)(2015) 399–408, doi: 10.1016/j.wasman.2014.12.004.
[18] R. Ganesh, M. Torrijos, P. Sousbie, J. P. Steyer, A. Lugardon, and J. P. Delgenes., Anaerobic co-digestion of solid waste: Effect of increasing organic loading rates and characterization of the solubilised organic matter, Bioresour. Technol., 130(2013) 559–569,doi: 10.1016/j.biortech.2012.12.119.
[19] M. Wang et al., A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure., Bioresour. Technol., 164(2014) 309–314, doi: 10.1016/j.biortech.2014.04.077.
[20] X. Wang et al., Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process, Bioresour. Technol., 249(2018) 290–297, doi: 10.1016/j.biortech.2017.10.038.
[21] V. Cabbai, M. Ballico, E. Aneggi, and D. Goi., BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge., Waste Manag., 33(7)(2013) 1626–1632, doi: 10.1016/j.wasman.2013.03.020.
[22] S. Kumar, J. K. Bhattacharyya, A. N. Vaidya, T. Chakrabarti, S. Devotta, and A. B. Akolkar., Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities, and class II towns in India: An insight., Waste Manag., 29(2)(2009) 883–895, doi: 10.1016/j.wasman.2008.04.011.
[23] M. A. Dareioti, A. I. Vavouraki, and M. Kornaros., Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: A lab-scale evaluation using batch tests, Bioresour. Technol., 162(2014) 218–227, doi: 10.1016/j.biortech.2014.03.149.
[24] D. E. Algapani et al., Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge, Bioresour. Technol., 244(2017) 996–1005,doi: 10.1016/j.biortech.2017.08.087.
[25] Q. Zhang, J. Hu, and D. J. Lee., Biogas from anaerobic digestion processes: Research updates., Renew. Energy, 98(2016) 108–119 doi: 10.1016/j.renene.2016.02.029.
[26] A. N. Matheri, V. L. Sethunya, M. Belaid, and E. Muzenda., Analysis of the biogas productivity from dry anaerobic digestion of organic fraction of municipal solid waste., Renew. Sustain. Energy Rev., 81(2017)(2018) 2328–2334, doi: 10.1016/j.rser.2017.06.041.
[27] A. Babaee and J. Shayegan., Effect of Organic Loading Rates (OLR) on Production of Methane from Anaerobic Digestion of Vegetables Waste, Proc. World Renew. Energy Congr. – Sweden, 8–13 May, 2011, Linköping, Sweden, 57(2011) 411–417, doi: 10.3384/ecp11057411.
[28] D. S. V, S. V Srinivasan, R. Kayalvizhi, and R. Bhuvaneswari., Studies on Conversion of Carbohydrate content in the Mixture of Vegetable Wastes into Biogas in a Single Stage Anaerobic Reactor., 2(6)(2012) 66–71.
[29] P. H. L. Nguyen, P. Kuruparan, and C. Visvanathan., Anaerobic digestion of municipal solid waste as a treatment prior to landfill., Bioresour. Technol., 98 (2)(2007) 380–387, doi: 10.1016/j.biortech.2005.12.018.
[30] J. Biswas, R. Chowdhury, and P. Bhattacharya, Mathematical modeling for the prediction of biogas generation characteristics of an anaerobic digester based on food/vegetable residues., Biomass and Bioenergy, 31(1)(2007) 80–86, doi: 10.1016/j.biombioe.2006.06.013.
[31] I. M. Nasir, T. I. Mohd Ghazi, and R. Omar., Anaerobic digestion technology in livestock manure treatment for biogas production: A review., Eng. Life Sci., 12(3)(2012) 258–269, doi: 10.1002/elsc.201100150.
[32] R. Kothari, A. K. Pandey, S. Kumar, V. V. Tyagi, and S. K. Tyagi., Different aspects of dry anaerobic digestion for bio-energy: An overview, Renew. Sustain. Energy Rev., 39(2014) 174–195, doi: 10.1016/j.rser.2014.07.011.
[33] Y. Jo, J. Kim, K. Hwang, and C. Lee., A comparative study of single- and two-phase anaerobic digestion of food waste under uncontrolled pH conditions., Waste Manag., 78(2018) 509–520, doi: 10.1016/j.wasman.2018.06.017.
[34] G. Narayana Swamy, T. Nageswara Rao, and G. S. Venkatesh., Biomethane production by dry and continuous anaerobic digestion of food waste in a pilot-scale plug-flow digester maintained at thermophilic conditions., IJETT Int. J. Eng. Trends Technol., 68(12)(2020) 10–15 doi: 10.14445/22315381/IJETT-V68I12P202.
[35] S. Kataki, S. Hazarika, and D. C. Baruah., Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient., Waste Manag., 59(2017) 102–117, doi: 10.1016/j.wasman.2016.10.018.
[36] P. Sankar Ganesh, R. Sanjeevi, S. Gajalakshmi, E. V. Ramasamy, and S. A. Abbasi., Recovery of methane-rich gas from solid-feed anaerobic digestion of ipomoea (Ipomoea carnea), Bioresour. Technol., vol. 99(4)(2008) 812–818 doi: 10.1016/j.biortech.2007.01.024.
[37] H. V Deshmukh and G. R. Bartakke., Co-utilization of common weed Ipomoea carnea along with distillery waste for biogas production, 2(2012) 229–240.
[38] D. Patowary, H. West, M. Clarke, and D. C. Baruah., Biogas Production from Surplus Plant Biomass Feedstock: Some Highlights of Indo-UK R&D Initiative., Procedia Environ. Sci., 35(2016) 785–794, 2016, doi: 10.1016/j.proenv.2016.07.094.
[39] D. D. Nguyen et al., Dry semi-continuous anaerobic digestion of food waste in the mesophilic and thermophilic modes: New aspects of sustainable management and energy recovery in South Korea, Energy Convers. Manag., 135(2017) 445–452, doi: 10.1016/j.enconman.2016.12.030.
[40] J. Zhang, M. Chen, Q. Sui, R. Wang, J. Tong, and Y. Wei., Fate of antibiotic resistance genes and its drivers during anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment., Bioresour. Technol., 217(2016) 28–36,doi: 10.1016/j.biortech.2016.02.140.