Oil to Glycerol Ratio in Enzymatic and Chemical Glycerolysis for the Production of Mono- and Diacylglycerol

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2021 by IJETT Journal
Volume-69 Issue-8
Year of Publication : 2021
Authors : Edy Subroto, Rossi Indiarto, Endah Wulandari, Hafizhoh Nur Azimah
  10.14445/22315381/IJETT-V69I8P215

MLA 

MLA Style: Edy Subroto, Rossi Indiarto, Endah Wulandari, Hafizhoh Nur Azimah  "Oil to Glycerol Ratio in Enzymatic and Chemical Glycerolysis for the Production of Mono- and Diacylglycerol" International Journal of Engineering Trends and Technology 69.8(2021):117-125. 

APA Style: Edy Subroto, Rossi Indiarto, Endah Wulandari, Hafizhoh Nur Azimah. Oil to Glycerol Ratio in Enzymatic and Chemical Glycerolysis for the Production of Mono- and Diacylglycerol International Journal of Engineering Trends and Technology, 69(8),117-125.

Abstract
Lipid modification through the conversion of triacylglycerol (TAG) to partial acylglycerol, namely monoacylglycerol (MAG) and diacylglycerol (DAG), has developed rapidly to obtain structured lipids (SLs) that can be used in various pharmaceutical, food, and cosmetic industries. Glycerolysis of TAG enables high MAG and DAG recovery by optimizing the factors influencing the reaction. This article provides an overview of various studies on the factors that affect glycerolysis, especially the ratio of fat/oil to glycerol used. The oil to glycerol ratio plays a role in determining the progress of TAG conversion and the composition of reaction products. Excess glycerol in the reaction system encourages further glycerolysis reactions due to its reaction with the formed DAG to produce MAG. On the other hand, the reaction leads to the formation of more DAG if the amount of glycerol is limited. The use of an oil to glycerol molar ratio close to 1:5 is recommended to support high MAG synthesis, while a 2:1 ratio is recommended to support more efficient DAG synthesis.

Reference
[1] E. Subroto, Monoacylglycerols and diacylglycerols for fat-based food products: a review, Food Res., 4(4) (2020) 932–943, doi: 10.26656/fr.2017.4(4).398.
[2] H. T. Osborn and C. C. Akoh, Structured lipids-novel fats with medical, nutraceutical, and food applications, Compr. Rev. Food Sci. Food Saf., 1(3) (2002) 110–120, doi: 10.1111/j.1541- 4337.2002.tb00010.x.
[3] Y. Zheng, X. Chen, and Y. Shen, Commodity chemicals derived from glycerol, an important biorefinery feedstock, Chem. Rev., 108(12) (2008), doi: 10.1021/cr068216s.
[4] A. Corma, S. B. A. Hamid, S. Iborra, and A. Velty, Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides, J. Catal., 234(2) (2005) 340–347, doi: 10.1016/j.jcat.2005.06.023.
[5] P. B. L. Fregolente, L. V. Fregolente, G. M. F. Pinto, B. C. Batistella, M. R. Wolf-Maciel, and R. M. I. Filho, Monoglycerides and diglycerides synthesis in a solvent-free system by lipase-catalyzed glycerolysis, Appl. Biochem. Biotechnol., 146(1–3) (2008) 165–172, doi: 10.1007/s12010-008-8133-3.
[6] Z. Zhang, X. Ma, H. Huang, G. Li, and Y. Wang, Enzymatic Production of Highly Unsaturated Monoacyglycerols and Diacylglycerols and Their Emulsifying Effects on the Storage Stability of a Palm Oil Based Shortening System, J. Am. Oil Chem. Soc., 94(9) (2017) 1175–1188, doi: 10.1007/s11746-017-3023-x.
[7] E. Subroto and R. Indiarto, Bioactive monolaurin as an antimicrobial and its potential to improve the immune system and against COVID- 19: a review, Food Res., 4(6) (2020) 2355–2365, doi: 10.26656/fr.2017.4(6).324
[8] L. Z. Cheong, H. Zhang, Y. Xu, and X. Xu, Physical characterization of partial lard acylglycerols and their effects on melting and crystallization properties of blends with rapeseed oil, J. Agric. Food Chem., 57(11) (2009) 5020–5027, doi: 10.1021/jf900665h.
[9] N. Zhong, L. Li, X. Xu, L. Z. Cheong, X. Zhao, and B. Li, Production of diacylglycerols through low-temperature chemical glycerolysis, Food Chem., 122(1) (2010) 228–232, doi: 10.1016/j.foodchem.2010.02.067.
[10] C. A. Ferretti, M. L. Spotti, and J. I. Di Cosimo, Diglyceride-rich oils from glycerolysis of edible vegetable oils, Catal. Today, 302(November) (2016) 233–241, doi: 10.1016/j.cattod.2017.04.008.
[11] N. El, L. Dandik, and H. A. Aksoy, Solvent-free glycerolysis catalyzed by acetone powder of Nigella sativa seed lipase, J. Am. Oil Chem. Soc., 75(9) (1998) 1207–1211, doi: 10.1007/s11746-998- 0136-2.
[12] K. C. Maki, M. H Davidson, R. Tsushima, N. Matsuo, I. Tokimitsu, D. M. Umporowicz, M. R. Dicklin, G. S. Foster, K. A. Ingram, B. D. Anderson, S. D. Frost, M. Bell, Consumption of diacylglycerol oil as part of a reduced-energy diet enhances the loss of body weight and fat in comparison with consumption of a triacylglycerol control oil, Am. J. Clin. Nutr., 76(6) (2002) 1230–1236, doi: 10.1093/ajcn/76.6.1230.
[13] T. Nagao, H. Watanabe, N. Goto, K. Onizawa, H. Taguchi, N. Matsuo, T. Yasukawa, R. Tsushima, H. Shimasaki, H. Itakura, Dietary Diacylglycerol Suppresses Accumulation of Body Fat Compared to Triacylglycerol in Men in a Double-Blind Controlled Trial, J. Nutr., 130(4) (2000) 792–797, doi: 10.1093/jn/130.4.792.
[14] H.-G. Byun, T.-K. Eom, W.-K. Jung, and S.-K. Kim, Lipase catalyzed production of monoacylglycerols by the esterification of fish oil fatty acids with glycerol, Biotechnol. Bioprocess Eng., 12(5) (2007) 491– 496, doi: 10.1007/BF02931345.
[15] L. Z. Cheong, C-P.Tan, K. Long, M. Suri, A. Yusoff, N. Arifin, S-K. Lo, O-M. Lai, Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: Optimization using response surface methodology, Food Chem., 105(4) (2007) 1614–1622, doi: 10.1016/j.foodchem.2007.03.070.
[16] B. P. Devi, H. Zhang, M. Damstrup, Zheng Guo, Long Zhang, Bena- Marie Lue, Xuebing Xu, Enzymatic synthesis of designer lipids, OCL - Ol. Corps Gras Lipides, 15(3) (2008) 189–195, doi: 10.1684/ocl.2008.0194.
[17] M. K. Naik, S. N. Naik, and S. Mohanty, Enzymatic glycerolysis for conversion of sunflower oil to food-based emulsifiers, Catal. Today, 237 (2014) 145–149, doi: 10.1016/j.cattod.2013.11.005.
[18] N. Zhong, L. Li, X. Xu, L. Z. Cheong, Z. Xu, and B. Li, High Yield of Monoacylglycerols Production Through Low-temperature Chemical and Enzymatic Glycerolysis, Eur. J. Lipid Sci. Technol., 115(6) (2013) 684–690, doi: 10.1002/ejlt.201200377.
[19] C. B. Hobuss, F. A. Da Silva, M. A. Z. Dos Santos, C. M. P. De Pereira, G. A. S. Schulz, and D. Bianchini, Synthesis and characterization of monoacylglycerols through glycerolysis of ethyl esters derived from linseed oil by green processes, RSC Adv., 10(4) (2020) 2327–2336, doi: 10.1039/c9ra07834g.
[20] J. S. S. Pinto and F. M. Lanças, Hydrolysis of corn oil using subcritical water, J. Braz. Chem. Soc., 17(1) (2006) 85–89, doi: 10.1590/S0103-50532006000100013.
[21] N. Ghattas, F. Abidi, S. Galai, M. N. Marzouki, and A. Ben Salah, Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase, Int. J. Biol. Macromol., 68 (2014) 1–6, doi: 10.1016/j.ijbiomac.2014.04.017.
[22] E. Jurado, F. Camacho, G. Luzón, M. Fernández-Serrano, and M. García-Román, Kinetics of the enzymatic hydrolysis of triglycerides in o/w emulsions, Biochem. Eng. J., 40(3) (2008) 473–484, doi: 10.1016/j.bej.2008.02.002.
[23] E. T. Phuah, T. K. Tang, Y. Y. Lee, T. S. Y. Choong, C. P. Tan, and O. M. Lai, Review on the Current State of Diacylglycerol Production Using Enzymatic Approach, Food Bioprocess Technol., 8(6) (2015) 1169–1186, doi: 10.1007/s11947-015-1505-0.
[24] Y. S. Pramana and S. Mulyani, Proses Gliserolisis CPO Menjadi Mono dan Diacyl Gliserol dengan Pelarut Tert-Butanol dan Katalis MgO, Pros. Semin. Nas. Rekayasa Kim. dan Proses, 10(2) (2009) 1– 8.
[25] Z. Zhang, Y. Wang, X. Ma, E. Wang, M. Liu, and R. Yan, Characterisation and oxidation stability of monoacylglycerols from partially hydrogenated corn oil, Food Chem., 173 (2014) 70–79, doi: 10.1016/j.foodchem.2014.09.155.
[26] E. Subroto, M. F. Wisamputri, Supriyanto, T. Utami, and C. Hidayat, Enzymatic and chemical synthesis of high mono- and diacylglycerol from palm stearin and olein blend at a different type of reactor stirrers, J. Saudi Soc. Agric. Sci., 19(1) (2020) 31–36, doi: 10.1016/j.jssas.2018.05.003.
[27] D. Kahveci, N. Zhong, and X. Xu, Ionic Liquids in Acylglycerol Synthesis and Modification. AOCS Press, 2016.
[28] Satriana, N. Arpi, Y. M. Lubis, Adisalamun, M. D. Supardan, and W. A. W. Mustapha, Diacylglycerol-enriched oil production using chemical glycerolysis, Eur. J. Lipid Sci. Technol., 118(12) (2016) 1880–1890, doi: 10.1002/ejlt.201500489.
[29] N. Zhong, X. Deng, J. Huang, L. Xu, K. Hu, and Y. Gao, Lowtemperature chemical glycerolysis to produce diacylglycerols by the heterogeneous base catalyst, Eur. J. Lipid Sci. Technol., 116(4) (2014) 470–476, doi: https://doi.org/10.1002/ejlt.201300438.
[30] B. Chen, Z. Guo, T. Tan, and X. Xu, Structures of ionic liquids dictate the conversion and selectivity of enzymatic glycerolysis: Theoretical characterization by COSMO-RS, Biotechnol. Bioeng., 99(1) (2008) 18–29, doi: 10.1002/bit.21520.
[31] S.-K. Lo, C.-P. Tan, K. Long, M. S. A. Yusoff, and O.-M. Lai, Diacylglycerol oil—Properties, processes, and products: A review, Food Bioprocess Technol., 1(3) (2008) 223–233, doi: 10.1007/s11947-007-0049-3.
[32] E. Subroto, Supriyanto, T. Utami, and C. Hidayat, Enzymatic glycerolysis–interesterification of palm stearin–olein blend for synthesis structured lipid containing high mono- and diacylglycerol, Food Sci. Biotechnol., 28(2) (2019) 511–517, doi: 10.1007/s10068- 018-0462-6.
[33] A. H. Saberi, B. B. Kee, L. Oi-Ming, and M. S. Miskandar, Physicochemical properties of various palm-based diacylglycerol oils in comparison with their corresponding palm-based oils, Food Chem., 127(3) (2011) 1031–1038, doi: 10.1016/j.foodchem.2011.01.076.
[34] T. Yang, H. Zhang, H. Mu, A. J. Sinclair, and X. Xu, Diacylglycerols from butterfat: Production by glycerolysis and short-path distillation and analysis of physical properties, J. Am. Oil Chem. Soc., 81(10) (2004) 979–987, doi: 10.1007/s11746-004-1010-8.
[35] J. Vereecken, W. Meeussen, I. Foubert, A. Lesaffer, J. Wouters, and K. Dewettinck, Comparing the crystallization and polymorphic behavior of saturated and unsaturated monoglycerides, Food Res. Int., 42(10) (2009) 1415–1425, doi: 10.1016/j.foodres.2009.07.006.
[36] I. NorAini, M. S. Embong, A. Aminah, A. R. Md. Ali, and C. H. Che Maimon, Physical Characteristics of Shortenings Based on Modified Palm Oil, Milkfat and Low Melting Milkfat Fraction, Fat Sci. Technol., 97(7/8) (1995) 253–260.
[37] I. Nor Aini, I. Razali, H. M. D. Noor Lida, M. S. Miskandar, and J. Radzuan, Blending of palm oil and palm oil products with other oils and fats for food application, Oil Palm Bull., 45(November) (2002), 6–15.
[38] U. T. Bornscheuer, Lipase-catalyzed syntheses of monoacylglycerols, Enzyme Microb. Technol., 17(7) (1995) 578–586, doi: 10.1016/0141- 0229(94)00096-A.
[39] W. Kaewthong and A. H-Kittikun, Glycerolysis of palm olein by immobilized lipase PS in organic solvents, Enzyme Microb. Technol., 35(2–3) (2004) 218–222, doi: 10.1016/j.enzmictec.2004.04.011.
[40] R. Pawongrat, X. Xu, and A. H-Kittikun, Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK, Food Chem., 104(1) (2007) 251–258, doi: 10.1016/j.foodchem.2006.11.036.
[41] P. Ferrão, B. Lacarrière, and O. Le Corre, Utilization of Waste Glycerol from Biodiesel Process as a Substrate for Mono-, Di-, and Triacylglycerol Production, Energy Procedia, 138 (2017) 895–900, doi: 10.1016/j.egypro.2017.10.130.
[42] A.P. Arum, C. Hidayat, Supriyanto, Synthesis of Emulsifier from Refined Bleached Deodorized Palm Stearin by Chemical Glycerolysis in Stirred Tank Reactor, KnE Life Sciences, 4(11) (2019), 130, doi:10.18502/kls.v4i11.3859.
[43] G. Widiyarti, M. Hanafi, and W. P. Soewarso, Study On The Synthesis Of Monolaurin As Antibacterial Agent Againts Staphylococcus aureus, Indones. J. Chem., 9(1) (2010) 99–106, doi: 10.22146/ijc.21569.
[44] A. R. Affandi, Kajian sifat antibakteri emulsifier monolaurin yang dihasilkan dari reaksi kimiawi dan enzimatis, J. Ilmu Pangan dan Has. Pertan., 1(2) (2018) 93, doi: 10.26877/jiphp.v1i2.2097.
[45] E. Subroto, S. Nurhasanah, and S. Joni Munarso, Lipase immobilization by adsorption techniques on the hydrophobically modified matrix: A review, Int. J. Eng. Trends Technol., 69(1) (2021) 49–55, doi: 10.14445/22315381/IJETT-V69I1P208.
[46] S. Ferreira-Dias, A. C. Correia, F. O. Baptista, and M. M. R. Da Fonseca, Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases, J. Mol. Catal. - B Enzym., 11(4–6) (2001) 699–711, doi: 10.1016/S1381-1177(00)00079-5.
[47] F. D. Gunstone, Enzymes as biocatalysts in the modification of natural lipids, J. Sci. Food Agric., 79(12) (1999) 1535–1549, doi: 10.1002/(SICI)1097-0010(199909)79:12 3.0.CO;2-7.
[48] H. Noureddini, D. W. Harkey, and M. R. Gutsman, A Continuous Process for the Glycerolysis of Soybean Oil, J. Am. Oil Chem. Soc., 81(2) (2004) 203–207, doi: 10.1007/s11746-004-0882-y.
[49] D. A. Echeverri, F. Cardeño, and L. A. Rios, Glycerolysis of soybean oil with crude glycerol containing residual alkaline catalysts from biodiesel production, J. Am. Oil Chem. Soc., 88(4,) (2011) 551–557, doi: 10.1007/s11746-010-1688-5.
[50] P. Chetpattananondh and C. Tongurai, Synthesis of High Purity Monoglycerides from Crude Glycerol and Palm Stearin, Songklanakarin J. Sci. Technol., 30(4) (2008) 515–521.
[51] C. A. Ferretti, A. Soldano, C. R. Apesteguía, and J. I. Di Cosimo, Monoglyceride synthesis by glycerolysis of methyl oleate on solid acid-base catalysts, Chem. Eng. J., 161(3) (2010) 346–354, doi: 10.1016/j.cej.2009.07.041.
[52] Y. Huang, Y. Gao, and N. Zhong, Selective production of diacylglycerols through glycerolysis by ionic liquid: 1-butyl-3- methylimidazolium imidazolide as catalyst and reaction medium, J. Am. Oil Chem. Soc., 92(6) (2015) 927–931, doi: 10.1007/s11746- 015-2650-3.
[53] A. K. Singh and M. Mukhopadhyay, Olive oil glycerolysis with the immobilized lipase Candida antarctica in a solvent-free system, Grasas y Aceites, 63(2) (2012) 202–208, doi: 10.3989/gya.094811.
[54] M. L. Damstrup, T. Jensen, F. V. Sparsø, S. Z. Kiil, A. D. Jensen, and X. Xu, Production of heat-sensitive monoacylglycerols by enzymatic glycerolysis in tert-pentanol: Process optimization by response surface methodology, J. Am. Oil Chem. Soc., 83(1) (2006) 27–33, doi: 10.1007/s11746-006-1171-5.
[55] Z. Guo and X. Xu, New opportunity for enzymatic modification of fats and oils with industrial potentials, Org. Biomol. Chem., 3(14) (2005) 2615–2619, doi: 10.1039/b506763d.
[56] M. Hasmadi, I. Nor Aini, S. Mamot, and M. S. A. Yusof, The Effect of Different Types of Stirrer and Fractionation Temperatures During Fractionation on the Yield, Characteristics, and Quality of Oleins, J. Food Lipids, 9 (2002) 295–307.
[57] C. Stavarache, M. Vinatoru, R. Nishimura, and Y. Maeda, Fatty acids methyl esters from vegetable oil by means of ultrasonic energy, Ultrason. Sonochem., 12(5) (2005) 367–372, doi: 10.1016/j.ultsonch.2004.04.001.
[58] N. O. V. Sonntag, Glycerolysis of fats and methyl esters — Status, review and critique, J. Am. Oil Chem. Soc., 59(10) (1982) 795A- 802A, doi: 10.1007/BF02634442.
[59] T. Yang, M. Rebsdorf, U. Engelrud, and X. Xu, Enzymatic production of monoacylglycerols containing polyunsaturated fatty acids through an efficient glycerolysis system, J. Agric. Food Chem., 53(5) (2005) 1475–1481, doi: 10.1021/jf048405g.
[60] D. Kahveci, Z. Guo, B. Özçelik, and X. Xu, Optimisation of enzymatic synthesis of diacylglycerols in binary medium systems containing ionic liquids, Food Chem., 119(3) (2010) 880–885, doi: 10.1016/j.foodchem.2009.07.040.
[61] Z. Guo and X. Xu, Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: a further study on the reaction system, Green Chem., 8(1) (2006) 54–62, doi: 10.1039/B511117J.
[62] A. Valério, S. Rovani, H. Treichel, D. De Oliveira, and J. V. Oliveira, Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems, Bioprocess Biosyst. Eng., 33(7) (2010) 805–812, doi: 10.1007/s00449-009-0402-1.
[63] G. A. S. Schulz, K. C. da Silveira, D. B. Libardi, M. do C. R. Peralba, and D. Samios, Synthesis and characterization of mono-acylglycerols through the glycerolysis of methyl esters obtained from linseed oil, Eur. J. Lipid Sci. Technol., 113(12) (2011) 1533–1540, doi: 10.1002/ejlt.201100079.
[64] T. Yamane, S. T. Kang, K. Kawahara, and Y. Koizumi, High-yield diacylglycerol formation by solid-phase enzymatic glycerolysis of hydrogenated beef tallow, J. Am. Oil Chem. Soc., 71(3) (1994) 339– 342, doi: 10.1007/BF02638064.
[65] H. Noureddini and S. E. Harmeier, Enzymatic glycerolysis of soybean oil, J. Am. Oil Chem. Soc., 75(10) (1998) 1359–1365, doi: 10.1007/s11746-998-0183-8.
[66] Z. Guo, D. Kahveci, B. Özçelik, and X. Xu, Improving enzymatic production of diglycerides by engineering binary ionic liquid medium system, N. Biotechnol., 26 (1–2) (2009) 37–43, doi: 10.1016/j.nbt.2009.04.001.
[67] A. Coteron, M. Martinez, and J. Aracil, Reactions of olive oil and glycerol over immobilized lipases, J. Am. Oil Chem. Soc., 75(5) (1998) 657–660, doi: 10.1007/s11746-998-0080-1.
[68] W. Kaewthong, S. Sirisansaneeyakul, P. Prasertsan, and A. HKittikun, Continuous production of monoacylglycerols by glycerolysis of palm olein with immobilized lipase, Process Biochem., 40(5) (2005) 1525–1530, doi: 10.1016/j.procbio.2003.12.002.
[69] J. B. Kristensen, X. Xu, and H. Mu, Process optimization using Response Surface Design and pilot plant production of dietary diacylglycerols by lipase-catalyzed glycerolysis, J. Agric. Food Chem., 53(18) (2005) 7059–7066, doi: 10.1021/jf0507745.
[70] M. Tüter, B. Babali, Ö. Köse, Ş. Dural, and H. A. Aksoy, Solvent-free glycerolysis of palm and palm kernel oils catalyzed by a 1,3-specific lipase and fatty acid composition of glycerolysis products, Biotechnol. Lett., 21(3) (1999) 245–248, doi: 10.1023/A:1005464021613.
[71] Y. H. Hui, Bailey’s Industrial Oil and Fat Products, Volume 5, Edible Oil and Fat Products: Processing Technologies, 6th Edition. New York: John Wiley & Sons, Inc., (1996).
[72] F. D. Gunstone, Modifying lipids for use in food. Cambridge: Woodhead Publishing, (2006).
[73] D. A. Echeverri, W. A. Perez, and L. A. Rios, Synthesis of maleatedcastor oil glycerides from biodiesel-derived crude glycerol, Ind. Crops Prod., 49 (2013) 299–303, doi: 10.1016/j.indcrop.2013.05.008.
[74] A. M. Fureby, P. Adlercreutz, and B. Mattiasson, Glyceride synthesis in a solvent-free system, J. Am. Oil Chem. Soc., 73(11) (1996) 1489– 1495, doi: 10.1007/BF02523515.
[75] J. B. Kristensen, X. Xu, and H. Mu, Diacylglycerol synthesis by enzymatic glycerolysis: Screening of commercially available lipases, J. Am. Oil Chem. Soc., 82(5) (2005) 329–334, doi: 10.1007/s11746- 005-1074-5.
[76] E. Subroto and R. L. Nurannisa, The Recent Application Of Palm Stearin In Food Industry : A Review, Int. J. Sci. Technol. Res., 9(2) (2020) 2593–2597.
[77] R. A. Latip, Y. Y. Lee, T. K. Tang, E. T. Phuah, C. P. Tan, and O. M. Lai, Physicochemical properties and crystallization behavior of bakery shortening produced from stearin fraction of palm-based diacylglycerol blended with various vegetable oils, Food Chem., 141(4) (2013) 3938–3946, doi: 10.1016/j.foodchem.2013.05.114.
[78] P. Reis, K. Holmberg, R. Miller, M. E. Leser, T. Raab, and H. J. Watzke, Lipase reaction at interfaces as self-limiting processes, Comptes Rendus Chim., 12(1–2) (2009) 163–170, doi: 10.1016/j.crci.2008.04.018.

Keywords
Glycerolysis, monoacylglycerol, diacylglycerol, structured lipids, glycerol.