Food Infrared Heating Technology: A Review of Its Impacts on Rice Bran Quality

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2021 by IJETT Journal
Volume-69 Issue-8
Year of Publication : 2021
Authors : Firmansyah Faturachman, Rossi Indiarto
  10.14445/22315381/IJETT-V69I8P227

MLA 

MLA Style: Firmansyah Faturachman, Rossi Indiarto  "Food Infrared Heating Technology: A Review of Its Impacts on Rice Bran Quality" International Journal of Engineering Trends and Technology 69.8(2021):218-224. 

APA Style: Firmansyah Faturachman, Rossi Indiarto. Food Infrared Heating Technology: A Review of Its Impacts on Rice Bran Quality International Journal of Engineering Trends and Technology, 69(8),211-217.

Abstract
Rice bran is a by-product of the rice processing industry that is underutilized. While rice bran contains various nutrients and biological activities, its use as animal feed is limited. It is due to the bran's vulnerability to rancidity. As a result, rice bran will become unfit for human consumption when free fatty acids (FFA) increase to 10%. Stabilization of the lipase enzyme via infrared heating is one technology that it can use to reduce FFA. In addition, controlled infrared heating in terms of temperature, radiation intensity, and exposure time retains nutrients and extends the shelf life of the bran, allowing it to be further utilized as a source of antioxidants, phytosterols, and oleic acid. However, infrared exposure to rice bran can reduce water content and free fatty acids, which affect vitamin E stability, maintain the stability of γ-oryzanol bran during storage, and increases the mortality index of insecticides. These parameters affect the bran's quality during storage. In this review, infrared heating technology in rice bran, beginning with the fundamental principles of infrared, infrared heating sources, and rice bran's physicochemical properties, will be discussed.

Reference
[1] N. Bandumula., Rice Production in Asia: Key to Global Food Security., Proc. Natl. Acad. Sci. India Sect. B - Biol. Sci., 88(4) (2018). 1323–1328. doi: 10.1007/s40011-017-0867-7.
[2] V. Eyarkai Nambi, A. Manickavasagan, and S. Shahir., Rice milling technology to produce brown rice., in Brown Rice., (2017) 3–21.
[3] N. Mohd Esa and T. B. Ling., By-products of Rice Processing: An Overview of Health Benefits and Applications., Rice Res. Open Access, 4(1) (2016) 1–11., doi: 10.4172/jrr.1000107.
[4] C. Perez-Ternero, M. Alvarez de Sotomayor, and M. D. Herrera., Contribution of ferulic acid, γ-oryzanol and tocotrienols to the cardiometabolic protective effects of rice bran., J. Funct. Foods, 32(2017) 58–71.doi: 10.1016/j.jff.2017.02.014.
[5] M. Irakli, F. Kleisiaris, A. Mygdalia, and D. Katsantonis, Stabilization of rice bran and its effect on bioactive compounds content, antioxidant activity, and storage stability during infrared radiation heating., J. Cereal Sci., . 80(2018) 135–142 doi: 10.1016/j.jcs.2018.02.005.
[6] T. Wang, R. Khir, Z. Pan, and Q. Yuan., Simultaneous rough rice drying and rice bran stabilization using infrared radiation heating., LWT - Food Sci. Technol., . 78(2017) 281–288, doi: 10.1016/j.lwt.2016.12.041.
[7] H. R. Sharma, G. S. Chauhan, and K. Agrawal., Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking., Int. J. Food Prop., . 7(3) (2004) 603–614 doi: 10.1081/JFP- 200033047.
[8] S. S. Patil, A. Kar, and D. Mohapatra., Stabilization of rice bran using microwave: Process optimization and storage studies., Food Bioprod. Process., . 99(2016) 204–211, doi: 10.1016/j.fbp.2016.05.002.
[9] R. Indiarto and B. Rezaharsamto., A review on ohmic heating and its use in food., Int. J. Sci. Technol. Res., . 9(2) (2020) 485–490.
[10] D. Dhingra, S. Chopra, and D. R. Rai., Stabilization of Raw Rice Bran using Ohmic Heating., Agric. Res., . 1(4) (2012) 392–398., doi: 10.1007/s40003-012-0037-3.
[11] R. Indiarto, A. W. Pratama, T. I. Sari, and H. C. Theodora., Food irradiation technology: A review of the uses and their capabilities., SSRG Int. J. Eng. Trends Technol., . 68(12) (2020) doi: 10.14445/22315381/IJETT-V68I12P216.
[12] N. Yilmaz., Middle infrared stabilization of individual rice bran milling fractions., Food Chem., 190(2016) 179–185 doi: 10.1016/j.foodchem.2015.05.094.
[13] F. Yılmaz, N. Yılmaz Tuncel, and N. B. Tuncel., Stabilization of immature rice grain using infrared radiation., Food Chem., . 253( 208) 269–276., doi: 10.1016/j.foodchem.2018.01.172.
[14] W. Susek., Thermal microwave radiation for subsurface absolute temperature measurement., Acta Phys. Pol. A, . 118(6) (2010) 1246– 1249., doi: 10.12693/APhysPolA.118.1246.
[15] R. Indiarto and M. A. H. Qonit., A review of irradiation technologies on food and agricultural products., Int. J. Sci. Technol. Res., . 9(1) (2020) 4411–4414.
[16] K. Krishnamurthy, H. K. Khurana, J. Soojin, J. Irudayaraj, and A. Demirci., Infrared heating in food processing: An overview Compr. Rev. Food Sci. Food Saf.,. 7(1) (2008) 2–13 doi: 10.1111/j.1541- 4337.2007.00024.x.
[17] J. R. Howell, M. P. Menguc, and R. Siegel, Thermal Radiation Heat Transfer. McGraw-Hill, New York, (2010).
[18] Z. Pan and G. G. Atungulu, Infrared Heating for Food and Agricultural Processing. CRC Press, Florida, USA, (2010).
[19] I. Das and S. Das., Emitters and Infrared Heating System Design., in Infrared Heating for Food and Agricultural Processing, CRC Press, Florida, USA, (2010) 57–88.
[20] A. K. Datta and H. Ni., Infrared and hot-air-assisted microwave heating of foods for control of surface moisture, J. Food Eng.,. 51(4) (2002) 355–364., doi: 10.1016/S0260-8774(01)00079-6.
[21] E. H. Lee, D. Y. Yang, and W. H. Yang., Numerical modeling and experimental validation of focused surface heating using nearinfrared rays with an elliptical reflector., Int. J. Heat Mass Transf., . 78(2014) 240–250 doi: 10.1016/j.ijheatmasstransfer.2014.06.073.
[22] H. S. El-Mesery and G. Mwithiga., Performance of a convective, infrared and combined infrared- convective heated conveyor-belt dryer., J. Food Sci. Technol., . 52(5) (2015) 2721–2730, doi: 10.1007/s13197-014-1347-1.
[23] Y. Q. Wen, L. L. Xu, C. H. Xue, and X. M. Jiang., Effect of stored humidity and initial moisture content on the qualities and mycotoxin levels of maize germ and its processing products, Toxins (Basel).,. 12(9) (2020) doi: 10.3390/toxins12090535.
[24] R. Khir, Z. Pan, A. Salim, B. R. Hartsough, and S. Mohamed., Moisture diffusivity of rough rice under infrared radiation drying, LWT - Food Sci. Technol., 44(4) (2011) 1126–1132, doi: 10.1016/j.lwt.2010.10.003.
[25] R. Indiarto and B. Rezaharsamto., The physical, chemical, and microbiological properties of peanuts during storage: A review, Int. J. Sci. Technol. Res., . 9(3) (2020) 1909–1913.
[26] R. Indiarto and M. A. H. Qonit., A review of Soybean oil lipid oxidation and its prevention techniques, Int. J. Adv. Sci. Technol., . 29(6) (2020) 5030–5037, [Online]. Available: http://sersc.org/journals/index.php/IJAST/article/view/19543.
[27] R. V. Branco, M. L. E. Gutarra, J. M. Guisan, D. M. G. Freire, R. V. Almeida, and J. M. Palomo., Improving the thermostability and optimal temperature of a lipase from the hyperthermophilic archaeon pyrococcus furiosus by covalent immobilization., Biomed Res. Int., . (2015) 250532, doi: 10.1155/2015/250532.
[28] R. Mutters and J. Thompson, Rice Quality Handbook, 3514. UCANR Publications, (2009).
[29] K. Gul, B. Yousuf, A. K. Singh, P. Singh, and A. A. Wani., Rice bran: Nutritional values and its emerging potential for development of functional food - A review Bioact. Carbohydrates Diet. Fibre, 6(1) (2015) 24–30, doi: 10.1016/j.bcdf.2015.06.002.
[30] B. B. Aggarwal, C. Sundaram, S. Prasad, and R. Kannappan., Tocotrienols, the vitamin E of the 21st century: It's potential against cancer and other chronic diseases., Biochem. Pharmacol., . 80(11) (2010) 1613–1631 doi: 10.1016/j.bcp.2010.07.043.
[31] Z. Xu, N. Hua, and J. Samuel Godber., Antioxidant activity of tocopherols, tocotrienols, and γ-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2′-azobis (2- methylpropionamidine) dihydrochloride., J. Agric. Food Chem., . 49(4) (2001) 2077–2081,doi: 10.1021/jf0012852.
[32] K. Mäkynen, C. Chitchumroonchokchai, S. Adisakwattana, M. L. Failla, and T. Ariyapitipun., Effect of gamma-oryzanol on the bioaccessibility and synthesis of cholesterol, Eur. Rev. Med. Pharmacol. Sci., . 16(1) (2012) 49–56.
[33] A. Miller and K. H. Engel., Content of γ-oryzanol and composition of steryl ferulates in brown rice (Oryza sativa L.) of European origin., J. Agric. Food Chem., . 54(21) (2006) 8127–8133 doi: 10.1021/jf061688n.
[34] P. Goufo and H. Trindade. Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, c-oryzanol, and phytic acid., Food Sci. Nutr., . 2(2) (2014) 75–104, doi: 10.1002/fsn3.86.
[35] J. Alfonso-Rubí, F. Ortego, P. Castañera, P. Carbonero, and I. Díaz., Transgenic expression of trypsin inhibitor CMe from barley in indica and japonica rice, confers resistance to the rice weevil Sitophilus oryzae., Transgenic Res.,. 12(1) (2003) 23–31 doi: 10.1023/A:1022176207180.
[36] M. Nayak and V. Kamath., Outcome of intracranial aneurysm clipping: analysis of first 35 cases, Int. J. Adv. Med., . 2(2) 1(2015), doi: 10.5455/2349-3933.ijam20150501.
[37] Y. Pei, T. Tao, G. Yang, Y. Wang, W. Yan, and C. Ding., Lethal effects and mechanism of infrared radiation on Sitophilus zeamais and Tribolium castaneum in rough rice., Food Control, 88(2018) 149–158 doi: 10.1016/j.foodcont.2018.01.012.
[38] Z. Pan, R. Khir, L. D. Godfrey, R. Lewis, J. F. Thompson, and A. Salim., Feasibility of simultaneous rough rice drying and disinfestations by infrared radiation heating and rice milling quality, J. Food Eng.,. 84(3) (2008) 469–479 doi: 10.1016/j.jfoodeng.2007.06.005.
[39] W. Duangkhamchan et al., Infrared Heating as a Disinfestation Method Against Sitophilus oryzae and Its Effect on Textural and Cooking Properties of Milled Rice, Food Bioprocess Technol.,. 10(2) (2017) 284–295 doi: 10.1007/s11947-016-1813-z.
[40] T. Huang et al., Physical properties and release kinetics of electron beam irradiated fish gelatin films with antioxidants of bamboo leaves, Food Biosci.,. 36(2020) 100597 doi: 10.1016/j.fbio.2020.100597.
[41] L. Pan, J. Xing, H. Zhang, X. Luo, and Z. Chen., Electron beam irradiation as a tool for rice grain storage and its effects on the physicochemical properties of rice starch., Int. J. Biol. Macromol., 164(2020) 2915–2921, doi: 10.1016/j.ijbiomac.2020.07.211.
[42] N. T. Truc, A. Uthairatanakij, V. Srilaong, N. Laohakunjit, and P. Jitareerat., Effect of electron beam radiation on disease resistance and quality of harvested mangoes, Radiat. Phys. Chem., (2020) 109289, doi: 10.1016/j.radphyschem.2020.109289.
[43] X. Zhou, X. Ye, J. He, R. Wang, and Z. Jin., Effects of electron beam irradiation on the properties of waxy maize starch and its films, Int. J. Biol. Macromol., 151(2020) 239–246, doi: 10.1016/j.ijbiomac.2020.01.287.
[44] X. Liu, J. Liu, W. Zhang, S. Han, T. Zhang, and B. Liu., Electron beam irradiation-induced structural changes increase the antioxidant activities of egg white protein., Lwt, 111(2019) 846–852, doi: 10.1016/j.lwt.2019.05.066.
[45] F. T. Rodrigues et al., Effects of electron beam irradiation on the bioactive components of goji-berry., Radiat. Phys. Chem., . 179(2021) 109144 doi: 10.1016/j.radphyschem.2020.109144.

Keywords
Food, infrared, rancidity, rice, transmitter, wavelength