Multiple Sequence Alignment using Modified Brain Storm Optimization Algorithm with new Mutant

Multiple Sequence Alignment using Modified Brain Storm Optimization Algorithm with new Mutant

  IJETT-book-cover           
  
© 2022 by IJETT Journal
Volume-70 Issue-2
Year of Publication : 2022
Authors : Jeevana Jyothi Pujari, Kanadam Karteeka Pavan
DOI :  10.14445/22315381/IJETT-V70I2P206

How to Cite?

Jeevana Jyothi Pujari, Kanadam Karteeka Pavan, "Multiple Sequence Alignment using Modified Brain Storm Optimization Algorithm with new Mutant," International Journal of Engineering Trends and Technology, vol. 70, no. 3, pp. 48-53, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I2P206

Abstract
Multiple Sequence Alignment (MSA) is a challenging and computational task in bioinformatics and is a core and fundamental task for various biological analysis fields. Finding an optimized alignment is a very difficult task in sequence alignment problems. One of the new intelligence algorithms is the Brainstorm optimization Algorithm(BSO), which solves many optimization problems due to its unique capabilities. BSO can be trapped into local optima with successive iterations. To address this local optimum, we proposed a Modified Brain storm optimization algorithm with a new mutation operator (MBSO-Mu) to obtain more optimal alignments. This modified new mutant mechanism is incorporated into creating new ideas in BSO for enhancing search space capability by maintaining population diversity. The proposed Algorithm has been executed on various benchmark datasets to obtain the fitness score of alignments. The efficacy of the proposed with a mutant MBSO-Mu shows a more optimal and near-optimal alignment score in multiple sequences while compared to several evolutionary algorithms.

Keywords
MSA, MBSO-MU, BSO, Encoding candidate.

Reference
[1] C. Notredame, Recent progress in multiple sequence alignment, A survey, Pharmacogenomics, 3(1) (2002) 131–144, doi, 10.1517/14622416.3.1.131.
[2] P. Bonizzoni and G. Della Vedova, The complexity of multiple sequence alignment with SP-score that is a metric, Theor. Comput. Sci., 259(1–2) (2001) 63–79, doi, 10.1016/S0304-3975(99)00324-2.
[3] L. Wang and T. Jiang, On the Complexity of Multiple Sequence Alignment, J. Comput. Biol.,1(4) (1994) 337–348, doi, 10.1089/cmb.1994.1.337.
[4] J. D. Thompson, F. Plewniak, and O. Poch, A comprehensive comparison of multiple sequence alignment programs, Nucleic Acids Res., 27(13) (1999) 2682–2690, doi, 10.1093/nar/27.13.2682.
[5] Saul B.NeedlemanChristian D.Wunsch, A general method applicable to search for similarities iin the amino acid sequence of two proteins. Journal of Molecular Biology, (1970) 443–453, 1970, doi, doi.org/10.1016/0022-2836(70)90057-4.
[6] L. Santulli et al., Epilessia generalizzata idiopatica con stati di male mioclonici palpebrali e duplicazione 7q31 coinvolgente KCND2, Boll. - Lega Ital. contro l’Epilessia, 144 (2012) 173–175.
[7] J. Stoye, S. W. Perrey, and A. W. M. Dress, Improving the divide-and-conquer approach to sum-of-pairs multiple sequence alignment, Appl. Math. Lett., vol. 10, no. 2, pp. 67–73, 1997, doi, 10.1016/S0893-9659(97)00013-X.
[8] M. A. Larkin et al., Clustal W and Clustal X version 2.0, Bioinformatics, 23(21) (2007) 2947–2948, doi, 10.1093/bioinformatics/btm404.
[9] D.-F. Feng and R. F. Doolittle, Progressive sequence alignment as a prerequisite to correct phylogenetic trees, J. Mol. Evol., 25(4) (1987) 351–360, doi, 10.1007/BF02603120.
[10] J. Armstrong et al., Progressive Cactus is a multiple-genome aligner for the thousand-genome era, Nature, 587(7833) (2020) 246–251, doi, 10.1038/s41586-020-2871-y.
[11] T. Lassmann, Kalign 3, Multiple sequence alignment of large datasets, Bioinformatics, 36(6) (2020) 1928–1929, doi, 10.1093/bioinformatics/btz795.
[12] J. T. Horng, L. C. Wu, C. M. Lin, and B. H. Yang, A genetic algorithm for multiple sequence alignment, Soft Comput., . 9(6) (2005) 407–420, doi, 10.1007/s00500-004-0356-9.
[13] Z. J. Lee, S. F. Su, C. C. Chuang, and K. H. Liu, Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment, Appl. Soft Comput. J., vol. 8, no. 1, pp. 55–78, 2008, doi, 10.1016/j.asoc.2006.10.012.
[14] N. Moustafa, M. Elhosseini, T. H. Taha, and M. Salem, Fragmented protein sequence alignment using two-layer particle swarm optimization (FTLPSO), Fragmented protein sequence alignment, J. King Saud Univ. - Sci., 29(2) (2017) 191–205, doi, 10.1016/j.jksus.2016.04.007.
[15] C. Öztürk and S. Aslan, A new artificial bee colony algorithm to solve the multiple sequence alignment problem, Int. J. Data Min. Bioinform., 14(4) (2016) 332–353, doi, 10.1504/IJDMB.2016.075823.
[16] P. Jeevana Jyothi, K. P. K, S. M. Raiyyan, and T. Rajasekhar, MSA, An Application of Brain Storm Optimization Algorithm, SSRN Electron. J., (2020), doi, 10.2139/ssrn.3646174.
[17] Y. Shi, Brainstorm optimization algorithm, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 6728(1) (2011) 303–309, doi, 10.1007/978-3-642-21515-5_36.
[18] S. Cheng et al., A comprehensive survey of brainstorm optimization algorithms, 2017 IEEE Congr. Evol. Comput. CEC 2017 - Proc., (2017) 1637–1644, doi, 10.1109/CEC.2017.7969498.
[19] Z. Song, J. Peng, C. Li, and P. X. Liu, A Simple Brain Storm Optimization Algorithm with a Periodic Quantum Learning Strategy, IEEE Access, 6 (2017) 19968–19983, doi, 10.1109/ACCESS.2017.2776958.
[20] Z. Cao, X. Hei, L. Wang, Y. Shi, and X. Rong, An Improved Brain Storm Optimization with Differential Evolution Strategy for Applications of ANNs, Math. Probl. Eng., 2015 (2015), doi, 10.1155/2015/923698.
[21] X. Xue and J. Lu, A Compact Brain Storm Algorithm for Matching Ontologies, IEEE Access, 8 (2020) 43898–43907, doi, 10.1109/ACCESS.2020.2977763.
[22] A. Cervantes-Castillo and E. Mezura-Montes, A modified brain storm optimization algorithm with a special operator to solve constrained optimization problems, Appl. Intell., 50(12) (2020) 4145–4161, 2020, doi, 10.1007/s10489-020-01763-8.
[23] Y. Sun, J. Wei, T. Wu, K. Xiao, J. Bao, and Y. Jin, Brainstorm optimization using a slight relaxation selection and multi-population based creating ideas ensemble, Appl. Intell., 50(10) (2020) 3137–3161, doi, 10.1007/s10489-020-01690-8.
[24] M. Kumar and H. Om, A Hybrid Bio-Inspired Algorithm. Springer International Publishing.
[25] S. Lalwani, H. Sharma, M. K. Mohan, and K. Deep, An efficient Bi-level discrete PSO variant for multiple sequence alignment, vol. 741. Springer Singapore, (2019).
[26] G. P. S. Raghava, S. M. J. Searle, P. C. Audley, J. D. Barber, and G. J. Barton, OXBench, A benchmark for evaluation of protein multiple sequence alignment accuracy, BMC Bioinformatics, 4 (2003) 1–23, doi, 10.1186/1471-2105-4-47.