DBR Laser Design Using Vanadium Doped Silicon-carbide Active Region to Achieve Wide Tuning Range for Telecommunications Application in the 1300nm Window
How to Cite?
Patrick Mumba, Franklin Manene, Stephen Musyoki, "DBR Laser Design Using Vanadium Doped Silicon-carbide Active Region to Achieve Wide Tuning Range for Telecommunications Application in the 1300nm Window" International Journal of Engineering Trends and Technology, vol. 70, no. 3, pp. 162-169, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I2P218
Abstract
The 5G technology is expected to use tunable lasers for wavelength selection during optical signal transmission. To accommodate the growing data demand, there is a need to develop lasers with a larger tuning range. In most lasers, Indium gallium arsenide phosphide (InGaAsP), Aluminum Gallium Arsenide (AlGaAs), and Gallium Arsenide (GaAs) have been used for the gain medium due to their direct bandgap and strong optical transitions. However, they have limitations such as low SMSR, low output power due to their narrow bandgap, and a narrow tuning range below 20nm. In this paper, vanadium-doped silicon-carbide was used in the active section of the Distributed Bragg Reflector (DBR) laser to achieve a wide tuning range, high SMSR, low threshold current, and high output power at a low gain current. The fundamental advantages of vanadium-doped silicon-carbide, including fast optical transitions, make its operation in the O-band (1278-1388 nm) possible. The DBR laser architecture design was adopted and designed in Ansys Lumerical. This work established that the use of Vanadium doped silicon-carbide in the active region provides a tuning range of at least 22nm wavelength, a threshold current was found to be 22.5mA with an optical output power of 13mW at the gain current of 120mA, and side mode suppression ratio (SMSR) of at least 45dB.
Keywords
Distributed Bragg Reflector laser, Vanadium-doped silicon carbide.
Reference
[1] S. Barrie and D. B. O. Konditi, Evaluation of adjacent channel interference from the land-earth station in motion to 5G radio access network in the Ka-frequency band, Heliyon, 7(6) e07412, DOI: 10.1016/j.heliyon.2021.e07412, 2021.
[2] M. Holmberg, Transport Network Requirements and Architecture for 5G Metro Networks Architecture 2015, Extrem. Cust. Netw., (2018).
[3] S. Tayal, S. K. Goel, and K. Sharma, A Comparative Study of Various Generations in Mobile Technology, Int. J. Eng. Trends Technol., 28(7) (2015) 3, DOI:10.14445/22315381/IJETT-V28P263.
[4] C. V. Dharani and D. B. Terese A, Cross Phase Modulation in multiband Radio- Over-Fiber Systems, Int. J. Eng. Trends Technol., 32(4) (2016) 1 Doi: 10.14445/22315381/it-v32p231,
[5] S. A. Niazi, Integration of Hybrid Passive Optical Networks (PON) with Radio over Fiber (RoF), Intech, Tourism, 1 (2019) 13, Doi:10.5772/intechopen.79299,
[6] M. Bustillos and G. Rinalde, Embedded Tunable Laser Control for WDM Optical Communications Systems, IEEE Lat. Am. Trans., 18(2) (2020) 241–248, DOI:10.1109/TLA.2020.9085276 .
[7] H. Elfaiki, K. Hassan, G.-H. Duan, C. Jany, and S. Malhouitre, Ultra Wide Hybrid III-V On Silicon Tunable Laser, in 2018 European Conference on Optical Communication (ECOC), 1 (2018) 3–5, DOI: 10.1109/ECOC.2018.8535328.
[8] S. Dhoore, G. Roelkens, and G. Morthier, InP-on-Silicon Electronically Tunable Lasers, in 2018 20th International Conference on Transparent Optical Networks (ICTON), (2018)1–4, DOI: 10.1109/ICTON.2018.8473935.
[9] D. Zhou et al., 10 Gb/s Data Transmissions Using a Widely Tunable Directly Modulated InGaAlAs/InGaAsP DBR Laser, IEEE Photonics Technol. Lett., 30(22) (2018) 1. doi: 10.1109/LPT.2018.2872994.
[10] D. Zhou, Y. He, D. Lu, S. Liang, L. Zhao, and W. Wang, 25 Gb/s data transmission using a directly modulate Photonics, 8(3) (2021) 2–6, DOI:10.3390/photonics8030084
[11] L. Han et al., DBR Laser with over 20nm Wavelength Tuning Range, 1135(c) (2016) 3–6, doi: 10.1109/LPT.2016.2518806, .
[12] Y. Zhu, Y. Wu, H. Xu, C. Browning, L. P. Barry, and S. Member, Experimental Demonstration of a WDM-RoF Based Mobile-fronthaul with f-OFDM Signals by Using Directly Modulated 3s-DBR Laser, J. Light. Technol., pp( c ) (2019) 1 DOI: 10.1109/JLT.2019.2923245.
[13] S. A. Sobhani et al., Study of electro-absorption effects in 1300nm In(Ga)As/GaAs quantum dot materials, in Physics and Simulation of Optoelectronic Devices XXIV, 9742 (2021) 1. doi:10.1117/12.2213187.
[14] S. Marjani, R. Faez, and H. Marjani, Analysis and Design of Semiconductor Laser with Silicon Carbide Polymers ( 6H-SiC and 3C-SiC ), 5(7) 1–3, doi: ajbas/2011/July-2011/1060-1063.
[15] D. Zhou, S. Liang, L. Zhao, H. Zhu, and W. Wang, High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers, Opt. Express, 25(3) (2017) 2341, doi: 10.1364/OE.25.002341,.
[16] S. Majety, V. A. Norman, L. Li, M. Bell, P. Saha, and M. Radulaski, Quantum photonics in triangular-cross-section nanodevices in silicon carbide OPEN ACCESS Quantum photonics in triangular-cross-section nanodevices in silicon carbide, (2021) 1–3, DOI: 10.1088/2515-7647/abfdca.
[17] N. Tien Son et al., Electron paramagnetic resonance and theoretical studies of Nb in 4H- and 6H-SiC, J. Appl. Phys., 112(8) (2012) 1. doi:10.1063/1.4759362, 2012.
[18] W. F. Koehl et al., “Resonant optical spectroscopy and coherent control of C r4+ spin ensembles in SiC and GaN, Phys. Rev. B, 95(3) (2017) 1-2 . doi: 10.1103/PhysRevB.95.035207.
[19] M. Rejhon, M. Brynza, R. Grill, E. Belas, and J. Kunc, Investigation of deep levels in semi-insulating vanadium-doped 4H-SiC by photocurrent spectroscopy, Phys. Lett. A 405 (2021) 1.DOI: 10.1016/j.physleta.2021.127433, 2021.
[20] F. Fuchs et al., Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep., 3 (2013) 1, Doi: 10.1038/srep01637.
[21] S. Castelletto, Silicon carbide single-photon sources : challenges and prospects Silicon carbide single-photon sources : challenges and prospects, mater. Quantum. technol., 1(2) (2021) 3, Doi: 10.1088/2633-4356/abe04a, 2021.
[22] M. Mahmoodi and L. Ghazanfari, Silicon Carbide: A Biocompatible Semiconductor Used in Advanced Biosensors and BioMEMS/NEMS, Phys. Technol. Silicon Carbide Devices, (2012) 1–3, doi:10.5772/51811.
[23] T. Bosma et al., Identification and tunable optical coherent control of transition-metal spins in silicon carbide, npj Quantum Inf., 4(1) (2018) 1, doi.org/10.1038/s41534-018-0097-8.
[24] G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, and D. D. Awschalom, Vanadium spin qubits as telecom quantum emitters in silicon carbide, (2020) 2–10, doi:10.1126/sciadv.aaz1192.
[25] L. Spindlberger et al., Optical Properties of Vanadium in 4 H Silicon Carbide for Quantum Technology, Phys. Rev. Appl., 10(1) (2019) 1–3, https://doi.org/10.1103/PhysRevApplied.12.014.
[26] N. J. Kramer et al., Extrinsic Absorption Pathways in Vanadium-Doped SiC Measured Using a Total Internal Reflection Geometry, Phys. Status Solidi Appl. Mater. Sci., 217(20) (2020) 1. doi: 10.1002/pssa.202000315, Oct.
[27] R. T. Sutter, T. J. Fellers, and M. W. Davidson, Laser Cavity Resonance Modes and Gain Bandwidth - Java Tutorial | Olympus LS. [Online]. Available: https://www.olympus-lifescience.com/en/microscope-resource/primer/java/lasers/gainbandwidth/. [Accessed: 05-Aug-2021].
[28] B. Van Zeghbroeck, LASER DIODES, in Principles of Semiconductor Devices, 82(1–2) (2004) 223, doi: 10.1016/j.solmat.2004.01.028.
[29] Z. Ma et al., A zero-cross detection algorithm for cavity-length interrogation of fibre-optic fabry–Perot sensors, Sensors (Switzerland), 19(18) (2019) 11, doi: 10.3390/s19183868 .
[30] DBR laser using travelling wave laser model (TWLM) – Lumerical Support. [Online]. Available: https://support.lumerical.com/hc/en-us/articles/360042326114-DBR-laser-using-travelling-wave-laser-model-TWLM-. [Accessed: 21-Jun-2021].
[31] Laser TW (TWLM) - INTERCONNECT Element – Lumerical Support. [Online]. Available: https://support.lumerical.com/hc/en-us/articles/360036108274-Laser-TW-TWLM-. [Accessed: 24-Jul-2021].
[32] Â. R. Costa, W. Ulrich, and J. G. Correia, Lattice location of impurities in Silicon Carbide, PHD thesis Phys. Univ. LISBOA Inst. Super. TÉCNICO, 20 (2018).
[33] N. M. Ravindra, P. Ganapathy, and J. Choi, Energy gap-refractive index relations in semiconductors - An overview, Infrared Phys. Technol., 50(1) (2007) 21-22, DOI:10.1016/j.infrared.2006.04.001.
[34] M. De Laurentis and A. Irace, Optical Measurement Techniques of Recombination Lifetime Based on the Free Carriers Absorption Effect, J. Solid State Phys., (2014) 2, doi: 10.1155/2014/291469.
[35] G. P. Agrawal, Optical transmitters, in Fiber-Optic Communications Systems, Third Edition., 3rd ed., john Wiley and sons, 6 (2002) 77–78.
[36] Y. Zhao et al., Spontaneous emission factor for superluminescent semiconductor diodes Spontaneous emission factor for superluminescent semiconductor diodes, J. Appl. Phys., 3945(1999) 5 (3948), doi: 10.1063/1.370294.
[37] S. Dhoore, G. Roelkens, and G. Morthier, III-V-on-silicon three-section DBR laser with over 12 nm continuous tuning range, Opt. Lett., 42(6) (2017) 1, doi: 10.1364/ol.42.001121,
[38] H. Yu, J. Pan, X. Zhou, H. Wang, L. Xie, and W. Wang, A widely tunable three?section dbr lasers for multi?species gas detection, Appl. Sci., 11(6) (2021) 1, DOI:10.3390/app11062618.
[39] H. Conradi et al., Tunable DBR Laser with Integrated Optical Isolator, in Optical Fiber Communication Conference (OFC) (2021) 1.
[40] H. Yu et al., A 1.6-?m widely tunable distributed Bragg reflector laser diode based on InGaAs/InGaAsP quantum-wells material, Opt. Commun., 497 (2021) 1, doi.org/10.1016/j.optcom.2021.127201 .
[41] O. K. KWON, C. W. LEE, S. H. OH, and K. S. KIM, 16-channel tunable and 25-Gb / s EAM-integrated DBR-LD for WDM-based mobile front-haul networks, Opt. Express, 29(2) (2021) 1 .doi.org/10.1364/OE.414989.