A Comparative Study on Different Image Stitching Techniques

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2022 by IJETT Journal
Volume-70 Issue-4
Year of Publication : 2022
Authors : V Megha, K K Rajkumar
  10.14445/22315381/IJETT-V70I4P205

MLA 

MLA Style: V Megha, and K K Rajkumar. "A Comparative Study on Different Image Stitching Techniques." International Journal of Engineering Trends and Technology, vol. 70, no. 4, Apr. 2022, pp. 44-58. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I4P205

APA Style: V Megha, & K K Rajkumar. (2022). A Comparative Study on Different Image Stitching Techniques. International Journal of Engineering Trends and Technology, 70(4), 44-58. https://doi.org/10.14445/22315381/IJETT-V70I4P205

Abstract
Image stitching/mosaicking is a hot research area in computer vision. Image stitching is a method for combining several images of the same scene into a single composite image. The three most significant components of image stitching are calibration, registration, and blending. In this article, we analyzed different image stitching techniques. Based on image registration methods, image stitching is broadly classified into Spatial domain-based stitching and Frequency domain-based stitching. Direct method and feature-based methods are two types of Spatial domain-based stitching. In the indirect method, the pixel-wise similarity between images is measured to identify the overlapping area, whereas the feature-based method uses image features for similarity measurement. From the study, we identified open challenges and future directions. Therefore, we aim to propose a novel image stitching technique in different domains to rectify those anomalies, such as transformation invariance in both spatial and frequency domains.

Keywords
Image stitching, registration, blending, direct Method, feature-based Method.

Reference
[1] Y. Yuan, F. Fang, and G. Zhang, Superpixel-Based Seamless Image Stitching for UAV Images, IEEE Trans. Geosci. Remote Sensing. 59(2) (2021) 1565–1576. doi: 10.1109/TGRS.2020.2999404.
[2] T. Zhang, R. Zhao, and Z. Chen, Application of Migration Image Registration Algorithm Based on Improved SURF in Remote Sensing Image Mosaic, IEEE Access. 8 (2020) 163637–163645. doi: 10.1109/ACCESS.2020.3020808.
[3] Y. Zhang, Z. Wan, X. Jiang, and X. Mei, Automatic Stitching for Hyperspectral Images Using Robust Feature Matching and Elastic Warp, IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing. 13 (2020) 3145–3154. doi: 10.1109/JSTARS.2020.3001022.
[4] V. Megha and K. K. Rajkumar, Automatic Satellite Image Stitching Based on Speeded Up Robust Feature, in 2021 International Conference on Artificial Intelligence and Machine Vision (AIMV). (2021) 1–6. doi: 10.1109/AIMV53313.2021.9670954.
[5] B. Ma et al., A Fast Algorithm for Material Image Sequential Stitching, Computational Materials Science. 158 (2019) 1–13. doi: 10.1016/j.commatsci.2018.10.044.
[6] S. Mistry and A. Patel, Image Stitching using Harris Feature Detection. 3(4) 7.
[7] F. Yang, Z.-S. Deng, and Q.-H. Fan, A Method for Fast Automated Microscope Image Stitching, Micron. 48 (2013) 17–25. doi: 10.1016/J.Micron.2013.01.006.
[8] A. Pandey and U. C. Pati, A Novel Technique for Non-Overlapping Image Mosaicing Based on Pyramid Method, in 2013 Annual IEEE India Conference (INDICON), Mumbai, India. (2013) 1–6. doi: 10.1109/INDCON.2013.6726136.
[9] D. Ghosh, N. Kaabouch, and R. A. Fevig, Robust Spatial-Domain Based Super-Resolution Mosaicing of Cubesat Video Frames: Algorithm and Evaluation, CIS. 7(2) (2014) 68. doi: 10.5539/Cis.V7n2p68.
[10] R. Szeliski, Image Alignment and Stitching: A Tutorial, FNT in Computer Graphics and Vision. 2(1) (2007) 1–104. doi: 10.1561/0600000009.
[11] P. Baudisch et al., Panoramic Viewfinder: Providing a Real-Time Preview to Help Users Avoid Flaws in Panoramic Pictures. 10.
[12] M. D. Kokate, Survey: Image Mosaicing Based on Feature Extraction, International Journal of Computer Applications. 165(1) 5.
[13] B. A and D. T. KK, Analytical Study on Digital Image Processing Applications, SSRG-IJCSE. 7(6) (2020) 4–7. doi: 10.14445/23488387/IJCSE-V7I6P102.
[14] J. Mallon and P. F. Whelan, Calibration and Removal of Lateral Chromatic Aberration in Images, Pattern Recognition Letters. 28(1) (2007) 125–135. doi: 10.1016/j.patrec.2006.06.013.
[15] Z. Zhang, A Flexible New Technique for Camera Calibration, IEEE Trans. Pattern Anal. Machine Intell. 22(11) (2000) 1330–1334. doi: 10.1109/34.888718.
[16] J. Zhu, Y. Li, C. Liu, Z. Ma, and B. Zhang, Research on Calibration Method of the Panoramic Stereo Sphere Vision System, in 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China. (2015) 2346–2351. doi: 10.1109/ICMA.2015.7237853.
[17] M. H. M. Patel and A. P. J. Patel, Comprehensive Study and Review of Image Mosaicing Methods, International Journal of Engineering Research. 1(9) (2012) 7.
[18] L. Juan and O. Gwun, A Comparison of SIFT, PCA-SIFT and SURF. 10.
[19] L. G. Brown, A Survey of Image Registration Techniques, ACM Comput. Surv. 24(4) (1992) 1325–376. doi: 10.1145/146370.146374.
[20] J. Salvi, C. Matabosch, D. Fofi, and J. Forest, A Review of Recent Range Image Registration Methods with Accuracy Evaluation, Image and Vision Computing. 25(5) (2007) 578–596. doi: 10.1016/J.Imavis.2006.05.012.
[21] Y. Deng and T. Zhang, Generating Panorama Photos, Orlando, FL. (2003) 270–279. doi: 10.1117/12.513119.
[22] Y. Xiong and K. Pulli, Gradient Domain Image Blending and Implementation on Mobile Devices, in Mobile Computing, Applications, and Services, T. Phan, R. Montanari, and P. Zerfos, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg. 35 (2010) 293–306. doi: 10.1007/978-3-642-12607-9_19.
[23] Y. Xiong and K. Pulli, Mask-Based Image Blending and its Applications on Mobile Devices, Yichang, China. (2009) 749841. doi: 10.1117/12.832379.
[24] D. Ghosh and N. Kaabouch, A Survey on Image Mosaicing Techniques, Journal of Visual Communication and Image Representation. 34 (2016) 1–1. doi: 10.1016/j.jvcir.2015.10.014.
[25] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, Mutual-Information-Based Registration of Medical Images: A Survey, IEEE Trans. Med. Imaging. 22(8) (2003) 986–1004. doi: 10.1109/TMI.2003.815867.
[26] S.-D. Wei and S.-H. Lai, Fast Template Matching Based on Normalized Cross Correlation with Adaptive Multilevel Winner Update, IEEE Trans. on Image Process. 17(11) (2008) 2227–2235. doi: 10.1109/TIP.2008.2004615.
[27] Y. Douini, J. Riffi, M. A. Mahraz, and H. Tairi, Solving Sub-Pixel Image Registration Problems Using Phase Correlation and Lucas- Kanade Optical Flow Method. 5.
[28] M. V and R. KK, Panoramic Image Stitching Using Cross Correlation and Phase Correlation Methods, IJCS. 8(2) (2020) 2500–2516.
[29] D. Baran, N. Fung, S. Ho, and J. Sherman, Detecting and Tracking Humans Using a Man-Portable Robot, Orlando, Florida, USA. (2009) 733215. doi: 10.1117/12.818813.
[30] J. Chen, Q. Wan, L. Luo, Y. Wang, and D. Luo, Drone Image Stitching Based on Compactly Supported Radial Basis Function, IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing. 12(11) (2019) 4634–4643. doi: 10.1109/JSTARS.2019.2947162.
[31] C. Harris and M. Stephens, A Combined Corner and Edge Detector, in Proceedings of the Alvey Vision Conference 1988, Manchester. (1988) 23.1-23.6. doi: 10.5244/C.2.23.
[32] S. M. Smith and J. M. Brady, SUSAN—A New Approach to Low Level Image Processing. (1997) 34.
[33] K. Sharma and A. Goyal, Classification Based Survey of Image Registration Methods, In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode. (2013) 1–7. doi: 10.1109/ICCCNT.2013.6726741.
[34] D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision. 60(2) (2004) 91–110. doi: 10.1023/B: VISI.0000029664.99615.94.
[35] E. Adel, M. Elmogy, and H. Elbakry, Image Stitching Based on Feature Extraction Techniques: A Survey, IJCA. 99(6) (2014) 1–8. doi: 10.5120/17374-7818.
[36] H. Bay, T. Tuytelaars, and L. Van Gool, SURF: Speeded Up Robust Features, in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg. (3951) (2006) 404–417. doi: 10.1007/11744023_32.
[37] A. V. Kulkarni, J. S. Jagtap, and V. K. Harpale, Object Recognition with ORB and its Implementation on FPGA, International Journal of Advanced Computer Research. 3(3) 6.
[38] E. Rosten and T. Drummond, Machine Learning for High-Speed Corner Detection, in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof, and A. Pinz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg. (3951) (2006) 430–443. doi: 10.1007/11744023_34.
[39] M. A. Fischler and R. C. Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, in Readings in Computer Vision, Elsevier. (1987) 726–740. doi: 10.1016/B978-0-08-051581-6.50070-2.
[40] N. Arad and D. Reisfeld, Image Warping Ra Udsiianlg Ffuenwct Aionncshor Points and. (1994) 12.
[41] Yalin Xiong and K. Turkowski, Registration, Calibration and Blending in Creating High Quality Panoramas, In Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV’98 (Cat. No.98EX201), Princeton, NJ, USA. (1998) 69–74. doi: 10.1109/ACV.1998.732860.
[42] Yanfang Li, Yaming Wang, Wenqing Huang, and Zuoli Zhang, Automatic image stitching using SIFT, in 2008 International Conference on Audio, Language and Image Processing, Shanghai, China. (2008) 568–571. doi: 10.1109/ICALIP.2008.4589984.
[43] W. Rong, H. Chen, J. Liu, Y. Xu, and R. Haeusler, Mosaicing of Microscope Images Based on SURF, in 2009 24th International Conference Image and Vision Computing New Zealand, Wellington, New Zealand. (2009) 271–275. doi: 10.1109/IVCNZ.2009.5378399.
[44] D. K. Jain, G. Saxena, and V. K. Singh, Image Mosaicing Using Corner Techniques, in 2012 International Conference on Communication Systems and Network Technologies, Rajkot, Gujarat, India. (2012) 79–84. doi: 10.1109/CSNT.2012.27.
[45] M. Vivet, S. Peleg, and X. Binefa, Real-Time Stereo Mosaicing Using Feature Tracking, in 2011 IEEE International Symposium on Multimedia, Dana Point, CA, USA. (2011) 577–582. doi: 10.1109/ISM.2011.102.
[46] B. Baheti, U. Baid, and S. N. Talbar, A Novel Approach for Automatic Image Stitching of Spinal Cord MRI Images Using SIFT, in 2015 International Conference on Pervasive Computing (ICPC), Pune, India. (2015) 1–5. doi: 10.1109/PERVASIVE.2015.7087071.
[47] S. Keerativittayanun, T. Kondo, K. Kotani, T. Phatrapornnant, and J. Karnjana, Two-Layer Pyramid-Based Blending Method for Exposure Fusion, Machine Vision and Applications. 32(2) (2021) 48. doi: 10.1007/S00138-021-01175-9.
[48] Y. Xiong, Eliminating Ghosting Artifacts for Panoramic Images, in 2009 11th IEEE International Symposium on Multimedia, San Diego, California, USA. (2009) 432–437. doi: 10.1109/ISM.2009.92.
[49] A. Levin, A. Zomet, S. Peleg, and Y. Weiss, Seamless Image Stitching in the Gradient Domain. 13.
[50] C. Zhu, W. Ding, H. Zhou, and F. Yu, Real-Time Image Mosaic based on Optimal Seam and Multiband Blend, in 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China. (2019) 722–725. doi: 10.1109/ITAIC.2019.8785712.
[51] M. El-Saban, M. Izz, A. Kaheel, and M. Refaat, Improved Optimal Seam Selection Blending for Fast Video Stitching of Videos Captured from Freely Moving Devices, in 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium. (2011) 1481–1484. doi: 10.1109/ICIP.2011.6115723.
[52] N. Gracias, M. Mahoor, S. Negahdaripour, and A. Gleason, Fast Image Blending Using Watersheds and Graph Cuts, Image and Vision Computing. 27(5) (2009) 597–607. doi: 10.1016/j.imavis.2008.04.014.
[53] Hongyan Wen and Jianzhong Zhou, An Improved Algorithm for Image Mosaic, in 2008 International Symposium on Information Science and Engineering, Shanghai. (2008) 497–500. doi: 10.1109/ISISE.2008.293.
[54] F. Gu and Y. Rzhanov, Optical Image Blending for Underwater Mosaics. 6.
[55] V. S. Bind, P. R. Muduli, and U. C. Pati, A Robust Technique for Feature-Based Image Mosaicing using Image Fusion. 6.
[56] T. S. and A. B., Multiple Feature Extraction Techniques in Image Stitching, IJCA. 123(15) (2015) 29–33. doi: 10.5120/ijca2015905747.
[57] C. Liu, H. Liu, Y. Liu, T. Li, and T. Wang, Normalized Cross Correlation Image Stitching Algorithm Based on Minimum Spanning Tree, Optik. 179 (2019) 610–616. doi: 10.1016/j.ijleo.2018.10.166.
[58] Y. Li, H.-Y. Shum, and R. Szeliski, Stereo Reconstruction from Multiperspective Panoramas, IEEE Transactions on Pattern Analysis and Machine Intelligence. 26(1) (2004) 18.
[59] J. Zheng, Z. Zhang, Q. Tao, K. Shen, and Y. Wang, An Accurate Multi-Row Panorama Generation Using Multi-Point Joint Stitching, IEEE Access. 6 (2018) 27827–27839. doi:10.1109/ACCESS.2018.2829082.