Feasibility of VOF-FEM Coupling to Study the Wave Impact on a Sloping Seawall

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2022 by IJETT Journal
Volume-70 Issue-4
Year of Publication : 2022
Authors : Dabir V. V, Shinde S. R, Khare K. C, Londhe S. N
  10.14445/22315381/IJETT-V70I4P207

MLA 

MLA Style: Dabir V. V, et al. "Feasibility of VOF-FEM Coupling to Study the Wave Impact on a Sloping Seawall." International Journal of Engineering Trends and Technology, vol. 70, no. 4, Apr. 2022, pp. 82-94. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I4P207

APA Style: Dabir V. V, Shinde S. R, Khare K. C, Londhe S. N. (2022). Feasibility of VOF-FEM Coupling to Study the Wave Impact on a Sloping Seawall. International Journal of Engineering Trends and Technology, 70(4), 82-94. https://doi.org/10.14445/22315381/IJETT-V70I4P207

Abstract
Seawalls are structures constructed along the coastline for effective energy dissipation. It is imperative to study the wave forces on the structure and response thereof for designing such structures. The research on the performance of coastal structures connotes the utilisation of the Irribaren number (ξ), which is a function of wave parameters and the slope of the structure over which the wave attacks. It is an uphill task to investigate the effect of changing the slope of seawall over the wave parameters experimentally. Therefore, the use of a numerical tool can provide an agile alternative. To choose the appropriate method for this analysis, a thorough literature review is performed. From the inferences, the VOF-FEM coupled tool is selected to address wave structure interaction studies for coastal structures wherein no transmission of wave and thus no mixing of the incident and reflected flow in the computational domain is expected. The Numerical model is further tested to study the effect of the inclination of the structure over the run-up pressure experienced by the structure. The results matched well with an experimental trial performed and with previous work in similar conditions from the literature. The results are presented, and the feasibility of using VOF-FEM coupling for shoreline non-wave transmitting structures is discussed.

Keywords
Coastal, Seawall, FEM-VOF coupling, Wave force, Wave Structure Interaction.

Reference
[1] Coastal Engineering Research Center, Shore Protection Manual US Army Corps of Engineers, Coast. Eng., I (1984) 1–337. [Online]. Available: http://ft-sipil.unila.ac.id/dbooks/S P M 1984 volume 1-1.pdf.
[2] S. P. Manual, Shore Protection Manual - Volume 1, Dep. Army, 1(2) (1984) 337, doi: 10.5962/bhl.title.47830.
[3] S. Neelamani, K. Al-Salem, and A. Taqi, Experimental Investigation on wave Reflection Characteristics of Slotted Vertical barriers with an impermeable back wall in random wave fields, J. Waterw. Port, Coast. Ocean Eng., 143(4) (2017) 1–10. doi: 10.1061/(ASCE)WW.1943-5460.0000395.
[4] A. Negm and K. Nassar, Determination of Wave Reflection Formulae for Vertical and Sloped Seawalls Via Experimental Modelling, Procedia Eng., 154 (2016) 919–927, doi: 10.1016/j.proeng.2016.07.502.
[5] K. Nassar, W. E. Mahmod, A. Tawfik, O. Rageh, A. Negm, and H. Fath, Developing Empirical Formulas for Assessing the Hydrodynamic Behaviour of Serrated and Slotted Seawalls, Ocean Eng., 159 (2018) 388–409, doi: 10.1016/j.oceaneng.2018.04.048.
[6] V. Mallayachari and V. Sundar, Reflection Characteristics of Permeable Seawalls, Coast. Eng., 23(1–2) (1994) 135–150, doi: 10.1016/0378-3839(94)90019-1.
[7] V. Gruwez et al., An Inter-model Comparison for Wave Interactions with Sea Dikes on Shallow Foreshores, J. Mar. Sci. Eng., 8(12) (2000) 1–37. doi: 10.3390/jmse8120985.
[8] F. M. Judge, A. C. Hunt-Raby, J. Orszaghova, P. H. Taylor, and A. G. L. Borthwick, Multi-Directional Focused wave Group Interactions with a Plane Beach, Coast. Eng., 152(2019) 103531, doi: 10.1016/j.coastaleng.2019.103531.
[9] M. Zijlema, G. Stelling, and P. Smit, SWASH: An Operational Public Domain code for Simulating Wave Fields and Rapidly varied flows in Coastal waters, Coast. Eng., 58(10)(2011). 992–1012, doi: 10.1016/j.coastaleng.2011.05.015.
[10] D. M. Skene, L. G. Bennetts, M. H. Meylan, and A. Toffoli, Modelling Water Wave Overwash of a thin Floating Plate, J. Fluid Mech. 777(2015) 1–13. doi: 10.1017/jfm.2015.378.
[11] T. Suzuki et al., Efficient and Robust Wave Overtopping Estimation for Impermeable Coastal Structures in Shallow Foreshores using SWASH, Coast. Eng., 122 (2017)108–123. doi: 10.1016/j.coastaleng.2017.01.009.
[12] D. F. A. Vanneste, C. Altomare, T. Suzuki, P. Troch, and T. Verwaest, Comparison of Numerical Models for Wave Overtopping and Impact on a Sea Wall, Coast. Eng. Proc., 1(34)(2014) 5. doi: 10.9753/icce.v34.structures.5.
[13] B. L. Dang, H. Nguyen-Xuan, and M. Abdel Wahab, Numerical Study on Wave Forces and Overtopping Over Various Seawall Structures using Advanced SPH-based method, Eng. Struct., 226 (2019) 111349, (2021), doi: 10.1016/j.engstruct.2020.111349.
[14] S. J. Lind, B. D. Rogers, and P. K. Stansby, Review of Smoothed Particle Hydrodynamics: Towards Converged Lagrangian flow Modelling: Smoothed Particle Hydrodynamics review, Proc. R. Soc. A Math. Phys. Eng. Sci., 476(2020) 2241, doi: 10.1098/rspa.2019.0801.
[15] Z. Liu and Y. Wang, Numerical Investigations and Optimisations of Typical Submerged box-type Floating Breakwaters using SPH, Ocean Eng., 209 (2020) 107475. doi: 10.1016/j.oceaneng.2020.107475.
[16] X. Y. Ni and W. Bin Feng, Numerical Simulation of Wave Overtopping Based on DualSPHysics, Appl. Mech. Mater., 405–408 (2013) 1463–1471. doi: 10.4028/www.scientific.net/AMM.405-408.1463.
[17] W. Finnegan and J. Goggins, Numerical simulation of linear water waves and wavestructure interaction, Ocean Eng., 43(2012) 23–31 doi: 10.1016/j.oceaneng.2012.01.002.
[18] J. Jiao and S. Huang, CFD Simulation of Ship Seakeeping Performance and Slamming loads in Bi-directional Cross wave,” J. Mar. Sci. Eng., 8(5)(2020) 1–24, 2020 doi: 10.3390/JMSE8050312.
[19] M. Zabihi, S. Mazaheri, and A. R. Mazyak, Wave Generation in a Numerical Wave Tank, 17th Mar. Ind. Conf. 22-25 December 2015 – Kish Isl.,. 2(11), 2015.
[20] Y. M. Choi, Y. J. Kim, B. Bouscasse, S. Seng, L. Gentaz, and P. Ferrant, Performance of Different Techniques of Generation and Absorption of Free-Surface Waves in Computational Fluid Dynamics, Ocean Eng., 214 (2019) 107575. (2020) doi: 10.1016/j.oceaneng.2020.107575.
[21] J. Inverno, M. G. Neves, E. Didier, and J. L. Lara, Numerical Simulation of Wave Interacting with a Submerged Cylinder using a 2D RANS model, J. Hydro-Environment Res., 12(2016) 1–15. doi: 10.1016/j.jher.2016.02.002.
[22] T. W. Hsu, C. M. Hsieh, and R. R. Hwang, Using RANS to Simulate Vortex Generation and Dissipation Around Impermeable Submerged Double Breakwaters, Coast. Eng.,51(7)(2004) 557–579. doi: 10.1016/j.coastaleng.2004.06.003.
[23] J. H. Chow, E. Y. K. Ng, and N. Srikanth, Numerical Study of the Dynamic Response of a Wind Turbine on a Tension leg Platform with a Coupled Partitioned Six Degree-of-Freedom Rigid body Motion Solver, Ocean Eng., 172(2018) 575–582, (2019) doi: 10.1016/j.oceaneng.2018.12.040.
[24] J. L. Lara, P. Higuera, R. Guanche, and I. J. Losada, Wave Interaction With Piled Structures: Application With IH-FOAM, Vol. 7 CFD VIV, no. August, p. V007T08A078, (2013) doi: 10.1115/OMAE2013-11479.
[25] Z. Z. Hu, D. Greaves, and A. Raby, Numerical wave tank Study of Extreme Waves and Wave-structure Interaction using OpenFoam®,” Ocean Eng., 126 (2015) 329–342, (2016). doi: 10.1016/j.oceaneng.2016.09.017.
[26] L. F. Chen, J. Zang, A. J. Hillis, G. C. J. Morgan, and A. R. Plummer, Numerical investigation of wave – Structure Interaction using OpenFOAM, Ocean Eng., 88(2014) 1950 91–109. doi: 10.1016/j.oceaneng.2014.06.003.
[27] G. Zhang, X. Chen, and D. Wan, MPS-FEM Coupled Method for Study of Wave-Structure Interaction, J. Mar. Sci. Appl., 18(4)(2019) 387–399, doi: 10.1007/s11804-019-00105-6.
[28] I. C. Chien, S. P. Wu, H. C. Ke, S. L. Lo, and H. H. Tung, Comparing Ozonation and Biofiltration Treatment of Source Water with High Cyanobacteria-Derived Organic Matter: The Case of a Water Treatment Plant followed by a Small-Scale Water Distribution System, Int. J. Environ. Res. Public Health, 15(12), (2018) doi: 10.3390/ijerph15122633.
[29] J. Liu and G. Lin, Scaled Boundary FEM solution of Short-Crested Wave Interaction with a Concentric Structure with Double-layer arc- Shaped Perforated Cylinders, Comput. Fluids, 79(2013)82–104. doi: 10.1016/j.compfluid.2013.03.013.
[30] C. Engineering and U. Planning, Numerical Simulation of Regular Waves Run-Up Over Slopping Beach By Open Foam, An Int. J., 1, 1(2014)
[31] T. Bunnik, Omae2016-54808, (2017) 1–12.
[32] C. Zhang, N. Lin, Y. Tang, and C. Zhao, A Sharp Interface Immersed Boundary/VOF model Coupled with Wave Generating and Absorbing options for Wave-Structure Interaction, Comput. Fluids, 89(2014)214–231. doi: 10.1016/j.compfluid.2013.11.004.
[33] H. Moayedi, B. B. K. Huat, T. A. M. Ali, Z. Bakhshipor, and M. Ebadi, Comparison of Geotube and Stone Cemented wall Stability as Coastal Protection System [case study and 2D limit equilibrium and FEM modeling analysis], Aust. J. Basic Appl. Sci., 5(7)(2011) 1–6.
[34] X. Zhao, X. Wang, and Q. Zuo, Numerical Simulation of Wave Interaction with Coastal Structures using a CIP-based Method, Procedia Eng. 8th Int. Conf. Asian Pacific Coasts, 116(1)(2015). 155–162. doi: 10.1016/j.proeng.2015.08.277.
[35] M. Muttray and H. Oumeraci, Prediction of wave Pressures on Smooth Impermeable Seawalls, 26(1999) 739–765.
[36] Q. Du and D. Y. C. Leung, 2D Numerical Simulation of Ocean Waves, Mar. Ocean Technol.(2011)2183–2189. doi: 10.3384/ecp110572183.
[37] G. MAYRA, No Title No Title, J. Chem. Inf. Model., 53(9)(2013) 1689–1699.
[38] Marine Sanctuaries Conservation Series, The Impacts of Coastal Protection Structures in California's Monterey Bay National Marine Sanctuary,( 2005).
[39] M. Zabihi, S. Mazaheri, and A. R. Mazyak, Wave Generation in a Numerical Wave Tank, 17th Mar. Ind. Conf. 22-25 December 2015 – Kish Isl., 2(11) (2015) [Online].Available:https://www.researchgate.net/publication/28828 0408.
[40] T. J. Wipf et al., Design Recommendations for the use of FRP for Reinforcement and Strengthening of Concrete Structures, Constr. Build. Mater., 5(1)(2016) 16–28 doi: 10.1002/pse.139.
[41] K. O. Connell and A. Cashman, Development of a numerical wave tank with reduced discretisation error, Int. Conf. Electr. Electron. Optim. Tech. ICEEOT (2016) 3008–3012, doi: 10.1109/ICEEOT.2016.7755252.
[42] 367 Hydro Patana Full Length Paper .(2018).
[43] T. V. Karambas and A. G. Samaras, An Integrated Numerical Model for the Design of Coastal Protection Structures, J. Mar. Sci. Eng., 5(4)( 2017). doi: 10.3390/jmse5040050.
[44] H. E. Williams, R. Briganti, A. Romano, and N. Dodd, Experimental Analysis of wave Overtopping: A new Small Scale Laboratory Dataset for the Assessment of Uncertainty for Smooth Sloped and Vertical Coastal Structures, J. Mar. Sci. Eng., 7(7)(2019)1–18. doi: 10.3390/jmse7070217.
[45] F. Azarsina, A. Pirzadeh, and G. Darvish, Small Scale Physical Measurement of Wave Overtopping For Different Shore Protection Structures, Int. J. Marit. Technol., no. Summer and Autumn 12(2019) 49–56. doi: 10.29252/ijmt.12.49.
[46] T. Suzuki, M. Tanaka, and A. Okayasu, Laboratory Experiments on wave Overtopping over Smooth and Stepped Gentle Slope Seawalls, Asian Pacific Coasts, (2003) - Proc. 2nd Int. Conf., no. (2004) doi: 10.1142/9789812703040_0078.
[47] SPM, SHORE PROTECTION MANUAL Waterways Experiment Station , Corps of Engineers, Dep. Army, Waterw. Exp. Station. 1 (II)(1984).
[48] H. Oumeraci and A. Kortenhaus, Core made of geotextile sand containers for rubble mound breakwaters and seawalls: Effect on armour stability and hydraulic performance, Ocean Eng., 38(1)(2011) 159–170. doi: 10.1016/j.oceaneng.2010.10.014.
[49] M. Hom-ma and K. Horikawa, Wave Forces Against Sea Wall, pp. (1964)490–503.
[50] W. Allsop, Wave reflections from coastal structures., Odu Bull.,. 16(6) (1989). doi: 10.1142/9789812709554_0364.