Synthesis of Polyaniline Dye Pigment and Its Study in Dye-Sensitive Solar Cells

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
  
© 2022 by IJETT Journal
Volume-70 Issue-4
Year of Publication : 2022
Authors : Dilmurod Shukurov, Khayit Turaev, Panji Tojiyev, Ma’sud Karimov
  10.14445/22315381/IJETT-V70I4P220

MLA 

MLA Style: Dilmurod Shukurov, et al. "Synthesis of Polyaniline Dye Pigment and Its Study in Dye-Sensitive Solar Cells." International Journal of Engineering Trends and Technology, vol. 70, no. 4, Apr. 2022, pp. 236-244. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I4P220

APA Style: Dilmurod Shukurov, Khayit Turaev, Panji Tojiyev, Ma’sud Karimov. (2022). Synthesis of Polyaniline Dye Pigment and Its Study in Dye-Sensitive Solar Cells. International Journal of Engineering Trends and Technology, 70(4), 236-244. https://doi.org/10.14445/22315381/IJETT-V70I4P220

Abstract
The aim of this study is to synthesize and physicochemically study a semiconductor polymer dye pigment used as a dye pigment for dye-sensitive solar cells, which are currently considered third-generation solar cells as one of the alternative energy sources. to achieve this goal, polyaniline was synthesized in an acidic environment in the presence of aniline and ammonium persulfate by the oxidative polymerization method. the synthesized semiconductor polymer dye was first used in the preparation of solar elements sensitive to new dyes from pigment. Measurements in the prepared paintsensitive solar cells were performed outdoors for 12 days using a DT 9205A multimeter. the highest values of voltage and current were recorded on the first day as 700.6 (mV), 65.45 (mA) and the lowest as 335 (mV), 26.6 (mA) on the last day of measurement was found.

Keywords
Dye-sensitive solar cell, Photophysics, Polymer films, Polyaniline, pigments.

Reference
[1] R. V. Gonзalves, M. L. Zanini, J. A. Malmonge, L. Bonnaud, and N. R. S. Basso, Cashew Nut Shell Liquid a Valuable Raw Material for Generating Semiconductive Polyaniline Nanofibers, Polimeros Ciencia E Tecnologia. 28(1) (2018) 61-68. Http://Dx.Doi.Org/10.1590/01041428.01417
[2] J. Bhadra, A. Alkareem, and N. Al-Thani, A Review of Advances in the Preparation and Application of Polyaniline Based Thermoset Blends and Composites, Journal of Polymer Research. 27(5) (2020) 122. Http://Dx.Doi.Org/10.1007/S10965-020-02052-1
[3] D. M. Sarno, S. K. Manohar, and A. G. Macdiarmid, Controlled Interconversion of Semiconducting and Metallic Forms of Polyaniline Nanofibers, Synthetic Metals. 148(3) (2005) 237-243. Doi:10.1016/J.Synthmet.2004.09.038
[4] R. V. Salvatierra, M. M. Oliveira, and A. J. G. Zarbin, One-Pot Synthesis and Processing of Transparent, Conducting, and Freestanding Carbon Nanotubes/Polyaniline Composite Films, Chem. Mater. 22(18) (2010) 5222–5234. Https://Doi.Org/10.1021/Cm1012153
[5] V. V. Kondratiev, N. A. Pogulaichenko, S. Hui, E. G. Tolstopjatova, and V. V. Malev, Electroless Deposition of Gold Into Poly-3,4Ethylenedioxythiophene Films and Their Characterization Performed in Chloride-Containing Solutions, Journal of Solid State Electrochem. 16(1) (2012) 1291–1299. Doi:10.1007/S10008-011-1518-1
[6] E. G. Tolstopjatova, S. N. Eliseeva, A. O. Nizhegorodova, and V. V. Kondratiev, Electrochemical Properties of Composite Electrodes, Prepared by Spontaneous Deposition of Manganese Oxide Into Poly-3,4-Ethylendioxythiophene, Journal of Electrochim. 173(1) (2015) 40–49. Doi:10.1016/J.Electacta.2015.05.033
[7] E. V. Alekseeva, I. A. Chepurnaya, V. V. Malev, and O. V. Levin, Polymeric Nickel Complexes With Salen-Type Ligands for Modification of Supercapacitor Electrodes: Impedance Studies of Charge Transfer and Storage Properties, Journal of Electrochim. 225(2) (2017) 378–391. Doi:10.1016/J.Electacta.2016.12.135
[8] A. Petr, D. Wei, C. Kvarnstrom, A. Ivaska, and L. Dunsch, Pi-Dimer of an Aniline Dimer: an Esr-Uv-Vis Spectroelectrochemical Study, Journal of Phys. Chem. B. 111(43) (2007) 12395-8. Doi: 10.1021/Jp073612f
[9] J. Macaira, L. Andrade, and A. Mendes, Review on Nanostructured Photoelectrodes for Next Generation Dye-Sensitized Solar Cells, Renew. Sustain. Energ. Rev. 27(5) (2013) 334–349. Doi:10.1016/J.Rser.2013.07.011
[10] G. L. Pakhomov, E. E. Kuzin, and A. V. Murel, Nir Photoresponse in the Mixed Phthalocyanine Films, Central European Journal of Physics, 4(4) (2006) 494-502.
[11] A. Kay, and M. Gratzel, Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder, Journal of Solor Energy Mater. Sol. Cells. 44(1) (1996) 99-117. Https://Doi.Org/10.1016/0927-0248(96)00063-3
[12] D. P. Hagberg, J. Yum, H. F. Lee, De. T. Angelis, K. Marinado, and M. Karlsson, Molecular Engineering of Organic Sensitizers for DyeSensitized Solar Cell Applications, Journal of American Chemistry Society. 130(4) (2008) 6259–6266. Https://Doi.Org/10.1021/Ja800066y
[13] M. K. Nazeeruddin, E. Baranoff, and M. Grдtzel, Dye-Sensitized Solar Cells A Brief Overview, Journal of Solar Energy. 85(6) (2011) 11721178. Https://Doi.Org/10.1016/J.Solener.2011.01.018
[14] D. Kh. Shukurov, Kh. Kh. Turayev, M. U. Karimov, and A. T. Djalilov, Izgotovleniye I Analiz Sensibilizirovannykh Solnechnykh Elementov S Ispol'zovaniyem Pigmenta Na Osnove Ftalotsianina Medi I, Universum: Tekhnicheskiye Nauki. 80(11) (2020) 73-78. Doi - 10.32743/Unitech.2020.80.11-4
[15] H. Chang, and Y. J. Lo, Pomegranate Leaves and Mulberry Fruit AS Natural Sensitizers for Dye-Sensitized Solar Cells, Journal of Sol Energy. 84(3) (2010) 1833-1837.
[16] Y. Lu, Zh. Xiao, and Y. Yuan, Fluorine Substituted Thiophene-Quinoxaline Copolymer to Reduce the Homo Level and Increase the Dielectric Constant for High Open-Circuit Voltage Organic Solar Cells, Journal of Mater Chem. 1(4) (2013) 630-637. Https://Pubs.Rsc.Org/En/Content/Articlelanding/2013/Tc/C2tc00327a
[17] Kh. Kh. Turaev, D. Kh. Shukurov, A. T. Djalilov, and M. U. Karimov, New Review of Dye Sensitive Solar Cells, International Journal of Engineering Trends and Technology. 69(9) (2021) 265-271. Doi:10.14445/22315381/Ijett-V69i9p232
[18] E.Y. Yagudaeva, Y. A. Bukina, A. I. Prostyakova, V. P. Zubov, V. A. Tverskoy, and D. V. Kapustin, Oxidative Polymerization of Aniline on the Surface of Silica in the Presence of Poly (Sulfonic Acids) as A Method of Preparing Efficient Biosorbents, Polymer Science Series A. 51(6) (2009) 675-682. Doi: 10.1134/S096554x09060121
[19] K. S. Beknazarov, A. T. Dzhlilov, U. Y. Ostanov, and A. M. Erkaev, the Inhibition of the Corrosion of Carbon Steel by Oligomeric Corrosion Inhibitors in Different Media, International Polymer Science and Technology.42(4) (2015) 33-37. Doi:10.1177/0307174x1504200406.
[20] J. Shen, S. Shahid, I. Amura, A. Sarihan, M. Tian, and E. A. Emanuelsson, Enhanced Adsorption of Cationic and Anionic Dyes from Aqueous Solutions by Polyacid Doped Polyaniline, Synthetic Metals. 245(12) (2018) 151-159. Doi.Org/10.1016/J.Synthmet.2018.08.015
[21] E. Venancio, P. Wang, and A. Macdiarmid, the Azanes: A Class of Material Incorporating Nano/Micro Self-Assembled Hollow Spheres Obtained by Aqueous Oxidative Polymerization of Aniline, Synthetic Metals. 156(6) (2005) 357-369. Https://Doi.Org/10.1016/J.Synthmet.2005.08.035
[22] U. Y. Ostanov, K. S. Beknazarov, and A. T. Dzhalilov, Study by Differential Thermal Analysis and Thermogravimetric Analysis of the Heat Stability of Polyethylene Stabilized with Gossypol Derivatives, Journal of International Polymer Science and Technology. 38(9) (2011) 25–27.
[23] K. S. Beknazarov, and A. T. Dzhalilov, the Synthesis of Oligomeric Derivatives of Gossypol and the Study of their Antioxidative Properties, International Polymer Science and Technology. 43(3) (2016) 25–30. Doi:10.1177/0307174x1604300305
[24] V. P. Dhende, S. Samanta, D. M. Jones, I. R. Hardin, and J. Locklin, One-Step Photochemical Synthesis of Permanent, Nonleaching, Ultrathin Antimicrobial Coatings for Textiles and Plastics Acs, Appl Mater Interfaces. 3(5) (2011) 2830-2837. Https://Doi.Org/10.1021/Am200324f
[25] Ch. Pavel, and Łapkowski Mieczysław, an Insight into Ionic Conductivity of Polyaniline Thin Films. Materials. 13(2) (2020) 4-15. Doi:10.3390/Ma13122877
[26] M. S. Beatriz, Diego Cazorla-Amorós, and Morallón Emilia, Tailoring Intrinsic Properties of Polyaniline by Functionalization with Phosphonic Groups, Polymers. 12(3) (2020) 4-12. Doi:10.3390/Polym12122820
[27] D. M. Sarno, S. K. Manohar, and A. G. Macdiarmid, Controlled Interconversion of Semiconducting and Metallic Forms of Polyaniline Nanofibers, Synthetic Metals. 148(3) (2005) 237-243. Doi:10.1016/J.Synthmet.2004.09.038
[28] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Plastic Solar Cells Adv, Funct. Mater. 11(1) (2001) 15-26. Https://Doi.Org/10.1002/16163028(200102)11:13.0.Co;2-A
[29] A. X. Narzullaev, X. S. Beknazarov, A. T. Jalilov, and M. F. Rajabova, Studying the Efficiency of Corrosion Inhibitor Iktsf-1, Ir-Dea, Ir-Dar-20 in 1m Hcl, International Journal of Advanced Science and Technology. 28(15) (2019) 113–122. Http://Sersc.Org/Journals/Index.Php/Ijast/Article/View/1555
[30] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Asymmetric Tandem Organic Photovoltaic Cells With Hybrid Planar-Mixed Molecular Heterojunctions, Appl. Phys. 85(11) (2004) 5757-5759. Https://Doi.Org/10.1063/1.1829776
[31] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Ef Cient Tandem Polymer Solar Cells Fabricated by AllSolution Processing, Science. 317(12) (2007) 222-225. Doi:10.1126/Fan.1141711
[32] Afshin Hadipour, Bert De Boer, and Paul Blom, Solution-Processed Organic Tandem Solar Cells with Embedded Optical Spacers, Journal of Applied Physics. 102(9) (2007) 4-6. Doi: 10.1063/1.2786024
[33] G. Dennler, H. J. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N. S. Sariciftci, Enhanced Spectral Coverage in Tandem Organic Solar Cells, Appl. Phys. Lett. 89(7) (2006) Doi:10.1063/1.2336593
[34] J. H. Kim, J. H. Kim, S. A. Shin, and J. B. Park, Fluorinated Benzoselenadiazole-Based Low-Band-Gap Polymers for High Efficiency Inverted Single and Tandem Organic Photovoltaic Cells, Macromolecules. 47(5) (2014) 1613-1622. Https://Doi.Org/10.1021/Ma4026493