A Comparative Performance Analysis of Modeling and Simulation Tools for Smart Grid

  IJETT-book-cover  International Journal of Engineering Trends and Technology (IJETT)          
© 2022 by IJETT Journal
Volume-70 Issue-4
Year of Publication : 2022
Authors : Rashi Singh, Nasib Singh Gill, Preeti Gulia


MLA Style: Rashi Singh, et al. "A Comparative Performance Analysis of Modeling and Simulation Tools for Smart Grid." International Journal of Engineering Trends and Technology, vol. 70, no. 4, Apr. 2022, pp. 332-342. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I4P229

APA Style: Rashi Singh, Nasib Singh Gill, Preeti Gulia.(2022). A Comparative Performance Analysis of Modeling and Simulation Tools for Smart Grid. International Journal of Engineering Trends and Technology, 70(4), 332-342. https://doi.org/10.14445/22315381/IJETT-V70I4P229

A smart grid is a comprehensive system that integrates various components with the power system and communication infrastructure to control it. As the communication infrastructure began to integrate, the potential security risks increased. Unlike the existing IT system, controlling the power system involves physical operations and processes, leading to new risks amplifying even existing risks. However, availability is more important than anything else in the system, so it is necessary to identify possible threats in advance in the smart grid system. The Smart Grid is the need of the hour, which essentially requires testing different scenarios and conditions to meet the realistic and real-time requirements. Therefore, various potential risks need to be analyzed that may help in establishing modelling and simulations to meet the requirements. This paper presents the review and comparative analysis of simulation tools and modelling Plug-ins.

Smart grid, Simulators, Modeling Tools, Co-simulators, Internet of Things (IoT).

[1] M. Safiuddin, History of Electric Grid, (2017). Https://Www.Researchgate.Net/Publication/312189966_History_of_Electric_Grid.
[2] S. Azad And F. Sabrina, Transformation of Smart Grid Using Machine Learning, 0–5. Https://Www.Researchgate.Net/Publication/337608853_Transformation_of_Smart_Grid_Using_Machine_Learning
[3] A. Ghasempour, Internet of Things in Smart Grid: Architecture, Applications, Services, Key Technologies, And Challenges, Inventions, 4(1) (2019) Doi: 10.3390/Inventions4010022. Https://Www.Mdpi.Com/2411-5134/4/1/22/Htm
[4] H. P. T. T. Meng Fanlin, Summary of Research on Security And Privacy of Smart Grid, Int. Conf. Comput. Commun. Netw. Secur., No. 978-1-7281-4349–1/20/$31.00 ©2020 Ieee Doi 10.1109/Ccns50731.2020.00017, (2020) 39–42. Doi: 10.1109/Ccns50731.2020.00017.Https://Sci-Hub.St/10.1109/Ccns50731.2020.00017
[5] N. Kumar And G. Singh, Energy Efficient Load Optimization Techniques For Smart Grid With Futuristic Ideas, Int. J. Eng. Adv. Technol. 9(1) (2019) 4327–4331. Doi: 10.35940/Ijeat.A1778.109119. Https://Www.Ijeat.Org/Wp-Content/Uploads/Papers/V9i1/A1778109119.Pdf
[6] B. Ks. Vs S. Et Al., Ieee Cyber Security For the Smart Grid. (2014). Https://Www.Researchgate.Net/Publication/259764406_Cyber_Security_of_Smart_Grid_Infrastructure
[7] M. Shrestha, C. Johansen, J. Noll, And D. Roverso, A Methodology For Security Classification Applied To Smart Grid Infrastructures, Int. J. Crit. Infrastruct. Prot., Vol. 28, P. 100342, 2020, Doi: 10.1016/J.Ijcip.2020.100342. Https://Www.Sciencedirect.Com/Science/Article/Pii/S1874548220300068
[8] Y. Ma, F. Zhao, X. Zhou, And Z. Gao, Summary of Cloud Computing Technology in Smart Grid, Proc. 2018 Ieee Int. Conf. Mechatronics Autom. Icma, (2018) 253–258. Doi: 10.1109/Icma.2018.8484418. Https://Sci-Hub.St/10.1109/Icma.2018.8484418
[9] M. Irfan, U. Khan, M. Riaz, And I. C. Islamabad, Various Types of Smart Grid Techniques : A Review, (2016) 8–14. Http://Www.Ijmse.Org/Volume7/Issue8/Paper2.Pdf
[10] Z. Zhu, S. Lambotharan, W. H. Chin, And Z. Fan, Overview of Demand Management in Smart Grid And Enabling Wireless Communication Technologies, Ieee Wirel. Commun. 19(3) (2012) 48–56. Doi: 10.1109/Mwc.2012.6231159. Https://Www.Researchgate.Net/Publication/236881770_Overview_of_Demand_Management_in_Smart_Grid_And_Enabling_Wir eless_Communication_Technologies
[11] V. Liberatore And A. Al-Hammouri, Smart Grid Communication And Co-Simulation, Ieee 2011 Energytech, Energy Tech , 1 (2011) 1–5. Doi:10.1109/Energytech.2011.5948542. Http://Engr.Case.Edu/Liberatore_Vincenzo/Netbots/Energy-Tech.Pdf
[12] S. Rohjans, S. Lehnhoff, S. Schütte, F. Andrén, And T. Strasser, Requirements For Smart Grid Simulation Tools, Ieee Int. Symp. Ind. Electron., (2014) 1730–1736. Doi: 10.1109/Isie.2014.6864876.
[13] D. Montenegro, M. Hernandez, And G. A. Ramos, Real Time Opendss Framework For Distribution Systems Simulation And Analysis, Proc. 2012 6th Ieee/Pes Transm. Distrib. Lat. Am. Conf. Expo. T D-La. (2012) 1–5. Doi: 10.1109/Tdc-La.2012.6319069. Https://Www.Researchgate.Net/Publication/261207121_Real_Time_Opendss_Framework_For_Distribution_Systems_Simulation_ And_Analysis
[14] S. F. Bush, Appendix: Smart Grid Simulation Tools, Smart Grid, (2014) 489–491. Doi: 10.1002/9781118820216.App. Https://Onlinelibrary.Wiley.Com/Doi/Pdf/10.1002/9781118820216.App
[15] J. A. Martínez-Velasco And G. Guerra, Análisis De Grandes Redes De Distribución Con Recursos Energéticos Distribuidos, Ingeniare, 23(4) (2015) 594–608. Doi: 10.4067/S0718-33052015000400010. Https://Scielo.Conicyt.Cl/Scielo.Php?Script=Sci_Abstract&Pid=S0718-33052015000400010&Lng=Es&Nrm=Iso
[16] C. E. Murillo-Sanchez, Matpower-A Matlab Power System Simulation Package: User’’s Manual, (1997). Https://www.Researchgate.Net/Publication/246773484_MatpowerA_Matlab_Power_System_Simulation_Package_User''s_Manual
[17] A. Zarrad And I. Alsmadi, Evaluating Network Test Scenarios For Network Simulators Systems, Int. J. Distrib. Sens. Networks, 13(10) (2017) 1–17. Doi:10.1177/1550147717738216. Https://Journals.Sagepub.Com/Doi/10.1177/1550147717738216
[18] A. Ezreik And A. Gheryani, Design And Simulation of Wireless Network Using Ns-2, 2nd Int. Conf. Comput. Sci. Inf. Technol., 3(1) (2012) 157–161. Https://Www.Rroij.Com/Open-Access/Design-of-Wireless-Network-Based-on-Ns-1-8.Pdf
[19] L. Campanile, M. Gribaudo, M. Iacono, F. Marulli, And M. Mastroianni, Computer Network Simulation With Ns-3: A Systematic Literature Review, Electron., 9(2) (2020) 1–25. Doi:10.3390/Electronics9020272. Https://Www.Mdpi.Com/2079-9292/9/2/272
[20] Chahal, A., Gulia, P., & Gill, N. S. Different Analytical Frameworks And Big Data Models For the Internet of Things. Indonesian Journal of Electrical Engineering And Computer Science, 25(2) (2022) 1159. Https://Doi.Org/10.11591/Ijeecs.V25.I2.Pp1159-1166
[21] R. Khan, S. M. Bilal, And M. Othman, A Performance Comparison of Network Simulators For Wireless Networks, 1–6. Https://Arxiv.Org/Abs/1307.4129
[22] A. Varga And R. Hornig, An Overview of the Omnet++ Simulation Environment, Simutools 2008 - 1st Int. Icst Conf. Simul. Tools Tech. Commun. Networks Syst., 2008 (2008) Doi:10.4108/Icst.Simutools2008.3027. Https://Www.Researchgate.Net/Publication/220955489_An_Overview_of_the_Omnet_Simulation_Environment
[23] S, S., & K, R., Simulation of Integration of Smart Power Grids Using Distributed Energy Sources. Journal of Advanced Research in Dynamical And Control Systems, 11(0009-Special Issue) (2019) 644–652. Https://Doi.Org/10.5373/Jardcs/V11/20192617 https://Www.Jardcs.Org/Abstract.Php?Id=2328
[24] Y. H. S. A. Varga And G. K. Egan, Parallel Simulation Made Easy With Omnet, Proc. 15th Eur. Simul. Symp., 1(0) (2003). Https://Citeseerx.Ist.Psu.Edu/Viewdoc/Download?Doi=
[25] D. P. Chassin, S. Member, K. Schneider, C. Gerkensmeyer, And A. W. Gridlab-D, Gridlab-D : An Open-Source Power Systems Modeling And Simulation Environment, (2008) 1–5. Https://Www.Researchgate.Net/Publication/224312177_Gridlab-D_An_OpenSource_Power_Systems_Modeling_And_Simulation_Environment
[26] D. P. Chassin, J. C. Fuller, And N. Djilali, Gridlab-D: An Agent-Based Simulation Framework For Smart Grids, Hindawi Publ. Corp. J. Appl. Math., Article Id 492320. 2014(2014) 12. [Online]. Available: Http://Dx.Doi.Org/10.1155/2014/492320.Https://Www.Researchgate.Net/Publication/262302530_Gridlab-D_An_AgentBased_Simulation_Framework_For_Smart_Grids
[27] M. Bafleur, F. Caignet, And N. Nolhier, Modeling And Simulation Methods, Esd Prot. Methodol., 10(3) (2017) 111–175. Doi:10.1016/B978-1-78548-1222.500042. Https://Af.Booksc.Eu/Book/70977553/8b38cb
[28] R. Singh, N. S. Gill, And P. Gulia, A Systematic Review of Security in Smart Grid Infrastructure, J. Theor. Appl. Inf. Technol., 99(24) (2021) 5701–5712.
[29] L. Bajaj, M. Takai, R. Ahuja, And K. Tang, Glomosim: A Scalable Network Simulation Environment, Comp. A J. Comp. Educ., 28(1) (1999) 154–161. [Online]. Available: Http://Citeseerx.Ist.Psu.Edu/Viewdoc/Download?Doi= oc/Download?Doi=
[30] L. Thurner Et Al., Pandapower - An Open-Source Python Tool For Convenient Modeling, Analysis, And Optimization of Electric Power Systems, Ieee Trans. Power Syst., 33(6) (2018) 6510-6521. Doi:10.1109/Tpwrs.2018.2829021 https://Arxiv.Org/Pdf/1709.06743.Pdf.
[31] L. B. Iii And B. L. Barnett, Netsim : A Network Performance Simulator Netsim : A Network Performance Simulator, (1992).
[32] Kumar, N., & Singh, G., A Novel Algorithm To Improve the Power Quality For the Smart Grid And Integration With the Optimization Framework. International Journal of Engineering Trends And Technology, 69(9) (2021) 272–280. Https://Doi.Org/10.14445/22315381/Ijett-V69i9p233
[33] C. Mecsyco Et Al., Multi-Agent Environment For Complex Systems Cosimulation (Mecsyco) - Architecture Documentation, (2016). Http://Mecsyco.Com/Dev/Doc/User%20guide.Pdf
[34] J. Vaubourg Et Al., Multi-Agent Multi-Model Simulation of Smart Grids in the Ms4sg Project, Lect. Notes Artif. Intell. (Subseries Lect. Notes Comput. Sci., 9086 (2015) 240–251. Doi: 10.1007/978-3-319-18944-4_20. Https://Link.Springer.Com/Chapter/10.1007/978-3-319-18944-4_20
[35] H. Lin, S. S. Veda, S. S. Shukla, L. Mili, And J. Thorp, Geco: Global Event-Driven Co-Simulation Framework For Interconnected Power System And Communication Network, Ieee Trans. Smart Grid, 3(3) (2012) 1444–1456. Doi: 10.1109/Tsg.2012.2191805. Https://Www.Academia.Edu/13391158/Geco_Global_Event_Driven_Co_Simulation_Framework_For_Interconnected_Power_Syst em_And_Communication_Network
[36] M. S. Hasan, H. Yu, A. Carrington, And T. C. Yang, Co-Simulation of Wireless Networked Control Systems Over Mobile Ad Hoc Network Using Simulink And Opnet, Iet Commun., 3(8) (2009) 1297–1310. Doi: 10.1049/Iet-Com.2008.0536. Https://Www.Researchgate.Net/Publication/224560473_CoSimulation_of_Wireless_Networked_Control_Systems_Over_Mobile_Ad_Hoc_Network_Using_Simulink_And_Opnet
[37] M. S. Hasan, H. Yu, A. Griffiths, And T. C. Yang, Interactive Co-Simulation of Matlab And Opnet For Networked Control Systems, (2007) 237–242. Https://Www.Semanticscholar.Org/Paper/Interactive-Co-Simulation-of-Matlab-And-Opnet-For-HasanYu/42121f032dee4e44a8feb589e69ca903f44feebe
[38] W. Li, A. Monti, M. Luo, And R. A. Dougal, Vpnet : A Co-Simulation Framework For Analyzing Communication Channel Effects on Power Systems, (2011) 143–149. Https://Www.Researchgate.Net/Publication/233951410_Vpnet_A_CoSimulation_Framework_For_Analyzing_Communication_Channel_Effects_on_Power_System
[39] S. Schütte, S. Scherfke, And M. Tröschel, Mosaik: A Framework For Modular Simulation of Active Components in Smart Grids, 2011 Ieee 1st Int. Work. Smart Grid Model. Simulation, Sgms, (2011) 55–60. Doi: 10.1109/Sgms.2011.6089027. Https://Www.Researchgate.Net/Publication/224266100_Mosaik_A_Framework_For_Modular_Simulation_of_Active_Components _in_Smart_Grids
[40] S. D. Sector, Cycle Xxx Development of Co-Simulation Platforms For Static And Dynamic Analysis of Smart, (Theses), (2018).
[41] Kumar, N., & Singh, G., A Study of Atc Losses, Tools, Techniques And Ongoing Applications in Smart Grid. International Journal of Engineering Trends And Technology, 70(3) (2022) 140-150. Https://Doi.Org/10.14445/22315381/Ijett-V70i3p216
[42] K. Hopkinson, X. Wang, R. Giovanini, J. Thorp, K. Birman, And D. Coury, Epochs: A Platform For Agent-Based Electric Power And Communication Simulation Built From Commercial Off-the-Shelf Components, Ieee Trans. Power Syst., 21(2) (2006) 548–558. Doi:10.1109/Tpwrs.2006.873129.Https://Www.Researchgate.Net/Publication/3267625_Epochs_A_Platform_For_AgentBased_Electric_Power_And_Communication_Simulation_Built_From_Commercial_Off-the-Shelf_Components
[43] Neetesh Saxena, Cpsa : A Cyber-Physical Security Assessment Tool For Situational Awareness in Smart Grid, (2017). Https://Www.Researchgate.Net/Publication/320745103_Cpsa_A_CyberPhysical_Security_Assessment_Tool_For_Situational_Awareness_in_Smart_Grid
[44] S. Chatzivasileiadis Et Al., Cyber-Physical Modeling of Distributed Resources For Distribution System Operations, Proc. Ieee, 104(4) (2016) 789–806. Doi:10.1109/Jproc.2016.2520738. Https://Www.Researchgate.Net/Publication/275836185_CyberPhysical_Modeling_of_Distributed_Resources_For_Distribution_System_Operations
[45] Bindner, Henrik & Marinelli, Mattia. Overview of Simulation Tools For Smart Grids. (2013). Https://Www.Researchgate.Net/Publication/258317151_Overview_of_Simulation_Tools_For_Smart_Grids
[46] T. Kohtamäki, M. Pohjola, J. Brand, And L. M. Eriksson, Piccsim Toolchain - Design, Simulation And Automatic Implementation of Wireless Networked Control Systems, Proc. 2009 Ieee Int. Conf. Networking, Sens. Control. Icnsc, (2009) 49–54. Doi:10.1109/Icnsc.2009.4919244.Https://Www.Researchgate.Net/Publication/224444981_Piccsim_Toolchain__Design_Simulation_And_Automatic_Implementation_of_Wireless_Networked_Control_Systems
[47] R. M. Czekster, Tools For Modelling And Simulating the Smart Grid, (2020). Https://Www.Researchgate.Net/Publication/345973777_Tools_For_Modelling_And_Simulating_the_Smart_Grid
[48] K. Jaiswal And O. Prakash, Simulation of Manet Using Glomosim Network Simulator, 5(4) (2014) 4975–4980. Http://Citeseerx.Ist.Psu.Edu/Viewdoc/Download?Doi=
[49] J. P. G. Sterbenz, Network Simulation With Ns-3, Simulation, (2010) 1–15. Doi: 10.2313/Net-2020-11-1.
[50] R. Singh And N. S. Gill, Use of Iot And Machine Learning For Efficient Power Management Through Smart Grid: A Review, 29(4) (2020) 8982–8990