Object Tracking using Multi Adaptive Feature Extraction Technique

Object Tracking using Multi Adaptive Feature Extraction Technique

  IJETT-book-cover           
  
© 2022 by IJETT Journal
Volume-70 Issue-6
Year of Publication : 2022
Authors : Sreehari Patibandla, Maruthavanan Archana, Rama Chaithanya Tanguturi
DOI : 10.14445/22315381/IJETT-V70I6P229

How to Cite?

Sreehari Patibandla, Maruthavanan Archana, Rama Chaithanya Tanguturi, "Object Tracking using Multi Adaptive Feature Extraction Technique," International Journal of Engineering Trends and Technology, vol. 70, no. 6, pp. 279-286, 2022. Crossref, https://doi.org/10.14445/22315381/IJETT-V70I6P229

Abstract
Object tracking is a complex issue in computer vision; despite fast motion and motion blur, most relevant techniques have produced lesser performances. To overcome the complex issues of feature extraction, the enhanced technology of the Multi Adaptive Feature Extraction (MAFE) technique is proposed in this paper that has identified the sub-template feature for the object tracking process. The similarity values of the sub-template feature have been computed through the histogram, and they can be identified with the similarity matrix function. The classification process is enabled with Jeffrey's entropy that the updated sub-template. The performance evaluation involves the VTB dataset for evaluating the performance of the proposed MAFE technique, which is compared with the related techniques. The result proves that the proposed methodology has an improved success rate than other techniques.

Keywords
Object tracking, Multi Adaptive Feature Extraction, Jeffrey's entropy, success rate, the posterior probability.

Reference
[1] Mangawati, A.; Leesan, M.; Aradhya, H.V.R. Object Tracking Algorithms for Video Surveillance Applications. In Proceedings of the International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 3–5 , (2018) 667–671.
[2] Verma, R. A Review of Object Detection and Tracking Methods. Int. J. Adv. Eng. Res. Dev, 4 (2017) 569–578.
[3] Riahi, D.; Bilodeau, G.A. Multiple Object Tracking Based on Sparse Generative Appearance Modeling, In Proceedings of the IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September , (2015) 4017–4021.
[4] Wu, Y.; Lim, J.; Yang, M.H. Online Object Tracking. A Benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June, (2013) 2411–2418.
[5] Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng, M.M.; Hicks, S.L.; Torr, P.H. Struck: Structured Output Tracking With Kernels. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November, (2011) 263–270.
[6] Kalal, Z.; Matas, J.; Mikolajczyk, K. Pn Learning: Boot-Strapping Binary Classiers By Structural Constraints. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June, (2010) 49–56.
[7] Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual Object Tracking Using Adaptive Correlation Filters. in Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June, (2010) 2544–2550.
[8] Zhang, T.; Xu, C.; Yang, M.H. Multi-Task Correlation Particle Filter for Robust Object Tracking. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July, (2017) 4335–4343.
[9] Perez-Cham, O.E.; Puente, C.; Soubervielle-Montalvo, C.; Olague, G.; Aguirre-Salado, C.A.; Nuñez-Varela, A.S. Parallelization of the Honeybee Search Algorithm for Object Tracking. Appl. Sci., 10 (2020) 2122.
[10] Geiger, A.; Lauer, M.; Wojek, C.; Stiller, C.; Urtasun, R. 3d Traffic Scene Understanding From Movable Platforms. IEEE Trans. Pattern Anal. Mach. Intell, 36 (2013) 1012–1025.
[11] Chang, S.; Li, W.; Zhang, Y.; Feng, Z. Online Siamese Network for Visual Object Tracking. Sensors, 19 (2019) 1858.
[12] Kuang Chiu, H.; Prioletti, A.; Li, J.; Bohg, J. Probabilistic 3D Multi-Object Tracking for Autonomous Driving,(2020). Arxiv , Arxiv:2001.05673.
[13] Yang, H.;Wen, J.; Wu, X.; He, L.; Mumtaz, S. An Efficient Edge Artificial Intelligence Multipedestrian Tracking Method with Rank Constraint. IEEE Trans. Ind. Inform, 15 (2019) 4178–4188.
[14] Weng, X.;Wang, Y.; Man, Y.; Kitani, K.M. Gnn3dmot: Graph Neural Network for 3d Multi-Object Tracking With 2d-3d MultiFeature Learning. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle,WA, USA, 14–19 June, (2020) 6499–6508.
[15] Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger, (2016). Arxiv, Arxiv:1612.08242. Available Online: Http://Pjreddie.Com/Darknet/Yolov2/
[16] Weng, X.; Wang, J.; Held, D.; Kitani, K. AB3DMOT: A Baseline for 3D Multi-Object Tracking and New Evaluation Metrics, (2020). Arxiv, Arxiv:2008.08063.
[17] Leal-Taixé, L.; Milan, A.; Reid, I.; Roth, S.; Schindler, K. Motchallenge 2015: Towards A Benchmark for Multi-Target Tracking, (2015). Arxiv, Arxiv:1504.01942
[18] Bae, S.H.; Yoon, K.J. Robust Online Multi-Object Tracking Based on Tracklet Confidence and Online Discriminative Appearance Learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June, (2014) 1218–1225.
[19] Http://Cvlab.Hanyang.Ac.Kr/Tracker_Benchmark/Datasets.Html
[20] Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking With Kernelized Correlation Filters. IEEE Trans. Pattern Anal. Mach. Intell, 37 (2014) 583–596.
[21] Danelljan, M.; Häger, G.; Khan, F.; Felsberg, M. Accurate Scale Estimation for Robust Visual Tracking. in Proceedings of the British Machine Vision Conference, Nottingham, UK, 1–5 September, (2014).
[22] Ning, J.; Zhang, L.; Zhang, D.;Wu, C. Robust Object Tracking Using Joint Color-Texture Histogram. Int. J. Pattern Recognit. Artif. Intell, 23 (2009) 1245–1263.