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Abstract — Similarity measure is a very important 

topic in fuzzy set theory. Torra proposed the notion of 

hesitant fuzzy set (HFS) which is a generalization of 

the notion of Zadeh’ fuzzy set. In this paper, a 

hesitant fuzzy quasi subset is first defined. Moreover, 

the modified axiom definitions of distance and 

similarity measures for HFSs are given and some 

novel distance and similarity measures for HFSs are 

developed. Based on the proposed similarity 
measures, a method of multiple attribute decision 

making (MADM) under hesitant fuzzy environment is 

established. Additionally, a numerical example is 

given to illustrate the application of the proposed 

similarity measures of HFSs in multiple attribute 

decision making. 
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I. INTRODUCTION 

Since the concept of fuzzy set was introduced by 

Zadeh [1], many novel methods and theories dealing 

with imprecision and uncertainty have been studied, 

such as intuitionistic fuzzy set (IFS) [2], interval-

valued fuzzy set (IVFS) [4], vague set [3], and type-2 

fuzzy set (T2FS) [5]. They are all extensions of 

Zadeh’ fuzzy set theory. And many scholars have 

also discussed a lot of meaningful applications of 

these theories in cluster analysis, multi-criteria 

decision, grey relational analysis and information 

aggregation.  

Similarity measure is a very important tool and it 
has been applied in many fields. Since Zadeh [6] 

introduced the concept of similarity relation, lots of 

researchers have studies the similarity measures of 

fuzzy sets from different aspects. Fan and Xie [7] as 

well as Liu[8] gave an axiom definition of similarity 

measures of two fuzzy sets and studied some basic 

properties. Based on intersection and union 

operations, the maximum difference and the 

differences as well as the sum of membership grades, 

Pappis and Karacapilidis [9] investigated three 

similarity measures of fuzzy sets. In [10], Wang 
introduced two new similarity measures of fuzzy sets. 

Moreover, many similarity measures for vague sets, 

IFSs, IVFSs and T2FSs have also been widely 

developed [3, 11-23].  

Recently, Torra and Narukawa [24, 25] proposed 

the hesitant fuzzy set (HFS) theory to deal with 

hesitation. HFS permits the membership degree to be 

represented by several values between 0 and 1. It is 

also an extensions of Zadeh’ fuzzy set. After that, 

HFS has been applied in clustering analysis and 

decision-making [26-35]. For example, Xia and Xu 
[31] investigated the aggregation operators of HFSs 

and their applications in decision making. Chen [28] 

discussed the correlation coefficients of HFSs and 

applied them to deal with clustering analysis. Xu and 

Xia [33] presented the axiom definitions of distance 

and similarity measures for HFSs. They also 

proposed some distance of HFSs and obtained some 

similarity measures corresponding to the proposed 

distances of HFSs. It is worth noting that all of these 

definitions of distance and similarity measures did 

not take into account of the condition of triangle 
inequalities. However, we think that this condition is 

indispensable in the study of distance and similarity 

measures in that they are more consistent with 

humans’ thinking. For example, the notions of fuzzy 

sets [7, 8], IFSs [18, 20, 36], IVFSs [26] and T2FSs 

[19] all satisfy the triangle inequalities. Therefore it is 

necessary to modify the axiom definitions of distance 

and similarity measures for HFSs. Furthermore, 

based on the new axiom definitions, we also propose 

some new distance and similarity measures between 

HFSs and apply them to multiple attribute hesitant 

fuzzy decision making.  
The rest of this paper is organized as follows. In 

Section 2, we review some concepts of HFS and give 

the modified axiom definitions of distance and 

similarity measures between HFSs. Based on 

geometric distance model, in Section 3, we present 

some new geometric distance and similarity measures 

of HFSs Then we apply the proposed similarity 

measures of HFSs to decision-making in Section 4. 

We make the conclusions in Section 5. 

II. PRELIMINARIES 

Torra and Narukawa [24, 25] introduced the 

concept of 𝐻𝐹𝑆 as follows.  
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Definition 2.1 Let X be a fixed set. An HFS on 

X is defined in terms of a function that when applied 

to X returns a subset of [0,1].  

To be easily understood, Xia and Xu [33] 

express an HFS H as 𝐻 = {
ℎ𝐻 (𝑥)

𝑥
|𝑥 ∈ 𝑋} , where 

ℎ𝐻(𝑥) is a set of some values in [0, 1], denoting the 

possible membership degrees of the element 𝑥 ∈ 𝑋 to 

the set H. For convenience, ℎ = ℎ𝐻(𝑥)  is called a 

hesitant fuzzy element (𝐻𝐹𝐸) , 𝑛(ℎ)  denotes the 

number of values in ℎ, and the values are arranged in 

decreasing order in this whole paper. 

Xu and Xia [33] first gave the axiom definitions 

of distance and similarity measures between 𝐻𝐹𝑆𝑠 as 

follows.  

Definition 2.2  Let X be a fixed set, A and B be 

two 𝐻𝐹𝑆s over X . Then the distance of A  and B  is 

denoted by 𝐷(A, B) , which satisfies the following 

properties: 

(1) 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴); 

 (2) 𝐷(𝐴, 𝐵) = 0 ⇔ 𝐴 = 𝐵; 

(3) 0 ≤ 𝐷(𝐴, 𝐵) ≤ 1. 

Definition 2.3 Let X be a fixed set, A and B be 

two 𝐻𝐹𝑆s over X. Then the similarity measure of A 

and B  is denoted by s(A, B) , which satisfies the 

following properties: 

(1) 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴); 

(2) 𝑆(𝐴, 𝐵) = 1 ⇔ 𝐴 = 𝐵; 

(3) 0 ≤ 𝑆(𝐴, 𝐵) ≤ 1.  

In many cases, however, 𝑛(ℎ𝐴(𝑥)) ≠ 𝑛(ℎ𝐵(𝑥)). 

When they are compared, we should extend the 
shorter one so that their length is the same. For 

instance, let ℎ𝐴(𝑥) = {0.7,0.5} , ℎ𝐵(𝑥) =
{0.6,0.3,0.1} . Clearly, 𝑛(ℎ𝐴(𝑥)) < 𝑛(ℎ2(𝑥)) , so 

ℎ𝐴(𝑥) = {0.7,0.5}  may be extended to ℎ𝐴(𝑥) =
{0.7,0.5,0.5} by adding the minimum value. In this 

paper, we all adopt the regulations.  

Based on the above regulations, we define the 

following comparison laws.  

Definition 2.4  Let X be a fixed set, A and B be 

two 𝐻𝐹𝑆s  over X , nx = max{n(hA (x)), n(hB (x))} 

for all x ∈ X. Then  

(1)  ℎ𝐴(𝑥)  is said to be inferior to ℎ𝐵(𝑥) , 

denoted by ℎ𝐴(𝑥) ⪯ ℎ𝐵(𝑥) , if ℎ𝐴
𝜎(𝑖)

(𝑥)) ≤ ℎ𝐵
𝜎(𝑖)

(𝑥) 

for all 𝑖 = 1,2, ⋯ , 𝑛𝑥 . Especially, if 𝑛𝑥 =

𝑛(ℎ𝐴(𝑥)) = 𝑛(ℎ𝐵(𝑥))  and ℎ𝐴
𝜎(𝑖)

(𝑥)) ≤ ℎ𝐵
𝜎(𝑖)

(𝑥)  for 

all 𝑖 = 1,2, ⋯ , 𝑛𝑥 , then ℎ𝐴(𝑥) is said to be less than 

ℎ𝐵(𝑥), denoted by ℎ𝐴(𝑥) ≤ ℎ𝐵(𝑥).  

(2)  ℎ𝐴(𝑥)  is said to be equal to ℎ𝐵(𝑥)  if 

ℎ𝐴
𝜎(𝑖)

(𝑥)) = ℎ𝐵
𝜎(𝑖)

(𝑥)  for all 𝑖 = 1,2, ⋯ , 𝑛𝑥 , denoted 

by ℎ𝐴(𝑥) = ℎ𝐵(𝑥). 

(3) 𝐻𝐹𝑆 𝐴 is said to be an quasi subset of 𝐻𝐹𝑆 

𝐵, denoted by 𝐴 ⊑ 𝐵, if ℎ𝐴(𝑥) ⪯ ℎ𝐵(𝑥) for all 𝑥 ∈ 𝑋. 

Especially, if ℎ𝐴(𝑥) ≤ ℎ𝐵(𝑥) for all 𝑥 ∈ 𝑋, then 𝐴 is 

called a subset of 𝐵, denoted by 𝐴 ⊆ 𝐵. 

(4) 𝐻𝐹𝑆 𝐴 is said to be equal to 𝐻𝐹𝑆 𝐵, denoted 

by 𝐴 = 𝐵, if ℎ𝐴(𝑥) = ℎ𝐵(𝑥) for all 𝑥 ∈ 𝑋.   

Proposition 2.5 Let X be a fixed set, A and B be 

two 𝐻𝐹𝑆s  over X . If hA (x) = hB (x) , then 

n(hA (x)) = n(hB (x)).  

 Proof. The proof is straightforward from 

Definition 2.4.  

Based on Definition 2.4, we modify the axiom 

definitions of the distance and similarity measures as 

follows.  

Definition 2.6 Let X be a fixed set, A, B and C 

be three 𝐻𝐹𝑆s over X, 𝐷max = max{𝐷(A, B)} . Then 

the distance of A and B is defined as 𝐷(A, B), which 

satisfies the following properties: 

(𝐷1) 0 ≤ 𝐷(𝐴, 𝐵) ≤ 𝐷𝑚𝑎𝑥 ; 

(𝐷2) 𝐷(𝐴, 𝐵) = 0 ⇔ 𝐴 = 𝐵; 

(𝐷3) 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴); 

(𝐷4)  𝐴 ⊑ 𝐵 ⊑ 𝐶 ⇒ 𝐷(𝐴, 𝐵) ≤ 𝐷(𝐴, 𝐶) , 

𝐷(𝐵, 𝐶) ≤ 𝐷(𝐴, 𝐶).  

If (𝐷1)  is replaced by (𝐷1′) , then 𝐷(𝐴, 𝐵)  is 

called a normalized distance, where (𝐷1′)  0 ≤
𝐷(𝐴, 𝐵) ≤ 1.  

Definition 2.7 Let X be a fixed set, A, B and C 

be three 𝐻𝐹𝑆s over X. Then the similarity measure 

between A and B is defined as s(A, B), which satisfies 

the following properties: 

(𝑃1) 0 ≤ 𝑆(𝐴, 𝐵) ≤ 1; 

(𝑃2) 𝑆(𝐴, 𝐵) = 1 ⇔ 𝐴 = 𝐵; 

(𝑃3) 𝑆(𝐴, 𝐵) = 𝑆(𝐵, 𝐴); 

(𝑃4) 𝐴 ⊑ 𝐵 ⊑ 𝐶 ⇒ 𝑆(𝐴, 𝐶) ≤ 𝑆(𝐴, 𝐵), 

𝑆(𝐴, 𝐶) ≤ 𝑆(𝐵, 𝐶). 

III. SOME NEW SIMILARITY MEASURES FOR 

HFSS 

In this section, we introduce some novel 

distance and similarity measures of HFSs.  

Xu and Xia[33] introduced several geometric 

distance models of HFSs 𝐴  and 𝐵  on 𝑋 =
{𝑥1 , 𝑥2 , ⋯ , 𝑥𝑚 }. Some of them are given as follows: 

(1)  Normalized hesitant fuzzy Hamming 
distance:  

𝑑1(𝐴, 𝐵) =
1

𝑚
 ‍𝑚

𝑖=1  
1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|                              (1) 
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 (2)  Normalized hesitant fuzzy Euclidean 

distance:  

𝑑2(𝐴, 𝐵) =

 
1

𝑚
 ‍𝑚

𝑖=1  
1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) − ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|2         (2) 

 (3)  Generalized normalized hesitant fuzzy 

distance:  

𝑑3(𝐴, 𝐵) =  
1

𝑚
 ‍𝑚

𝑖=1  
1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|𝑝  
1/𝑝

, 𝑝 > 0.                 (3) 

 Clearly, If 𝑝 = 1, then Eq. (3) is reduced to Eq. 

(1).  

 From Eq. (1), we know that  

𝑑𝑖 =
1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) − ℎ𝐵
𝜎(𝑗)

(𝑥𝑖)|         (4) 

indicates the distance between the 𝑖th 𝐻𝐹𝐸 of 𝐴 and 

𝐵 , and 𝑑1(𝐴, 𝐵)  indicates the mean of distances 

between all elements of 𝐴 and 𝐵.  

 Motivated by Eq. (4) , we define another 

generalized normalized distance of 𝐴 and 𝐵 as:  

𝑑4(𝐴, 𝐵) =
1

𝑚
 ‍𝑚

𝑖=1  
1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|𝑝 
1/𝑝

, 𝑝 > 0.                 (5) 

which we call type-2 generalized normalized hesitant 

fuzzy distance. It is clear that Eq. (5) is different from 

Eq. (3). But if 𝑝 = 1, then Eq. (5) is also reduced to 

Eq. (1). If 𝑝 = 2 , then Eq. (5) becomes type-2 

normalized hesitant fuzzy Euclidean distance:         

𝑑5(𝐴, 𝐵) =
1

𝑚
 ‍𝑚

𝑖=1  
1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) − ℎ𝐵
𝜎(𝑗)

(𝑥𝑖)|2 .            (6) 

 Theorem 3.1  d5(A, B) is a normalized hesitant 

fuzzy distance measure of 𝐻𝐹𝑆s A and B.  

Proof. It can be seen easily that 𝑑5(𝐴, 𝐵) 

satisfies the properties  𝐷1′  ,  𝐷2  and (𝐷3).So only 

prove the property (𝐷4) . Let 𝐴 ⊑ 𝐵 ⊑ 𝐶 , then 

ℎ𝐴(𝑥𝑖) ⪯ ℎ𝐵(𝑥𝑖) ⪯ ℎ𝐶(𝑥𝑖) for each 𝑥𝑖 ∈ 𝑋. It follows 

that |ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) − ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|𝑝 ≤ |ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐶
𝜎(𝑗 )

(𝑥𝑖)|𝑝  and |ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖) − ℎ𝐶
𝜎(𝑗)

(𝑥𝑖)|𝑝 ≤

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) − ℎ𝐶
𝜎(𝑗 )

(𝑥𝑖)|𝑝 . Then  

1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

 ℎ𝐴
𝜎 𝑗  

 𝑥𝑖 − ℎ𝐵
𝜎 𝑗  

 𝑥𝑖 |𝑝 ≤

1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗 =1  ℎ𝐴

𝜎 𝑗  
 𝑥𝑖 − ℎ𝐶

𝜎 𝑗  
 𝑥𝑖 |𝑝 ,  

1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖) − ℎ𝐶
𝜎(𝑗 )

(𝑥𝑖)|𝑝 ≤

1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗 =1

|ℎ𝐴
𝜎(𝑗)

(𝑥𝑖) − ℎ𝐶
𝜎(𝑗 )

(𝑥𝑖)|𝑝 . 

         ⇒ 𝑑4(𝐴, 𝐵) ≤ 𝑑4(𝐴, 𝐶), 𝑑4(𝐵, 𝐶) ≤ 𝑑4(𝐴, 𝐶). 

Thus the property (𝐷4) is obtained.  

Based on Eq. (6), we further define some type-2 

generalized hesitant distances as follows:  

 𝑑6(𝐴, 𝐵) =  ‍𝑚
𝑖=1  

1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗)

(𝑥𝑖) −

ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|𝑝 
1/𝑝

, 𝑝 > 0.                     (7) 

    𝑑7(𝐴, 𝐵) =
1

𝑚
 ‍𝑚

𝑖=1   ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|𝑝 
1/𝑝

, 𝑝 > 0.                      (8) 

    𝑑8(𝐴, 𝐵) =  ‍𝑚
𝑖=1   ‍

𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗)

(𝑥𝑖) −

ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|𝑝 
1/𝑝

, 𝑝 > 0.                       (9) 

 Theorem 3.2  di(A, B)(i = 6,7,8) is a distance 

measure of 𝐻𝐹𝑆s A and B, and satisfies the following 

properties: 

(1) 0 ≤ 𝑑6(𝐴, 𝐵) ≤ 𝑚; 

(2) 0 ≤ 𝑑7(𝐴, 𝐵) ≤
1

𝑚
 ‍𝑚

𝑖=1 (𝑛𝑥𝑖
)1/𝑝 ; 

(3) 0 ≤ 𝑑8(𝐴, 𝐵) ≤  ‍𝑚
𝑖=1 (𝑛𝑥𝑖

)1/𝑝 .  

 Proof. The proof of  the properties (𝐷2) −
(𝐷4)  is similar to Theorem 3.1, We only prove 

(1) − (3) . Let ℎ𝐴
𝜎(𝑗)

(𝑥𝑖) = 1  and ℎ𝐵
𝜎(𝑗)

(𝑥𝑖) = 0  for 

all 𝑥𝑖 ∈ 𝑋  and 𝑗 = 1,2, ⋯ , 𝑛𝑥𝑖
, then 𝑑5(𝐴, 𝐵) = 𝑚 , 

𝑑6(𝐴, 𝐵) =
1

𝑚
 ‍𝑚

𝑖=1 (𝑛𝑥𝑖
)1/𝑝  and 𝑑7(𝐴, 𝐵) =

 ‍𝑚
𝑖=1 (𝑛𝑥𝑖

)1/𝑝 .  

The 𝐿𝑃  metric has been used to fuzzy sets and 

𝐼𝐹𝑆𝑠  [16]. Motivated by this means, the hesitant 

fuzzy 𝐿𝑃 distance can be obtained: 

 𝑑9(𝐴, 𝐵) =
1

𝑚
 ‍𝑚

𝑖=1   ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|𝑝 
1/𝑝

, 𝑝 ≥ 1.                       (10) 

Clearly, if 𝑝 ≥ 1 , then the type-2 generalized 

hesitant distance 𝑑7(𝐴, 𝐵) becomes the hesitant fuzzy 

𝐿𝑝  distance 𝑑9(𝐴, 𝐵).  

However, there is an interesting result: if 𝑝 → ∞, 

then the hesitant fuzzy 𝐿𝑝  distance 𝑑9(𝐴, 𝐵)  is 

reduced to normalized hesitant Hamming-Hausdorff 

distance  

𝑑10 (𝐴, 𝐵) =
1

𝑚
 ‍𝑚

𝑖=1 max
𝑗

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) − ℎ𝐵
𝜎(𝑗)

(𝑥𝑖)|,

              (11) 

which has been defined by Xu and Xia [33]. 

To prove the above result, the following lemma 
is needed.  

Lemma 3.3  Let ai ∈ ℝ and ai ≥ 0, i =
1,2, ⋯ , k. Then  

lim
𝑝→∞

(𝑎1
𝑝

+ 𝑎2
𝑝

+ ⋯ + 𝑎𝑘
𝑝

)
1
𝑝 = max

𝑖
{𝑎𝑖},      𝑝 ≥ 1. 
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Proof. Obviously whenever (i) 𝑎𝑖 = 0(𝑖 =
1,2, ⋯ , 𝑘) , or (ii) 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑘 , because 

lim
𝑝→∞

𝑘1/𝑝 = 1. If 𝑎𝑖 ≠ 𝑎𝑗 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, ⋯ , 𝑘 , then 

the following shows that  

lim
𝑝→∞

(𝑎1
𝑝

+ 𝑎2
𝑝

+ ⋯ + 𝑎𝑘
𝑝

)1/𝑝 = max
𝑖

{𝑎𝑖}. 

 Without loss of generality, we suppose that 

𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑘 , and let  

𝑦 = (𝑎1
𝑝

+ 𝑎2
𝑝

+ ⋯ + 𝑎𝑘
𝑝

)1/𝑝 .  

Then  

lim
𝑝→∞

𝑙𝑛𝑦 = lim
𝑝→∞

𝑎1
𝑝

+ 𝑎2
𝑝

+ ⋯ + 𝑎𝑘
𝑝

𝑝
. 

Using L’Hospital’s rule, we 

have

lim
𝑝→∞

𝑙𝑛𝑦 = lim
𝑝→∞

𝑎1
𝑝
𝑙𝑛 𝑎1+𝑎2

𝑝
𝑙𝑛 𝑎2+⋯+𝑎𝑘

𝑝
𝑙𝑛 𝑎𝑘

𝑎1
𝑝

+𝑎2
𝑝

+⋯+𝑎
𝑘
𝑝

= lim
𝑝→∞

(𝑙𝑛𝑎1 +(𝑎2/𝑎1)𝑝 𝑙𝑛 𝑎2+⋯+(𝑎𝑘/𝑎1)𝑝 𝑙𝑛 𝑎𝑘

1+(𝑎2/𝑎1)𝑝 +⋯+(𝑎𝑘/𝑎1)𝑝

= 𝑙𝑛𝑎1 .

 

 Thus,  

lim
𝑝→∞

𝑦 = lim
𝑝→∞

(𝑎1
𝑝

+ 𝑎2
𝑝

+ ⋯ + 𝑎𝑘
𝑝

)
1
𝑝  

= 𝑎1 = max
𝑖

{𝑎𝑖}. 

Theorem 3.4 

𝑙𝑖𝑚
𝑝→∞

𝑑9(𝐴, 𝐵) =
1

𝑚
 ‍𝑚

𝑖=1 𝑚𝑎𝑥
𝑗

|ℎ𝐴
𝜎(𝑗)

(𝑥𝑖) − ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|.  

Proof. It can be obtained directly from Lemma 

3.3.  

In many practical problems, however, the 

weight of the element 𝑥𝑖 ∈ 𝑋  should be taken into 

account. Especially for MADM problems, the 

attributes usually are of different importance. Thus 

we need to consider the weighted distance of 𝐻𝐹𝑆𝑠. 

Suppose that 𝑤𝑖(𝑖 = 1,2, ⋯ , 𝑚) is the weight of the 

element 𝑥𝑖 ∈ 𝑋, 𝑤𝑖 ∈ [0,1] and  ‍𝑚
𝑖=1 𝑤𝑖 = 1, then we 

obtain a type-2 generalized normalized hesitant fuzzy 
weighted distance  

𝑑11 (𝐴, 𝐵) =  ‍𝑚
𝑖=1 𝑤𝑖  

1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|𝑝 
1/𝑝

, 𝑝 > 0.                      (12) 

and a hesitant fuzzy 𝐿𝑝  weighted distance  

𝑑12 (𝐴, 𝐵) =  ‍𝑚
𝑖=1 𝑤𝑖   ‍

𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵
𝜎(𝑗 )

(𝑥𝑖)|𝑝 
1/𝑝

, 𝑝 ≥ 1.                         (13) 

Obviously, if 𝑤𝑖 = 1/𝑚, (𝑖 = 1,2, ⋯ , 𝑛), then 

the Eq.s (12) and (13) are reduced to Eq.s (5) and 

(10), respectively. 

It is found that the exponential operation is a 

very useful tool to deal with the similarity relation [6]. 

Therefore we adopt the exponential operation to a 

distance of 𝐻𝐹𝑆𝑠  and get a new distance measure 

between 𝐻𝐹𝑆𝑠. Let 𝑑(𝐴, 𝐵) be a distance of 𝐻𝐹𝑆𝑠 𝐴 

and 𝐵 and 𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑑(𝐴, 𝐵)}, then we define an 

exponential-type distance measure:  

𝑑13 (𝐴, 𝐵) =
1−𝑒𝑥𝑝 (−𝑑(𝐴,𝐵))

1−𝑒𝑥𝑝 (−𝑑𝑚𝑎𝑥 )
                  (14)  

We give the following lemma to prove that Eq. 

(14) is a reasonable distance measure.  

Lemma 3.5  Let f(x) =
1−exp (−x)

1−exp (−m)
, x ∈ [0, m], 

then fmin (x) = f(0) = 0 and fmax (x) = f(m) = 1.  

Proof. Since 𝑓′ (𝑥) =
𝑒𝑥𝑝 (−𝑥)

1−𝑒𝑥𝑝 (−𝑚 )
> 0, 𝑥 ∈ [0, 𝑚], 

then 𝑓(𝑥) is increasing in [0, 𝑚] . Hence 𝑓𝑚𝑖𝑛 (𝑥) =
𝑓(0) = 0 and 𝑓𝑚𝑎𝑥 (𝑥) = 𝑓(𝑚) = 1.  

Theorem 3.6  Let d(A, B) be a distance between 

HFSs  A  and B , and dmax = max{d(A, B)} . Then 

d13 (A, B) is a normalized distance measure of HFSs 

A and B.  

Proof. The properties (𝐷1′) − (𝐷3)  is easily 

obtained, We only prove the property (𝐷4). Since 

𝑑(𝐴, 𝐵)  is a distance of 𝐻𝐹𝑆𝑠  𝐴  and 𝐵 , then 

𝑑(𝐴, 𝐵) ≤ 𝑑(𝐴, 𝐶)  and 𝑑(𝐵, 𝐶) ≤ 𝑑(𝐴, 𝐶)  for 

𝐴 ⊑ 𝐵 ⊑ 𝐶 . By Lemma 3.5, we can obtain 

𝑑13 (𝐴, 𝐵) ≤ 𝑑13 (𝐴, 𝐶)  and 𝑑13 (𝐵, 𝐶) ≤ 𝑑13 (𝐴, 𝐶) 

for 𝐴 ⊑ 𝐵 ⊑ 𝐶.  

From Theorem 3.6, we know that 𝑑13 (𝐴, 𝐵) is a 

normalized distance of 𝑑(𝐴, 𝐵), that is to say, we can 
use Eq. (14) to generate a normalized distance of 

𝑑(𝐴, 𝐵).  

We know that the similarity measure and 

distance are dual concepts. Hence we can use a 

distance to define a similarity measure.  

Theorem 3.7  Let A and B be HFSs. Let f be a 

monotone decreasing function, 𝑑 a distance and dmax  

the maximal distance. We define  

𝑠0(𝐴, 𝐵) =
𝑓(𝑑(𝐴,𝐵))−𝑓(𝑑𝑚𝑎𝑥 )

𝑓(0)−𝑓(𝑑𝑚𝑎𝑥 )
,                        (15)  

then 𝑠0(𝐴, 𝐵) is a similarity measure of 𝐻𝐹𝑆𝑠 𝐴 and 

𝐵.  

Proof. (1)  Since 𝑓  is a monotone decreasing 

function and 0 ≤ 𝑑(𝐴, 𝐵) ≤ 𝑑𝑚𝑎𝑥 , then 𝑓(𝑑𝑚𝑎𝑥 ) ≤
𝑓(𝑑(𝐴, 𝐵)) ≤ 𝑓(0). It follows that 

0 ≤
𝑓(𝑑(𝐴, 𝐵)) − 𝑓(𝑑𝑚𝑎𝑥 )

𝑓(0) − 𝑓(𝑑𝑚𝑎𝑥 )
≤ 1. 

(2)  𝑑(𝐴, 𝐵) = 0 ⇔ 𝐴 = 𝐵  implies 𝑠0(𝐴, 𝐵) =
1 ⇔ 𝐴 = 𝐵. 

(3)  𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴)  implies 𝑠0(𝐴, 𝐵) =
𝑠0(𝐵, 𝐴). 

(4) Let 𝐶  be an 𝐻𝐹𝑆, and 𝐴 ⊑ 𝐵 ⊑ 𝐶 . Since 𝑑 

is a distance, then 𝑑(𝐴, 𝐵) ≤ 𝑑(𝐴, 𝐶) and 𝑑(𝐵, 𝐶) ≤
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𝑑(𝐴, 𝐶). Since 𝑓 is a monotone decreasing function, 

then 𝑓(𝑑(𝐴, 𝐶)) ≤ 𝑓(𝑑(𝐴, 𝐵))  and 𝑓(𝑑(𝐴, 𝐶)) ≤
𝑓(𝑑(𝐵, 𝐶)) . These imply 𝑠0(𝐴, 𝐶) ≤ 𝑠0(𝐴, 𝐵)  and 

𝑠0(𝐴, 𝐶) ≤ 𝑠0(𝐵, 𝐶).  

By Theorem 3.7, if we choose 𝑓(𝑥) = 1 − 𝑥 , 

then 𝑠0(𝐴, 𝐵) = 1 −
𝑑(𝐴,𝐵)

𝑑𝑚𝑎𝑥
. Based on Eq.s (3), (5) and 

(8), we obtain the corresponding similarity measures, 
respectively:  

𝑠1(𝐴, 𝐵) = 1 −  
1

𝑚
 ‍𝑚

𝑖=1  
1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵𝜎(𝑗)(𝑥𝑖)|𝑝1/𝑝,                   (16) 

𝑠2(𝐴, 𝐵) = 1 −
1

𝑚
 ‍𝑚

𝑖=1  
1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵𝜎(𝑗)(𝑥𝑖)|𝑝1/𝑝,                     (17) 

𝑠3(𝐴, 𝐵) =

1 −
1

 ‍𝑚
𝑖=1 (𝑛𝑥𝑖

)1/𝑝
 ‍𝑚

𝑖=1   ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗)

(𝑥𝑖) −

ℎ𝐵𝜎(𝑗)(𝑥𝑖)|𝑝1/𝑝.                                                      
(18) 

where 𝑝 > 0.  

If we consider the weight of each element 𝑥 ∈ 𝑋, 

then the weighted similarity measures can be 

obtained as follows:  

𝑠4(𝐴, 𝐵) = 1 −   ‍𝑚
𝑖=1 𝑤𝑖  

1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵𝜎(𝑗)(𝑥𝑖)|𝑝1/𝑝,                  (19) 

  

𝑠5(𝐴, 𝐵) =

1 −  ‍𝑚
𝑖=1 𝑤𝑖  

1

𝑛𝑥𝑖

 ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵𝜎(𝑗)(𝑥𝑖)|𝑝1/𝑝,                   (20) 

    

𝑠6(𝐴, 𝐵) =

1 −
𝑚

 ‍𝑚
𝑖=1 (𝑛𝑥𝑖

)1/𝑝
 ‍𝑚

𝑖=1 𝑤𝑖   ‍
𝑛𝑥𝑖
𝑗=1

|ℎ𝐴
𝜎(𝑗 )

(𝑥𝑖) −

ℎ𝐵𝜎(𝑗)(𝑥𝑖)|𝑝1/𝑝.             (21) 

where 𝑝 > 0, 𝑤𝑖 ∈ [0,1] and  ‍𝑚
𝑖=1 𝑤𝑖 = 1. 

Especially, if 𝑤𝑖 = 1/𝑚, (𝑖 = 1,2, ⋯ , 𝑛) , then 
the Eq.s (19), (20) and (21) are reduced to Eq.s (16), 

(17) and (18), respectively. 

IV. AN APPLICATION IN MADM 

In this section, we introduce an extended soft set 

model which is called multi-vague soft set by 

combining the multi-vague set and soft set. Some 

operations and their properties on multi-vague soft 

set will also be discussed.  

In this section, we will apply the above proposed 

similarity measures to hesitant fuzzy MADM.   

For a MADM problem, let 𝑋 = {𝑥1 , 𝑥2 , ⋯ , 𝑥𝑚 } 

be a set of attributes, 𝐻 = {𝐻1 ,ℎ2 , ⋯ , ℎ𝑝}  a set of 

alternatives, and 𝑤 = {𝑤1 , 𝑤2 , ⋯ , 𝑤𝑚 }𝑇  the weight 

vector of attributes, where 𝑤𝑖 ∈ [0,1] and  ‍𝑚
𝑖=1 𝑤𝑖 =

1.  

Now we define respectively the positive ideal 

𝐻𝐹𝑆 and negative ideal 𝐻𝐹𝑆 as follows:  

𝐻+ = {
ℎ

𝐻+(𝑥𝑖)

𝑥𝑖
|𝑥𝑖 ∈ 𝑋}                   (22) 

and  

𝐻− = {
ℎ𝐻−(𝑥𝑖)

𝑥𝑖
|𝑥𝑖 ∈ 𝑋}                    (23) 

where  

ℎ𝐻+(𝑥𝑖) = {ℎ𝜎(𝑘)(𝑥𝑖)|ℎ𝜎(𝑘)(𝑥𝑖) = max
𝑗

{ℎ𝐻𝑗

𝜎(𝑘)
(𝑥𝑖)}, 𝑘

= 1,2, ⋯ , 𝑛𝑥𝑖
}, 

ℎ𝐻−(𝑥𝑖) = {ℎ𝜎(𝑘)(𝑥𝑖)|ℎ𝜎(𝑘)(𝑥𝑖) = min
𝑗

{ℎ𝐻𝑗

𝜎(𝑘)
(𝑥𝑖)}, 𝑘

= 1,2, ⋯ , 𝑛𝑥𝑖
}. 

Based on the aforementioned formulae of 

similarity measures between 𝐻𝐹𝑆𝑠, we can calculate 

the similarity degree of the positive ideal 𝐻𝐹𝑆 𝐻+ 

and alternative 𝐻𝑖 , denoted by 𝑠(𝐻+, 𝐻𝑖) , and the 

similarity degree of the negative ideal 𝐻𝐹𝑆 𝐻+  and 

alternative 𝐻𝑖, denoted by 𝑠(𝐻−, 𝐻𝑖), respectively.  

Then we define the relative similarity measure 

𝑠𝑖  for the alternative 𝐻𝑖 as follows:  

𝑠𝑖 =
𝑠(𝐻+,𝐻𝑖)

𝑠(𝐻+,𝐻𝑖)+𝑠(𝐻−,𝐻𝑖)
, 𝑖 = 1,2, ⋯ , 𝑚.           (24) 

Obviously, the bigger the value 𝑠𝑖 , the better the 

alternative 𝐻𝑖. 

To illustrate the proposed similarity measures of 

𝐻𝐹𝑆𝑠 and the above approach of decision making, 

we present an example which is adapted from 

Example 1 in [31]. 

Example 4.1  

It is very important that an appropriate energy 

policy is selected for affecting economic 

development of societies. Now, we suppose that the 

government will invest an energy project from five 

alternatives 𝐻𝑖(𝑖 = 1,2,3,4,5) . They are considered 

with four attributes (𝑥1: economic; 𝑥2: environmental; 

𝑥3 : technological; 𝑥4 : socio-political ) , the weight 

vector of which is 𝑤 = (0.15,0.3,0.2,0.35)𝑇. In order 
to obtain a more scientific and reasonable decision-

making result, the government invite several decision 

makers to evaluate the performances of the five 
alternatives. For an alternative under an attribute, all 

possible evaluations provided by decision makers can 

be regarded as an 𝐻𝐹𝐸 . For convenience, the all 

evaluated results are expressed by a hesitant fuzzy 

decision matrix, which is presented in TABLE I.  
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TABLE I  

HESITANT FUZZY DECISION MAKING MATRIX 

  𝑥1   𝑥2   𝑥3   𝑥4 

𝐻1   {0.5,0.4,0.3}   {0.9,0.8,0.7,0.1}   {0.5,0.4,0.2}   {0.9,0.6,0.5,0.3} 

𝐻2   {0.5,0.3}  {0.9,0.7,0.6,0.5,0.2}   {0.8,0.6,0.5,0.1}   {0.7,0.3,0.4} 

𝐻3   {0.7,0.6}   {0.9,0.6}   {0.7,0.5,0.3}   {0.6,0.4} 

𝐻4   {0.8,0.7,0.4,0.3}   {0.7,0.4,0.2}   {0.8,0.1}   {0.9,0.8,0.6} 

𝐻5   0.9,0.7,0.6,0.3,0.1}   {0.8,0.7,0.6,0.4}   {0.9,0.8,0.7}   {0.9,0.7,0.6,0.3} 
     

If we use the formulae of similarity measure 

𝑠𝑖(𝐴, 𝐵)(𝑖 = 4,5,6) to calculate the similarity degree 

of each alternative 𝐻𝑖  and the positive ideal 

alternative 𝐻𝑖
+  (or negative ideal alternative 𝐻𝑖

− ), 

then we get the rankings of these alternatives by Eq. 

(24). The results are gived in TABLE II-IV, 

respectively.   

 TABLE II 

RESULTS OBTAINED BY THE SIMILARITY MEASURE 𝐒𝟒(𝐀, 𝐁)   
  𝐻1   𝐻2   𝐻3   𝐻4   𝐻5   Rankings 

𝑝 = 1   0.4719   0.47033   0.5111   0.47788   0.5547   𝐻5 ≻ 𝐻3 ≻ 𝐻4 ≻ 𝐻1 ≻ 𝐻2 

𝑝 = 2   0.46814   0.48052   0.5138   0.46197   0.55475   𝐻5 ≻ 𝐻3 ≻ 𝐻2 ≻ 𝐻1 ≻ 𝐻4 

𝑝 = 6   0.47238   0.48158   0.52557   0.4262   0.55783   𝐻5 ≻ 𝐻3 ≻ 𝐻2 ≻ 𝐻1 ≻ 𝐻4 

 TABLE  III 

RESULTS OBTAINED BY THE SIMILARITY MEASURE 𝐒𝟓(𝐀, 𝐁)   
  𝐻1   𝐻2   𝐻3   𝐻4   𝐻5   Rankings 

𝑝 = 1   0.4719   0.47033   0.5111   0.47788   0.5547   𝐻5 ≻ 𝐻3 ≻ 𝐻4 ≻ 𝐻1 ≻ 𝐻2 

𝑝 = 2   0.47016   0.46967   0.50993   0.48055   0.55334   𝐻5 ≻ 𝐻3 ≻ 𝐻4 ≻ 𝐻1 ≻ 𝐻2 

𝑝 = 6   0.47058   0.45747   0.51003   0.48376   0.54219   𝐻5 ≻ 𝐻3 ≻ 𝐻4 ≻ 𝐻1 ≻ 𝐻2 

𝑝 = 10   0.47124   0.4518   0.51049   0.48481   0.5389   𝐻5 ≻ 𝐻3 ≻ 𝐻4 ≻ 𝐻1 ≻ 𝐻2 

 TABLE IV 

RESULTS OBTAINED BY THE SIMILARITY MEASURE 𝐒𝟔(𝐀, 𝐁)  

  𝐻1   𝐻2   𝐻3   𝐻4   𝐻5   Rankings 

𝑝 = 1   0.4728   0.4735   0.51883   0.4735   0.54951   𝐻5 ≻ 𝐻3 ≻ 𝐻2 ≻ 𝐻4 ≻ 𝐻1 

𝑝 = 2   0.46962   0.48329   0.51937   0.45865   0.55016   𝐻5 ≻ 𝐻3 ≻ 𝐻2 ≻ 𝐻1 ≻ 𝐻4 

𝑝 = 6   0.4976   0.49856   0.50208   0.4905   0.50783   𝐻5 ≻ 𝐻3 ≻ 𝐻2 ≻ 𝐻1 ≻ 𝐻4 

𝑝 = 10   0.49985   0.49978   0.50015   0.49819   0.50167   𝐻5 ≻ 𝐻3 ≻ 𝐻1 ≻ 𝐻2 ≻ 𝐻4 
       

From TABLE II-IV, we find that 𝐻5 ≻ 𝐻3  and 

they are superior to others whichever formula of 

similarity measure is used. And it is seen that the 

rankings are different when the different values of 

the parameter 𝑝 , which can be regarded as the 

decision makers’ risk attitude). Therefore, according 
to the decision makers’ risk attitudes and actual 

situations, the proposed similarity measures can 

provide more choices for the decision makers. That 

is to say, the proposed methods are more flexible in 

practical application. 

V. CONCLUSIONS 

In this paper, we gave the definition of hesitant 

fuzzy quasi subset and presented the modified axiom 

definitions of distance and similarity measure of 

HFSs. Then, we proposed some novel hesitant 

distance measures based on the L_P metric, 

Euclidean distance, Hamming distance and 
exponential operation. We also investigated the 

relationships between distance and similarity 

measures. According to their relationships, some 

similarity measures between HFSs were obtained. 

Furthermore, we also applied the proposed similarity 

measures to a hesitant fuzzy MADM. The 

experiment results showed that the proposed 

similarity measures and approach were reasonable 

and efficient for hesitant fuzzy MADM. 
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