
International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 1- Jan 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 45

ROS-Based Control of the DJI Matrice 100

Robot with QR Images Obtained from DJI

Guidance

Abdülkadir Çakır
#1

, Seyit Akpancar
*2

#*Department of Electrical and Electronics Engineering, Faculty of Technology, Isparta University of Applied

Sciences, Isparta, Turkey

Abstract This article discusses the development of a

control software for the DJI Matrice 100 robot,

which is attracting the interest and is seeing

increased use among researchers studying flying

robots. The instant QR images used in this study are
obtained from the right camera attached to the

VBUS3 port of the DJI Guidance system. In addition

to the control software used for the processing of the

QR images obtained from DJI Guidance, the study

also made use of the ZBar Bar Code Reader.

The development of a software for the operation of a

DJI Matrice 100 robot facilitated the running or

control of the software solutions created for the PC-

controlled Matrice 100 robot, and removed the need

for a PC screen operating under grid power during

the test phases of the field studies.

This study helped in the development of an auxiliary
software for researchers studying the DJI Matrice

100 robot. It is thought that the developed software

will be used by the researchers in their future studies

and it will become a highly addressed study in the

literature.

Keywords — ROS, DJI Matrice 100, QR Code,

Controller.

I. INTRODUCTION

Studies into robot technologies are becoming

increasingly common, with a wealth of innovative
solutions being developed in a broad range of fields,

including military, health, search and rescue, and

research. There has also been a significant increase in

studies on the active use of air robots, which have no

limitations on movement in areas that may pose a

threat to human health or that may provide

discomfort due to bumps, holes or inclines [1], [2],

[3], [4].

During field studies, it is necessary for researchers

to carry a PC monitor if they are make use of

software solutions developed for the control of robots

via PC. While the PCs used for the control of robots
use the integral batteries of the robot platforms as a

power source, PC monitors must use grid power,

although this can lead to both higher costs and

additional time for researchers.

II. FLYING ROBOT PLATFORM DJI

MATRICE 100

Fig. 1 shows the DJI Matrice 100 robot that was

used in the present study. The Matrice 100 is one of

the most popular robot platforms among researchers
of robotics due to of its high carrying capacity

(around 1250 gr, other than its own weight), a choice

of operating systems (Linux, Windows), conformity

with ROS and the existence of a wide variety of SDK

[5], [6], [7].

Fig. 1 Flying Robot Platform DJI Matrice 100

This study proposes a software that facilitates the
control of the flying Matrice 100 platform by means

of ROS.

III. ROS (ROBOT OPERATING SYSTEM) AND

GAZEBO

A. Why ROS?

ROS was adopted in the present study for a

number of reasons, including its common use in

robotic projects and applications in the world of

robotics, its recent introduction in literature, the

flexibility of its development setting, its ability to be

integrated into other systems that are developed in

real settings, the existence of fewer experts on

simulation and its free license.

ROS (Robot Operating System) was first

developed by the Artificial Intelligence Laboratory of
Stanford University as part of the STAIR (Stanford

AI Robot) project in 2007 [8]. ROS functions as an

operating system or a software framework that

provides all the libraries and tools required by robot

software developers, like a standard operating system

such as HAL (Hardware Abstraction Layer). It allows

for a lower degree of device control, data exchange

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 1- Jan 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 46

and package management [9]. Some editions of ROS

come with visualization tools like Gazebo, while

others require them to be installed externally.

Moreover, ROS is distributed with a BSD (Berkeley

Software Distribution) license that is known to be

open source.

As shown in Table I, the first editions of ROS

were developed in 2010, and the system has

continued to evolve ever since, as a clear indication

of the critical importance of the technology [10].

TABLE I

Ros version

ROS Version Name

Internal

Visualizer

Visualizer

Support Release Date

Last

Update

ROS Melodic Morenia Gazebo 9.0 Gazebo 9.1 May 23rd, 2018 May, 2023

ROS Lunar Loggerhead

May 23rd, 2017 May, 2019

ROS Kinetic Kame

May 23rd, 2016 April, 2021

ROS Jade Turtle gazebo 5.x
Gazebo

5.x - 6.x - 7.x
May 23rd, 2015 May, 2017

ROS Indigo Igloo gazebo 2.x
Gazebo

2.x - 5.x
July 22nd, 2014 April, 2019

ROS Hydro Medusa

September 4th, 2013 May, 2015

ROS Groovy Galapagos

December 31, 2012 July, 2014

ROS Fuerte Turtle

April 23, 2012 --

ROS Electric Emys

August 30, 2011 --

ROS Diamondback

March 2, 2011 --

ROS C Turtle

August 2, 2010 --

ROS Box Turtle

March 2, 2010 --

B. Robot Control with ROS

ROS can be used as an interface between the

physical robot and its user. For example, the user can

control a physical robot connected to a ROS-installed

PC by Wi-Fi through the use of a joystick connected

to the same PC via USB (Fig. 2.a) [11].

ROS can also be used as an interface between a

robot model developed in a simulator and the user, in

which the user can control a virtual robot model

developed in the Gazebo simulator using a joystick

connected to a ROS-installed PC via USB (Fig. 2.b)

[11].

a b

Fig. 2: Robot control with ROS

The general framework between ROS and Gazebo

simulator is shown in Fig. 3.

Fig. 3 ROS and Gazebo simulator

SDF (Simulation Description Format): SDF is a

file format for the uploading or storage of
information about a specific simulation setting or

model in a Gazebo robot simulator. The developers

of Gazebo designated this XML format for the

description of objects and environments for the robot

simulator. Models are defined using the SDF format,
and the model can either be a simple figure or a

complex robot. Models can also be used in a

hierarchical structure. In other words, the structure of

a model can be integrated with another model [12].

World Files: World files describe the environment

file format created in the Gazebo robot simulator that

typically require a “$ gazebo file_name.world”

command at the terminal screen. There is no

difference between the environment creation and

model creation, and they can be formatted and

operated using SDF [12].

Launch Files: Launch files are a file format that
allows for the operation of several ROS Nodes, and

that establish a link between ROS and a Gazebo

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 1- Jan 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 47

simulator. The message exchange between ROS and

the simulator model is controlled by the nodes within

the main launch files. They typically require a

“$ roslaunch PacketName file_name.launch”

command at the terminal screen [13].

ROS Topic: The topics are the channels that
enable data transfer over the ROS network, and are

based on the TCP/IP protocol. This protocol allows

for the control of the model through the network.

IV. ROS-BASED CONTROL OF DJI MATRICE

100 ROBOT WITH QR CODES OBTAINED

FROM DJI GUIDANCE

The control of a DJI Matrice 100 robot is realized

using the QR codes shown in Fig. 4. For each ROS

node to be controlled by the user, different QR codes

were created, for example “M100 Engine Launcher”,

“M100 Autocontrol Launcher”, “M100 TakeOff”,

“M100 Process Stopper”, “M100 Landing” and

“M100 Engine Stopper”.

Fig. 4: QR codes used in the study

Within the scope of this study, a ROS node named

“qr_controller” was created for the ROS-based

control of a DJI Matrice 100 robot with QR codes

obtained from DJI Guidance. The node includes the

following phases: reception of QR codes through DJI
Guidance, processing of QR images, operation or

control of selected nodes.

A. Reception of QR Codes through DJI Guidance

The QR code in Fig. 4 represents the control
command desired by the user, and was received by

the right camera attached to the VBUS3 port of DJI

Guidance using a software segment created in the

C++ programming language that belongs to the

“qr_controller” node, which is shown in Fig. 5.

Mat g_greyscale_image_right(240, 320, CV_8UC1);

void right_image_callback(const sensor_msgs::ImageConstPtr& right_img) {

 cv_bridge::CvImagePtr cv_ptr;

 try {

 cv_ptr = cv_bridge::toCvCopy(right_img, sensor_msgs::image_encodings::MONO8);

 }

 catch (cv_bridge::Exception& e) {

 ROS_ERROR("cv_bridge exception: %s", e.what());

 return;

 }

 g_greyscale_image_right= cv_ptr->image;

 cv::waitKey(1);

 Callback();

}

int main(int argc, char** argv) {

 ros::init(argc, argv, "qr_controller");

 ros::NodeHandle my_node;

 right_image_sub = my_node.subscribe("/guidance/right_image", 10, right_image_callback);

 while (ros::ok())

 ros::spinOnce();

 return 0;

}
Fig. 5: Reception of the image from the right camera attached to the VBUS3 port of DJI Guidance

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 1- Jan 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 48

The “right_image_callback” function shown in Fig.

5 launches the process of receiving the QR code from

the right camera attached to the VBUS3 port of DJI

Guidance. These codes were received at a frequency

of 10 Hz and were designated to the „cv::Mat‟- type

“g_greyscale_image_right” variable in order to be
processed in the “qr_controller” node. The QR codes

of the “g_greyscale_image_right” image were sent to

the “ImageMatch” function shown in Fig. 6 for

processing.

B. Processing of QR Images

In order to process the „cv::Mat‟- type

“g_greyscale_image_right” image that was sent to

the “ImageMatch” function in Fig. 6, the study used

the “ZBar” package created by Paul Bovbel to read

the QR codes.

#include <zbar.h>

string ImageMatch(cv::Mat P_image) {

 string snc;

 namedWindow("captured", CV_WINDOW_AUTOSIZE);

 ImageScanner scanner;

 scanner.set_config(ZBAR_NONE, ZBAR_CFG_ENABLE, 1);

 cv::Mat frame, frame_grayscale;

 frame=P_image;

 frame_grayscale=P_image;

 int width = frame_grayscale.cols;

 int height = frame_grayscale.rows;

 uchar *raw = (uchar *)(frame_grayscale.data);

 Image image(width, height, "Y800", raw, width * height);

 scanner.scan(image);

 int counter = 0;

 for (Image::SymbolIterator symbol = image.symbol_begin(); symbol != image.symbol_end(); ++symbol)

 {

 snc= symbol->get_data();

 if (symbol->get_location_size() == 4)

 {

 line(frame, Point(symbol->get_location_x(0), symbol->get_location_y(0)), Point(symbol->get_location_x(1), symbol-

>get_location_y(1)), Scalar(0, 255, 0), 2, 8, 0);

 line(frame, Point(symbol->get_location_x(1), symbol->get_location_y(1)), Point(symbol->get_location_x(2), symbol-

>get_location_y(2)), Scalar(0, 255, 0), 2, 8, 0);

 line(frame, Point(symbol->get_location_x(2), symbol->get_location_y(2)), Point(symbol->get_location_x(3), symbol-

>get_location_y(3)), Scalar(0, 255, 0), 2, 8, 0);

 line(frame, Point(symbol->get_location_x(3), symbol->get_location_y(3)), Point(symbol->get_location_x(0), symbol-

>get_location_y(0)), Scalar(0, 255, 0), 2, 8, 0);

 }

 counter++;

 }

 imshow("captured", frame);

 image.set_data(NULL, 0);

 waitKey(1);

 return snc;

}

Fig. 6: The function that performs the processing of QR images in the “ZBar” package

The “ImageMatch” function first determines the

margins of the „cv::Mat‟- type

“g_greyscale_image_right” image that it receives,

and then reads the QR code by placing it into a

frame, starting from the pixels in which the QR code

is present (Fig. 7).

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 1- Jan 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 49

M100 Engine Launcher M100 Engine Launcher with Border

M100 Landing M100 Landing with Border

Fig. 7: Marking the QR codes in a “cv::Mat” - type image

The „symbol->get_data()‟ - type data obtained

after the processing of the framed QR code in the

“ZBar” package were later designated to the string-
type “snc” variable. It thus became possible for the

textual equivalence of the QR code to be used along

with the “snc” variable.

C. Operation or Control of Selected Nodes

The “Callback” function shown in Fig. 8 was

called back inside the “right_image_callback”

function shown in Fig. 5. This allowed for the

operation of the “Callback” function at a frequency

of 10 Hz, like the “right_image_callback” function.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 1- Jan 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 50

void Callback(){

 if(ImageMatch(g_greyscale_image_right)=="M100 Engine Launcher")

 {

obtain_control("True");

Arm_Control("True");

 }

 else if(ImageMatch(g_greyscale_image_right)=="M100 Engine Stopper")

 {

 Arm_Control("False");

 }

 else if(ImageMatch(g_greyscale_image_right)=="M100 TakeOff")

 {

 if(!obtain_control("Control"))

 obtain_control("True");

 takeoff_landing(dji_sdk::DroneTaskControl::Request::TASK_TAKEOFF);

 }

 else if(ImageMatch(g_greyscale_image_right)=="M100 Landing")

 {

 takeoff_landing(dji_sdk::DroneTaskControl::Request::TASK_LAND);

 }

 else if(ImageMatch(g_greyscale_image_right)=="M100 Process Stopper")

 {

 ...

 ...

}
Fig. 8: The function that was created for the operation or control of selected nodes

The “Callback” function called back at 10 Hz

sends the „cv::Mat‟ - type
“g_greyscale_image_right” image obtained with the

“g_greyscale_image_right” function to the

“ImageMatch” function as a parameter, and the

result of the “ImageMatch” function is controlled.

This allows the operator to control the DJI Matrice

100 robot according to the QR code read by the right

camera of DJI Guidance‟s VBUS3 port.

V. CONCLUSIONS

It is commonly observed in literature that the

physical control of a DJI Matrice 100 robot platform

can be realized using the Robot Operating System.

The most serious problem encountered by
researchers while working with the DJI Matrice 100

robot platform is the need to use a PC monitor to be

able to run and control their software during the test

phase of their field studies.

The findings of this study will provide researchers

with savings in both time and costs during their

studies, and will further contribute to literature in

various ways when used in studies making use of the

Robot Operating System.

ACKNOWLEDGMENT

This study was derived from Project No. 116E013,

supported by the Scientific and Technological

Research Council of Turkey (TUBITAK). We would

like to express our gratitude to TUBITAK for its

contribution to the study.

REFERENCES

[1] M. Iacono and A. Sgorbissa, "Path following and obstacle

avoidance for an autonomous UAV using a depth camera,"

Robotics and Autonomous Systems, vol. 106, pp. 38-46,

2018.

[2] P. D. Nguyen, C. T. Recchiuto, and A. Sgorbissa, "Real-

time path generation and obstacle avoidance for multirotors:

a novel approach," Journal of Intelligent & Robotic

Systems, vol. 89, no. 1-2, pp. 27-49, 2018.

[3] L. Teixeira, I. Alzugaray, and M. Chli, "Autonomous aerial

inspection using visual-inertial robust localization and

mapping," in Field and Service Robotics, 2018: Springer,

Cham, pp. 191-204.

[4] T. Hinzmann, J. L. Schönberger, M. Pollefeys, and R.

Siegwart, "Mapping on the fly: Real-time 3D dense

reconstruction, digital surface map and incremental

orthomosaic generation for unmanned aerial vehicles," in

Field and Service Robotics, 2018: Springer, Cham, pp.

383-396.

[5] M100_User_Manual_EN. DJI Matrice 100 User Manual

[Online] Available:

https://dl.djicdn.com/downloads/m100/M100_User_Manua

l_EN.pdf.

[6] C. L. Doughty and K. C. Cavanaugh, "Mapping Coastal

Wetland Biomass from High Resolution Unmanned Aerial

Vehicle (UAV) Imagery," Remote Sensing, vol. 11, no. 5,

p. 540, 2019.

[7] Y. H. Chai and A. K. Patil, "Inspired by Human Eye:

Vestibular Ocular Reflex Based Gimbal Camera

Movement to Minimize Viewpoint Changes," Symmetry,

vol. 11, no. 1, p. 101, 2019.

[8] M. Quigley, E. Berger, and A. Y. Ng, "Stair: Hardware and

software architecture," in AAAI 2007 Robotics Workshop,

Vancouver, BC, 2007, pp. 31-37.

[9] Robotics_Simulator. Robotics Simulator [Online]

Available: https://en.wikipedia.org/wiki/

Robotics_simulator#cite_note-45.

[10] C. Dave. Ros Distributions [Online] Available:

http://wiki.ros.org/Distributions

[11] H. Hongrong. tum_simulator [Online] Available:

http://wiki.ros.org/tum_simulator.

[12] SDFormat. SDFormat [Online] Available:

http://sdformat.org/spec

[13] N. Erik. Using rqt_console and roslaunch [Online]

Available: http://wiki.ros.org/ROS/Tutorials/

UsingRqtconsoleRoslaunch.

http://www.ijettjournal.org/
https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf
https://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf
https://en.wikipedia.org/wiki/
http://wiki.ros.org/Distributions
http://wiki.ros.org/tum_simulator
http://sdformat.org/spec
http://wiki.ros.org/ROS/Tutorials/

