
International Journal of Engineering Trends and Technology Volume 68 Issue 10, 100-104, October 2020

ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V68I10P217 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Big Data Preprocessing: Needs and Methods
Sandeep Dalal1, Vandna Dahiya2

1,2DCSA, Maharshi Dayanand University, Rohtak, Haryana, India
1sandeepdalal.80@gmail.com

2vandanadahiya2010@gmail.com

Abstract - Big data is an assemblage of large and complex

data that is difficult to process with the traditional DBMS

tools. The scale, diversity, and complexity of this huge data

demand new analytics techniques to extract useful and

hidden value from it. Data must be prepared before

starting mining as real data is sometimes not suitable for

mining, and poor quality finishes in poor results. This

paper presents the needs, various problems, and solutions

for the preprocessing of big data.

Keywords - Big data, Discretization, MapReduce,

Preprocessing

I. INTRODUCTION

Data is exploding from various fields such as business,

astronomy, transportation, genomics, retail, entertainment,

etc. This huge data generating from all these fields are high

in speed, huge in volume, and dissimilar in variety. This

data is called big data, which is a collection of enormous

and complicated data sets. This data cannot be processed

directly by manual applications or with traditional data

processing applications. The current rate of generating data

has exceeded the managing capability of our conventional

systems. This factor indicates the 'big' challenge for data

analytics society.

Many applications have been developed in recent times

to tackle the problem of big data analytics. These

applications make the distributed know-hows familiar to

the user while hiding the complex strategies and technical

details of distributed environments. Also, the methods and

algorithms required for big data analytics are different

from conventional algorithms, as they need to work with

the distributed environment. So, they need to be re-

designed or build again for these systems, which is a vast

challenge for the data mining society.

II. DATA PREPROCESSING

Data preprocessing signifies the set of practices applied

to the data before applying any data mining approach. It is

one of the vital steps of the KDD procedure. According to

Dorian Pyle, "The fundamental purpose of data preparation

is to manipulate and transform raw data so that the

information content enfolded in the data set can be

exposed, or made more easily accessible." The raw data

can be imperfect, incomplete, or might have redundancies,

which are not suitable for directly mining the process of

mining. With an increase in size and dimensions of the

data, high-level mechanisms are required to analyze it.

Data preprocessing uncover quality data before applying

the knowledge extraction algorithms. With the

preprocessing of data, it becomes more feasible to be

adopted by the particular data-mining algorithm. The

following points can summarize the importance of data

preprocessing-

• Real data are most likely to be flawed,

inconsistent, and redundant. It may be lacking the

attributes or may have errors or outliers. It isn't

easy to use it directly for the process of mining.

The quality of results depends on the quality of

the data.

• Real data come from diverse sources. It needs to

be in a standard form before feeding it to some

data mining method.

• Preprocessing of data helps in making the data

adaptable for the necessities of a data-mining

algorithm.

• Preprocessing data helps generate a smaller subset

of data, which is essential for many applications

for their learning phases.

• Preprocessing data helps generate a smaller subset

of data, which is essential for many applications

for their learning phases.

Figure 1 Preprocessing in KDD Process

A. Major Tasks in Preprocessing of Data

Before mining, various steps are required for

preprocessing the data. Some major steps are discussed in

this section.

a) Data Integration: Data is obtained from various

sources. These sources might use different coding

mechanisms, which may generate diverse representations.

So, the data need to be integrated from numerous sources

and then symbolized in a homogeneous form. For

example, for the same organization, the employees' salary

can be denoted in dollars or euros based on the office's

geography. It can be paid monthly or yearly. All this

information needs to be converted into a standardized

form. So, the problems of representation and codification

are addressed under the integration of data.

https://www.ijettjournal.org/archive/ijett-v68i10p217
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Sandeepdalal.80@gmail.com
mailto:vandanadahiya2010@gmail.com

Sandeep Dalal et al. / IJETT, 68(10), 100-104, 2020

101

b) Data Cleaning: Data mining methods may have

mechanisms to pact with data that is noisy and incomplete.

Most of the time, the cleaning of data is done before

starting the process of mining. For example, sometimes,

the mining method's requirement may be the age in place

of birth year. So, cleaning refers to repair the

inconsistencies, smoothening of noisy data, and

documentation of outliers.

c) Data Perfection: Most of the mining approaches

consider that the data is complete and noise-free. Some

values might be missing or not available in real-world

data, and there can be much noise. To make the data

suitable for mining, missing values need to be filled, and

noisy data need to be removed. If the data is composed of

missing values that have not been stored for any reason,

then the dealing of such values is necessary before starting

the mining process. Otherwise, mining will result in

inappropriate results. It can produce biasedness in the

whole process. One approach is to discard the complete

instance, which again leads to the biasedness and causes

information-loss of the rest of the instance to deal with

them. The other option is to use statistical and probabilistic

models to fill these values. Noise can also affect the input

values, and so does the output. To remove the noise,

preprocessing is required based on the amount of noise

present. If the noise is small, data polishing methods are

sufficient. But if the noise is large, noise filters are used,

which find the noisy instances and modify the values.

d) Data Transformation: Transformation of data aims at

converting the data into a format that is best conceivable

for the mining algorithms. It can be done through

operations like smoothing, aggregation, normalizing, or

generalizing the data. Smoothing refers to the removal of

the noise. Aggregation means integrating smaller values.

Normalizing refers to the scaling of data into better and

specified ranges. Generalization refers to obtain higher

degrees of hierarchy.

e) Data Reduction: Data reduction refers to the process of

obtaining the data with reduced presentations while

producing the same results on analysis. Methods of data

reduction are feature selection, instance selection, and

discretization. Feature selection indicates selecting a

smaller subset of the data/attributes that optimizes mining

by decreasing the complexity. For instance, selection,

examples are chosen, which are more relevant to the

application by using different sampling methods.

Continuous values, such as waves, are transformed into

discrete values that represent the information more

concisely and easier to understand.

Thus, various preprocessing methods help in applying

data mining techniques easily and finding better results.

But the process of preprocessing is not structured. The

arrangement of various methods decides the quality of the

results. So, the design of an automatic process for various

preprocessing steps is a challenge among the data mining

community.

III. BIG DATA PREPROCESSING

With the increase in volume and variety, the practice of

data preprocessing might get more complex and time-

consuming. In this section, the importance of

preprocessing for various types of learning is discussed.

Various techniques of preprocessing the big data and

frameworks are also presented.

A. Importance of Big Data Preprocessing

a) For Unsupervised Learning: Quality of results depends

on the quality of data. For unsupervised learning, such as

classification and association rule mining for big data,

steps such as data cleaning, transformation, and

discretization are crucial.

b) For Semi-Supervised Learning: Data preprocessing is

important at the instance level. More and more data will

generate, and labeling examples cannot be done for all the

data, especially predictive techniques.

c) For Real-time Applications: For business, medical and

other fields, real-time processing is important.

Preprocessing steps such as noise reduction are essential in

such cases.

B. Methods for Big Data Preprocessing

a) Feature Selection: Feature selection performs a vibrant

role in dealing with big datasets with wider dimensions.

There are several means for feature selection, which can be

used along with the distributed computing to scale well

with multiple nodes' complexity. Some of them are

discussed here- Approximate Heuristic- Proposed by Singh

et al. in 2009. This method is enhanced for logistic

regression in MapReduce. It uses the greedy search

approach to hand-picked the features. Meena et al.

proposed another method for feature selection in 2012,

based on Ant Colony Optimization, to select an ideal

subsection of features. It also works on MapReduce

architecture. Tanupabrungsun et al. proposed a genetic

algorithm-based method in 2013 with a fitness function. It

works in parallel with MapReduce for management and

fitness evaluation. In 2015, Kumar et al. proposed two

methods for feature selection- ANOVA and Friedman

Test. These are statistical methods and can be run

independently in parallel on MapReduce. Zhao et al.

proposed a platform for supervised and unsupervised

learning using Akaike information criterion and Bayesian

information criterion in 2013.

b) Imbalanced Data: Instances in big data sets are sparse.

Some of the classes have a high probability of the

instances, while some have less probability. This causes

the problem of imbalance in supervised learning. Various

studies have been proposed based on oversampling and

under-sampling methods to handle the obstacle of

imbalanced data. In 2014, Hu et al. suggested an improved

SMOTE (Synthetic Minority Over-sampling Technique),

where classes with smaller instances are replicated. Zhai et

al. developed a method of oversampling grounded on the

Sandeep Dalal et al. / IJETT, 68(10), 100-104, 2020

102

nearest neighbor approach for collaborative knowledge in

2016. In 2015, Triguero et al. developed an under-

sampling method based on Map and Reduce phases.

Decision trees are generated after every Map stage for

under-sampling. These trees are then used to classify the

test set. This method is widely used for big data

classification. Park et al. developed a parallel version of

SMOTE for the revealing of traffic among the instances.

The Map phase counts the gaps among the input, and the

Reduce phase sorts them.

c) Incomplete Data: Data incompleteness is a common

problem in real-life data sets. As there may be some

missing value due to individual or system failure. It can

cause gaps in the results. The systems in big data are more

prone to the problem of data incompleteness. Missing

values need to be replaced before they generate some

undesirable consequences in mining. Missing value

imputation is difficult in the big data scenario as there is a

need to consider many relationships among the instances

to replenish the finest probable value. Noise treatment is

another solution. It can be done in two ways- by

computing the likenesses among the other data points and

blending several ensembles' decisions from the noise

identification method. To solve incomplete data, Chen et

al. proposed a data cleansing technique in 2014 based on a

set-valued choice technique. The method is being

implemented on the MapReduce system. Zhang et al. gave

another method in 2015, based on calculating the relation

matrix of rough set theory.

d) Discretization: Every data mining approach requires its

input to be of a certain domain or data type. For example,

decision tree-based classification requires the data to be

categorical. Discretization converts the data from

quantitative to qualitative form. It also simplifies the data,

although a certain loss of information is there during

conversion. For big data sets, enhanced versions have been

developed. In 2014, Zhang et al. developed a Hadoop-

based method, which uses a Chi-Squared discretization

model. But the method is not very scalable. Another

approach was developed by Ramirez et al. in 2015. Feature

sorting and boundary point generation operations are being

proposed for discretization, and evaluation is done on

some big data sets.

e) Instance Reduction: Instance reduction is a decreasing

number of samples for an algorithm's learning phase.

Techniques, for instance, reduction, reduce the subset size

of data. It isn't easy to use this method as a preprocessing

step due to big data analytics's size. High level and

iterative computations are required. It also sinks the

performance. In 2015, Triguero et al. developed a method

of instance reduction by applying the IR technique over

data partitions. The Reduce phase of the Hadoop provides

ways to combine the instance sets.

Most of the above methods are used as a preprocessing

step for datasets smaller than five GB. Table 1 shows a

summary of these methods conducted by various

researchers and the maximum data size handled by them.

More scalable preprocessing methods are required for big

data sets. The next section of the paper presents various

challenges in preprocessing in a big data environment.

Table 1: Various Preprocessing Methods and Data Size Handled by

them

Method Author Maximum

Size (GB)

Framework

Feature

Selection

Peralta D

et al.

[2015]

305 Hadoop

MapReduce

Feature

Selection

Ordozgoiti

B et al.

[2015]

1.9 Apache

Spark

Feature

Selection

Zhao Z et

al. [2013]

48 MPI

Feature

Selection

Tan M et

al. [2014]

4 MATLAB

Imbalanced

Data

Lopez V et

al. [2014]

150 Hadoop

MapReduce

Imbalanced Triguero I

et al.

[2016]

75 Apache

Spark

Incomplete Zhang J et

al. [2015]

19 Hadoop

MapReduce

Discretization Ramirez-

Gallego S

et al.

[2016]

305 Apache

Spark

Discretization Zhang Y et

al. [2014]

4 Hadoop

MapReduce

Instance

Reduction

Triguero I

et al.

[2015]

1 Hadoop

MapReduce

C. Frameworks for Big Data Preprocessing

There are various frameworks available now a day for

the preprocessing of large-scale data with distributing

platforms. These frameworks provide abstraction by

enveloping all the technical complications required to

manage and merge the data from diverse data sources into

an integrated system of data that can then be directly used

by data scientists. Some of the frameworks are discussed

here.

a) MapReduce: MapReduce is the first java-based

framework that enables handling large datasets

independently on multiple nodes. Datasets are processed in

automation in a distributed way. MapReduce consists of

two components- Map and Reduce. The Map takes the

input data in the shape of a file or directory and converts it

into key-value pairs. The reducer then fetches these pairs

as the input, which reduces the data and generates the

results. The framework is very scalable and works with

multiple computing nodes. Once an algorithm is written in

MapReduce form, it can be made to run over thousands of

machines or nodes. The framework itself manages all the

Sandeep Dalal et al. / IJETT, 68(10), 100-104, 2020

103

tasks of data processing such as issuing the tasks to nodes,

verifying the completion of tasks, managing the nodes,

etc., and taking care of technical distinctions such as fault

tolerance, data partition, and communications overhead.

b) Apache Hadoop: Hadoop is an open-source software

based on MapReduce architecture from the house of

Apache. It has been designed with all the features

mentioned for MapReduce. It doesn't scale well with large

problems as it is a disk-based architecture, and the cost of

input-output communication is very high.

c) Apache Spark: Apache Spark is another implementation

based on MapReduce. It performs faster than Hadoop as it

is an in-memory based computing. It loads data into

memory and then re-uses it again and again. Spark is based

on RDD (Resilient Distributed Datasets) that regulators the

persistence and manages data partition in addition to other

MapReduce features.

d) Apache Flink: Flink is an approach for real-time

applications that bridges the gap between stream and batch

processing. It runs the algorithms either in parallel or in the

pipeline. It also supports the iterative process of

algorithms. It does not have its system for data storage but

depends on other systems such as HDFS, Cassandra, etc.

e) MLib: MLib is an influential library for machine

learning. It empowers the use of Spark for data analytics.

MLib consists of two packages- mlib and ml. The mlib has

been built on top of RDD, which has popular machine

learning methods. The ml consists of new methods such as

pipelines and high-level APIs for machine learning with

Spark. The MLib contains packages for discretization,

normalization, feature selection, etc. Some of them are

Binarizer, Tokenizer, StopWordsRemover, Bucketizer,

VectorAssambler, VectorSlicer, Chi-Squared selector,

StringIndexer, VectorIndexer, etc.

Figure 2 Framework of MapReduce

IV. CHALLENGES IN BIG DATA

PREPROCESSING

Preprocessing in the field of big data faces several

challenges. To scale up the methods is the major challenge

and key point. Data mining in big data is not static. With

the increase in new problems of big data, the challenges of

preprocessing are also increasing. For instance, there is a

need to develop new techniques to obtain a subset of data

from large datasets without diminishing mining

performance. They need to be scaling well with the

demand.

Similarly, it is a great confront to substitute the finest

conceivable value by analyzing the relationships among

other attributes. Another challenge is how to arrange and

combine all the methods of preprocessing for an optimal

approach. As studied by Garcia A et al. in 2016, the

arrangement affects the overall process of mining. Various

other factors also affect the arrangement, such as the

dependency of intermediate results, huge data volume,

parallel framework, and iterative approaches. Various new

technologies have been developed in recent years to mine

the big data, and the preprocessing methods take advantage

of them. Spark is one of them. Methods have been

developed under the MLib of Spark. Flink is another

approach that bridges the gap between stream and batch

processing for real-time applications. Still, there is the

need to develop the preprocessing techniques on Flink for

these applications.

V. CONCLUSION

Data is exploding from various sources, and the

volume, variety, and velocity are increasing. With the

practice of large data skeletons like Spark and Flink, there

is a huge change in mining and preprocessing. Data

preprocessing contributions have been presented in this

study for these new frameworks for various methods like

feature selection, data imperfection, instance reduction,

etc. Various challenges are also presented concerning big

data, such as the scaling of various techniques. For further

research work, these challenges need to be addressed by

the data mining industry. There should be collaboration

among the researchers, data scientists, and academia for

big data preprocessing while exploring new domains.

REFERENCES

[1] Data Preparation for Data Mining, Dorian Pyle, 1999

[2] Singh S, Kubica J, Larsen SE, Sorokina D. “Parallel Large Scale
Feature Selection for Logistic Regression. In: SIAM” International

Conference on Data Mining (SDM). Sparks, Nevada: 2009. p.,

1172–1183.
[3] Meena MJ, Chandran KR, Karthik A, Samuel AV. “An Enhanced

ACO algorithm to Select Features for Text Categorization and its

Parallelization”. Expert Syst Appl. 2012; 39(5):5861–871.
[4] Zhao Z, Zhang R, Cox J, Duling D, Sarle W. “Massively Parallel

Feature Selection: An Approach Based on Variance Preservation”.
Mach Learn. 2013; 92(1):195–220.

[5] Hu F, Li H, Lou H, Dai J. “A Parallel Oversampling Algorithm

Based on NRSBoundary-SMOTE”. J Inf Comput Sci. 2014;
11(13):4655–665.

[6] Zhai J, Zhang S, Wang C. “The Classification of Imbalanced

Large Data Sets Based on Mapreduce and Ensemble of Elm
Classifiers”. Int J Mach Learn Cybern. 2016.

doi:http://dx.doi.org/10.1007/s13042-015-0478-7

[7] Park S-h, Kim S-m, Ha Y-g. “Highway Traffic Accident Prediction
Using Big Data Analysis”. J Supercomput. 2016.

doi:http://dx.doi.org/10.1007/s11227-016-1624-z.

[8] Zhang Y, Yu J, Wang J. “Parallel Implementation of chi2
Algorithm in MapReduce Framework”. In: Human-Centered

Computing - First International Conference, HCC. Germany:

Springer: 2014. p. 890–9.
[9] Triguero I, Peralta D, Bacardit J, García S, Herrera F. “MRPR: A

Mapreduce Solution for Prototype Reduction in Big Data

Classification”. Neurocomputing. 2015; 150 Part A:331–45.
[10] Vandna Dahiya, Sandeep Dalal, “Big data Mining: Current Status

and Future Prospects”, International Journal of Advanced Science

and Technology, Volume 29, No 3, pp. 4659- 4670, 2020.

http://dx.doi.org/10.1007/s13042-015-0478-7
http://dx.doi.org/10.1007/s11227-016-1624-z

Sandeep Dalal et al. / IJETT, 68(10), 100-104, 2020

104

[11] García S, Luengo J, Herrera F. “Tutorial On Practical Tips of the
Most Influential Data Preprocessing Algorithms in Data Mining.

Knowl-Based Syst”. 2016.

doi:http://dx.doi.org/10.1016/j.knosys.2015.12.006.
[12] Tanupabrungsun S, Achalakul T. “Feature Reduction for Anomaly

Detection in Manufacturing with Mapreduce GA/kNN”. In: 19th

IEEE International Conference on Parallel and Distributed Systems
(ICPADS). Seoul: 2013. p. 639–44.

[13] Triguero I, Galar M, Vluymans S, Cornelis C, Bustince H, Herrera

F, Saeys Y. “Evolutionary Under Sampling for Imbalanced Big
Data Classification”. In: IEEE Congress on Evolutionary

Computation, CEC. USA: IEEE: 2015. p. 715–22.

[14] Chen F, Jiang L. “A Parallel Algorithm for Data Cleansing in
Incomplete Information Systems Using Mapreduce”. In: 10th

International Conference on Computational Intelligence and

Security (CIS). Kunmina, China: 2014. p. 273-277.

[15] Sandeep Dalal, Vandna Dahiya, “A Novel Technique - Absolute

High Utility Itemset Mining (AHUIM) Algorithm for Big Data”,

International Journal of Advanced Trends in Computer Science

and Engineering (IJATCSE), Volume 9, Issue 5, 2020. pp 7451-

7460.

[16] Zhang J, Wong JS, Pan Y, Li T. “A Parallel Matrix-Based Method
for Computing Approximations in Incomplete Information

Systems”. IEEE Trans Knowl Data Eng. 2015; 27(2):326–39.

[17] D. Jeffrey and S. Ghemawat. “MapReduce: Simplified Data
Processing On Large Clusters”. Communications of the ACM,

volume 51, pp. 107-113, Jan. 2008.

[18] Apache Hadoop Project, 2015. https://hadoop.apache.org
[19] Apache Spark: Lightning-fast cluster computing.

https://spark.apache.org/

[20] Apache Flink. https://flink.apache.org/
[21] https://en.wikipedia.org/wiki/Apache_Flink

[22] https://pypi.org/project/mLib/

http://dx.doi.org/10.1016/j.knosys.2015.12.006
https://spark.apache.org/
https://flink.apache.org/
https://en.wikipedia.org/wiki/Apache_Flink
https://pypi.org/project/mLib/

