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Abstract - Big data is an assemblage of large and complex 

data that is difficult to process with the traditional DBMS 

tools. The scale, diversity, and complexity of this huge data 

demand new analytics techniques to extract useful and 

hidden value from it. Data must be prepared before 

starting mining as real data is sometimes not suitable for 

mining, and poor quality finishes in poor results. This 

paper presents the needs, various problems, and solutions 

for the preprocessing of big data. 
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I. INTRODUCTION 

Data is exploding from various fields such as business, 

astronomy, transportation, genomics, retail, entertainment, 

etc. This huge data generating from all these fields are high 

in speed, huge in volume, and dissimilar in variety. This 

data is called big data, which is a collection of enormous 

and complicated data sets. This data cannot be processed 

directly by manual applications or with traditional data 

processing applications. The current rate of generating data 

has exceeded the managing capability of our conventional 

systems. This factor indicates the 'big' challenge for data 

analytics society. 

Many applications have been developed in recent times 

to tackle the problem of big data analytics. These 

applications make the distributed know-hows familiar to 

the user while hiding the complex strategies and technical 

details of distributed environments. Also, the methods and 

algorithms required for big data analytics are different 

from conventional algorithms, as they need to work with 

the distributed environment. So, they need to be re-

designed or build again for these systems, which is a vast 

challenge for the data mining society. 

II. DATA PREPROCESSING 

Data preprocessing signifies the set of practices applied 

to the data before applying any data mining approach. It is 

one of the vital steps of the KDD procedure. According to 

Dorian Pyle, "The fundamental purpose of data preparation 

is to manipulate and transform raw data so that the 

information content enfolded in the data set can be 

exposed, or made more easily accessible." The raw data 

can be imperfect, incomplete, or might have redundancies, 

which are not suitable for directly mining the process of 

mining. With an increase in size and dimensions of the 

data, high-level mechanisms are required to analyze it. 

Data preprocessing uncover quality data before applying 

the knowledge extraction algorithms. With the 

preprocessing of data, it becomes more feasible to be 

adopted by the particular data-mining algorithm. The 

following points can summarize the importance of data 

preprocessing- 

• Real data are most likely to be flawed, 

inconsistent, and redundant. It may be lacking the 

attributes or may have errors or outliers. It isn't 

easy to use it directly for the process of mining. 

The quality of results depends on the quality of 

the data. 

• Real data come from diverse sources. It needs to 

be in a standard form before feeding it to some 

data mining method. 

• Preprocessing of data helps in making the data 

adaptable for the necessities of a data-mining 

algorithm. 

• Preprocessing data helps generate a smaller subset 

of data, which is essential for many applications 

for their learning phases. 

• Preprocessing data helps generate a smaller subset 

of data, which is essential for many applications 

for their learning phases. 

 

 

Figure 1 Preprocessing in KDD Process 

 

A. Major Tasks in Preprocessing of Data 

Before mining, various steps are required for 

preprocessing the data. Some major steps are discussed in 

this section. 

a) Data Integration: Data is obtained from various 

sources. These sources might use different coding 

mechanisms, which may generate diverse representations. 

So, the data need to be integrated from numerous sources 

and then symbolized in a homogeneous form. For 

example, for the same organization, the employees' salary 

can be denoted in dollars or euros based on the office's 

geography. It can be paid monthly or yearly. All this 

information needs to be converted into a standardized 

form. So, the problems of representation and codification 

are addressed under the integration of data. 
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b) Data Cleaning: Data mining methods may have 

mechanisms to pact with data that is noisy and incomplete. 

Most of the time, the cleaning of data is done before 

starting the process of mining. For example, sometimes, 

the mining method's requirement may be the age in place 

of birth year. So, cleaning refers to repair the 

inconsistencies, smoothening of noisy data, and 

documentation of outliers. 

c) Data Perfection: Most of the mining approaches 

consider that the data is complete and noise-free. Some 

values might be missing or not available in real-world 

data, and there can be much noise. To make the data 

suitable for mining, missing values need to be filled, and 

noisy data need to be removed. If the data is composed of 

missing values that have not been stored for any reason, 

then the dealing of such values is necessary before starting 

the mining process. Otherwise, mining will result in 

inappropriate results. It can produce biasedness in the 

whole process. One approach is to discard the complete 

instance, which again leads to the biasedness and causes 

information-loss of the rest of the instance to deal with 

them. The other option is to use statistical and probabilistic 

models to fill these values. Noise can also affect the input 

values, and so does the output. To remove the noise, 

preprocessing is required based on the amount of noise 

present. If the noise is small, data polishing methods are 

sufficient. But if the noise is large, noise filters are used, 

which find the noisy instances and modify the values. 

d) Data Transformation: Transformation of data aims at 

converting the data into a format that is best conceivable 

for the mining algorithms. It can be done through 

operations like smoothing, aggregation, normalizing, or 

generalizing the data. Smoothing refers to the removal of 

the noise. Aggregation means integrating smaller values. 

Normalizing refers to the scaling of data into better and 

specified ranges. Generalization refers to obtain higher 

degrees of hierarchy. 

e) Data Reduction: Data reduction refers to the process of 

obtaining the data with reduced presentations while 

producing the same results on analysis. Methods of data 

reduction are feature selection, instance selection, and 

discretization. Feature selection indicates selecting a 

smaller subset of the data/attributes that optimizes mining 

by decreasing the complexity. For instance, selection, 

examples are chosen, which are more relevant to the 

application by using different sampling methods. 

Continuous values, such as waves, are transformed into 

discrete values that represent the information more 

concisely and easier to understand. 

Thus, various preprocessing methods help in applying 

data mining techniques easily and finding better results. 

But the process of preprocessing is not structured. The 

arrangement of various methods decides the quality of the 

results. So, the design of an automatic process for various 

preprocessing steps is a challenge among the data mining 

community. 

 

III. BIG DATA PREPROCESSING 

With the increase in volume and variety, the practice of 

data preprocessing might get more complex and time-

consuming. In this section, the importance of 

preprocessing for various types of learning is discussed. 

Various techniques of preprocessing the big data and 

frameworks are also presented. 

A. Importance of Big Data Preprocessing 

a) For Unsupervised Learning: Quality of results depends 

on the quality of data. For unsupervised learning, such as 

classification and association rule mining for big data, 

steps such as data cleaning, transformation, and 

discretization are crucial. 

b) For Semi-Supervised Learning: Data preprocessing is 

important at the instance level. More and more data will 

generate, and labeling examples cannot be done for all the 

data, especially predictive techniques. 

c) For Real-time Applications: For business, medical and 

other fields, real-time processing is important. 

Preprocessing steps such as noise reduction are essential in 

such cases. 

B. Methods for Big Data Preprocessing 

a) Feature Selection: Feature selection performs a vibrant 

role in dealing with big datasets with wider dimensions. 

There are several means for feature selection, which can be 

used along with the distributed computing to scale well 

with multiple nodes' complexity. Some of them are 

discussed here- Approximate Heuristic- Proposed by Singh 

et al. in 2009. This method is enhanced for logistic 

regression in MapReduce. It uses the greedy search 

approach to hand-picked the features. Meena et al. 

proposed another method for feature selection in 2012, 

based on Ant Colony Optimization, to select an ideal 

subsection of features. It also works on MapReduce 

architecture. Tanupabrungsun et al. proposed a genetic 

algorithm-based method in 2013 with a fitness function. It 

works in parallel with MapReduce for management and 

fitness evaluation. In 2015, Kumar et al. proposed two 

methods for feature selection- ANOVA and Friedman 

Test. These are statistical methods and can be run 

independently in parallel on MapReduce.  Zhao et al. 

proposed a platform for supervised and unsupervised 

learning using Akaike information criterion and Bayesian 

information criterion in 2013. 

b) Imbalanced Data: Instances in big data sets are sparse. 

Some of the classes have a high probability of the 

instances, while some have less probability. This causes 

the problem of imbalance in supervised learning. Various 

studies have been proposed based on oversampling and 

under-sampling methods to handle the obstacle of 

imbalanced data. In 2014, Hu et al. suggested an improved 

SMOTE (Synthetic Minority Over-sampling Technique), 

where classes with smaller instances are replicated. Zhai et 

al. developed a method of oversampling grounded on the 
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nearest neighbor approach for collaborative knowledge in 

2016. In 2015, Triguero et al. developed an under-

sampling method based on Map and Reduce phases. 

Decision trees are generated after every Map stage for 

under-sampling. These trees are then used to classify the 

test set. This method is widely used for big data 

classification. Park et al. developed a parallel version of 

SMOTE for the revealing of traffic among the instances. 

The Map phase counts the gaps among the input, and the 

Reduce phase sorts them. 

c) Incomplete Data: Data incompleteness is a common 

problem in real-life data sets. As there may be some 

missing value due to individual or system failure. It can 

cause gaps in the results. The systems in big data are more 

prone to the problem of data incompleteness. Missing 

values need to be replaced before they generate some 

undesirable consequences in mining. Missing value 

imputation is difficult in the big data scenario as there is a 

need to consider many relationships among the instances 

to replenish the finest probable value. Noise treatment is 

another solution. It can be done in two ways- by 

computing the likenesses among the other data points and 

blending several ensembles' decisions from the noise 

identification method. To solve incomplete data, Chen et 

al. proposed a data cleansing technique in 2014 based on a 

set-valued choice technique. The method is being 

implemented on the MapReduce system. Zhang et al. gave 

another method in 2015, based on calculating the relation 

matrix of rough set theory. 

d) Discretization: Every data mining approach requires its 

input to be of a certain domain or data type. For example, 

decision tree-based classification requires the data to be 

categorical. Discretization converts the data from 

quantitative to qualitative form. It also simplifies the data, 

although a certain loss of information is there during 

conversion. For big data sets, enhanced versions have been 

developed. In 2014, Zhang et al. developed a Hadoop-

based method, which uses a Chi-Squared discretization 

model. But the method is not very scalable. Another 

approach was developed by Ramirez et al. in 2015. Feature 

sorting and boundary point generation operations are being 

proposed for discretization, and evaluation is done on 

some big data sets. 

e) Instance Reduction: Instance reduction is a decreasing 

number of samples for an algorithm's learning phase. 

Techniques, for instance, reduction, reduce the subset size 

of data. It isn't easy to use this method as a preprocessing 

step due to big data analytics's size. High level and 

iterative computations are required. It also sinks the 

performance. In 2015, Triguero et al. developed a method 

of instance reduction by applying the IR technique over 

data partitions. The Reduce phase of the Hadoop provides 

ways to combine the instance sets. 

Most of the above methods are used as a preprocessing 

step for datasets smaller than five GB. Table 1 shows a 

summary of these methods conducted by various 

researchers and the maximum data size handled by them. 

More scalable preprocessing methods are required for big 

data sets. The next section of the paper presents various 

challenges in preprocessing in a big data environment. 

 

Table 1: Various Preprocessing Methods and Data Size Handled by 

them 

Method Author Maximum 

Size (GB) 

Framework 

Feature 

Selection 

Peralta D 

et al. 

[2015] 

305 Hadoop 

MapReduce 

Feature 

Selection 

Ordozgoiti 

B et al. 

[2015] 

1.9 Apache 

Spark 

Feature 

Selection 

Zhao Z et 

al. [2013] 

48 MPI 

Feature 

Selection 

Tan M et 

al. [2014] 

4 MATLAB 

Imbalanced 

Data 

Lopez V et 

al. [2014] 

150 Hadoop 

MapReduce 

Imbalanced Triguero I 

et al. 

[2016] 

75 Apache 

Spark 

Incomplete Zhang J et 

al. [2015] 

19 Hadoop 

MapReduce 

Discretization Ramirez-

Gallego S 

et al. 

[2016] 

305 Apache 

Spark 

Discretization Zhang Y et 

al. [2014] 

4 Hadoop 

MapReduce 

Instance 

Reduction 

Triguero I 

et al. 

[2015] 

1 Hadoop 

MapReduce 

 

C. Frameworks for Big Data Preprocessing 

There are various frameworks available now a day for 

the preprocessing of large-scale data with distributing 

platforms. These frameworks provide abstraction by 

enveloping all the technical complications required to 

manage and merge the data from diverse data sources into 

an integrated system of data that can then be directly used 

by data scientists. Some of the frameworks are discussed 

here. 

a) MapReduce: MapReduce is the first java-based 

framework that enables handling large datasets 

independently on multiple nodes. Datasets are processed in 

automation in a distributed way. MapReduce consists of 

two components- Map and Reduce. The Map takes the 

input data in the shape of a file or directory and converts it 

into key-value pairs. The reducer then fetches these pairs 

as the input, which reduces the data and generates the 

results. The framework is very scalable and works with 

multiple computing nodes. Once an algorithm is written in 

MapReduce form, it can be made to run over thousands of 

machines or nodes. The framework itself manages all the 
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tasks of data processing such as issuing the tasks to nodes, 

verifying the completion of tasks, managing the nodes, 

etc., and taking care of technical distinctions such as fault 

tolerance, data partition, and communications overhead. 

b) Apache Hadoop: Hadoop is an open-source software 

based on MapReduce architecture from the house of 

Apache. It has been designed with all the features 

mentioned for MapReduce. It doesn't scale well with large 

problems as it is a disk-based architecture, and the cost of 

input-output communication is very high. 

c) Apache Spark: Apache Spark is another implementation 

based on MapReduce. It performs faster than Hadoop as it 

is an in-memory based computing. It loads data into 

memory and then re-uses it again and again. Spark is based 

on RDD (Resilient Distributed Datasets) that regulators the 

persistence and manages data partition in addition to other 

MapReduce features. 

d) Apache Flink: Flink is an approach for real-time 

applications that bridges the gap between stream and batch 

processing. It runs the algorithms either in parallel or in the 

pipeline. It also supports the iterative process of 

algorithms. It does not have its system for data storage but 

depends on other systems such as HDFS, Cassandra, etc. 

e) MLib: MLib is an influential library for machine 

learning. It empowers the use of Spark for data analytics. 

MLib consists of two packages- mlib and ml. The mlib has 

been built on top of RDD, which has popular machine 

learning methods. The ml consists of new methods such as 

pipelines and high-level APIs for machine learning with 

Spark. The MLib contains packages for discretization, 

normalization, feature selection, etc. Some of them are 

Binarizer, Tokenizer, StopWordsRemover, Bucketizer, 

VectorAssambler, VectorSlicer, Chi-Squared selector, 

StringIndexer, VectorIndexer, etc. 

 
Figure 2 Framework of MapReduce 

IV. CHALLENGES IN BIG DATA 

PREPROCESSING 

Preprocessing in the field of big data faces several 

challenges. To scale up the methods is the major challenge 

and key point. Data mining in big data is not static. With 

the increase in new problems of big data, the challenges of 

preprocessing are also increasing. For instance, there is a 

need to develop new techniques to obtain a subset of data 

from large datasets without diminishing mining 

performance. They need to be scaling well with the 

demand. 

Similarly, it is a great confront to substitute the finest 

conceivable value by analyzing the relationships among 

other attributes. Another challenge is how to arrange and 

combine all the methods of preprocessing for an optimal 

approach. As studied by Garcia A et al. in 2016, the 

arrangement affects the overall process of mining. Various 

other factors also affect the arrangement, such as the 

dependency of intermediate results, huge data volume, 

parallel framework, and iterative approaches. Various new 

technologies have been developed in recent years to mine 

the big data, and the preprocessing methods take advantage 

of them. Spark is one of them. Methods have been 

developed under the MLib of Spark. Flink is another 

approach that bridges the gap between stream and batch 

processing for real-time applications. Still, there is the 

need to develop the preprocessing techniques on Flink for 

these applications. 

V. CONCLUSION 

Data is exploding from various sources, and the 

volume, variety, and velocity are increasing. With the 

practice of large data skeletons like Spark and Flink, there 

is a huge change in mining and preprocessing. Data 

preprocessing contributions have been presented in this 

study for these new frameworks for various methods like 

feature selection, data imperfection, instance reduction, 

etc. Various challenges are also presented concerning big 

data, such as the scaling of various techniques. For further 

research work, these challenges need to be addressed by 

the data mining industry. There should be collaboration 

among the researchers, data scientists, and academia for 

big data preprocessing while exploring new domains.  
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