
International Journal of Engineering Trends and Technology Volume 68 Issue 10, 112-116, October 2020

ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V68I10P219 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Genetic Algorithm Approach to Optimize Test

Cases

Baswaraju Swathi#1, Dr.Harshvardhan Tiwari*2

Research Scholar, Department of CSE, Jain University, Bengaluru, Karnataka, India.

2 Associate Professor, CIIRC, Jyothy Institute of Technology, Bengaluru, Karnataka, India

1baswarajuswathi@gmail.com
2tiwari.harshvardhan@gmail.com

Abstract - Test case generation is considered a significant

and complex aspect in software testing, ensuring the

quality of a software product. In a highly competitive

environment, web applications have become crucial to

most enterprises, demanding the application's quality. The

characteristics of such applications include client-server,

distributed, and dynamic. Hence meticulous testing of a

web-based application becomes necessary. Many

strategies have been proposed to address the issues w.r.t

test case generation for web applications. One such

strategy is a Genetic Algorithm (GA), which is an

evolutionary technique. In this paper, we analyze the test

suit generation as a complex problem and derive the test

cases with traditional test case generation approaches

where the common generation problems are addressed

with a case study.

Further Genetic Algorithm approach, the parameters

which can enhance the test case generation is proposed.

The various encoding and selection techniques of GA are

considered. The parameter of fitness function which

determines the success of GA is analyzed. Finally the

evaluation criteria code coverage is examined to assess

the test effectiveness.

Keywords — code coverage, evolutionary technique,

fitness function, Genetic Algorithm, test case generation

I. INTRODUCTION

 Test case/suite generation is the most central and essential

practice of software testing. There are numerous methods

accessible for creating test cases. The goal-oriented test

case creation approach is to wrap a specific segment,

statement, or procedure. The execution path is not relevant

here, but the primary objective is to test the target. The

random approach builds test cases assuming errors and

system faults. The specification model builds test cases

based on the formal requirement specifications [1]. The

code-dependent case creation method generates the source

code's control flow path, derives the tests accordingly, and

tests the executed flow. The other type of test case

generation method uses the UML diagram to build the test

cases. Many other test case generation methods are

available in the testing. Irrespective of the approach, an

appropriate test case generation process is one of the most

decisive factors for implementing a successful project.

Testing of web applications [2] remains a challenging task

for the testers. The type of browsers, interfaces, security

coercion, and overall application integration are among the

issues. As testing is a critical phase in the software

development process, the web application developer

expects unforeseen issues connected to the web application

and the testing progression [3]. Every key problem,

coupled with testing, can run into infinite correlated issues,

which can usually be solved if appropriately

acknowledged. Web application testing challenges include:

Integration testing presents problems with implementations

between distinct system components before deployment.

Besides, integration testing can show the various issues

that the program might have while communicating with

the other applications, enabling the programmer to modify

things. System and network inconsistency, specific

interaction models, and overall performance are just a few

of the problems related to deployment testing.

Interoperability is asserting end-to-end compatibility

among communications networks is often a demanding

challenge. Applications use different browsers and

operating systems. To collect data, it is very important to

test each one to validate a clear information path. Though

the browsers are identical, the web application may use

different screen resolutions and different hardware and

software configurations, thereby creating severe

applications. Security is an important parameter. Tests

w.r.t cyber threats should be countered and neutralized.

Usually, such types of threats lead to data loss or data

manipulation. The main challenge in security in web

applications deals with unsecured communication,

malicious file integration, unauthorized and

unauthenticated procedures on the client, and server-side.

Performance is all about timing. The web applications that

take much time to load/execute are usually not

recommendable. Integrating and interoperability issues, the

hardware support, and extending application features are

the main issues w.r.to the mentioned testing. Usability-

Consistency is considered crucial as the variation in

browsers, scalability, and interactivity issues need to be

considered. The web app needs to be used effectively.

https://www.ijettjournal.org/archive/ijett-v68i10p219
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Baswaraju Swathi et al. / IJETT, 68(10), 112-116, 2020

113

II. TEST CASE GENERATION

The test derivation can be considered as a single objective

where the priority can be given to coverage, which

includes structural coverage [4], all definitions coverage,

all path coverage [5], and code coverage [6,7] is an

important metric to evaluate test effectiveness. The other

factors can be Requirement change volatility, which may

lead to an increase in the testing effort, and the rate of

change may lead to cost and time effort. Test case

optimization also has ranked the test cases, parallel

execution, independent and dependent on other test cases

may be in a single module or different modules, thereby

defining multiple objectives [8]. The various methods like

weighted sum W(X)=∑WiXi and Epsilon constraint

method fm(X)=<= Epsilon m is considered to derive the

functionality. A test suite is a complete suite of test cases

usually represented as:

Ts={<td1,tp/f1>,{<td2,tp/f2>,

{<td3, tp/f3>,….{<tn1,tp/fn>},Ts –test suite, td-test data

and tp/f1 result of the test case passed/failed. Considering

the most popular triangle problem, the figures depict the

importance of code coverage as an evaluation parameter.

Sample of unit test cases:

@Test

public void test1()

{

Triangeclass1 c=new Triangleclass1();

 String expectedval= “Scalene”;

 String actualval= c.ftr(2,3,4);

 assertEquals(expectedval,acualval);

}

Fig 1: Code coverage

The above figure shows that for the test cases executed for

the triangle problem, the code coverage is 78.5%. To

improve the code coverage, we have to run the other test

cases as well. Hence code coverage can be considered. The

below section deals with the test case generation usually

applicable for a web application. Considering the

following application, a shopping cart app, considering the

app's various scenarios, the test cases can be categorized as

mentioned below as per random testing alone. Exhaustive

testing is usually not preferred due to the budget and time

constraints and several other factors. If specifically, the

test cases should deal with black box and white box testing

scenarios. For example, under black box testing

equivalence testing, the test classes are divided into classes

considering both positive and negative cases must be

specified. Decision table testing specifies the scenarios

with input combinations, and behavior is captured. T-way

testing [9] is considered a superior testing technique as it

drastically reduces the test case combination. As the paper

discusses the web applications, each page in web

application consists of elements; therefore, the

combination of the input values itself generates a huge

amount of test cases, considering the functionality of every

element will further increase the count of test cases

whereby there is a need for test optimization.

The following section describes the unit test cases written

in selenium web driver, on a web application

“newtours.demoaut.com,” with test data as<” autotest,”

autotest”>, testing the login functionality of the website.

Fig 2: Selenium unit test cases

III. METHODOLOGY

Genetic Algorithm is an optimization algorithm [10,11]

based on natural evolution. GA deals with the natural way

of selecting the best population, usually represented with

the fitness function. Every generation is expected to

produce the best fit of individuals as parent chromosomes

evolve to be best; offspring also evolve. Fitness function is

the critical evaluation factor of GA as it determines the

best fit of individuals. The iteration can be stopped based

on the constraints of the optimization problem. Crossover

Baswaraju Swathi et al. / IJETT, 68(10), 112-116, 2020

114

operation leads to generating a new population, and

mutation operation usually balances the diversity and

convergence[12].

The selection stage [13] regulates the individuals chosen

for merging and the number of offsprings the selected

chromosome generates. The foremost standard of selection

approach is the better individual is selected as a parent,

determining which chromosomes need to be considered for

the next iterations and stopping, hence ensuring the best

solutions. Roulette wheel selection attaches a probability

to an individual such that the probability of individually

selected is Pti = fitness i / Σ i(fitness k) for k = 1 to the

number of individuals considered as a whole which can be

implemented using Naive Algorithm, which calculates the

total of all fitness, generate a number which is random

sum>r the iteration stops. Rank Selection considers

relative fitness, unlike Roulette wheel, which considers

absolute, i.e., Population of N solutions rank N, N-1, N-2,

and so on till 1 is considered. Tournament Selection selects

individuals at random the best fitness, usually called as the

winner is chosen for crossover. Crossover operations

promote diversity. The finding of global solutions Multi-

Point Crossover simplifies the one-point crossover wherein

discontinuous segments are swapped to get a new

population. Uniform crossover each gene is considered

separately. The mutation is the part of the GA that is

associated with searching the search space, which is

necessary to the convergence of the GA. Bit flip identifies

arbitrary bits and flips the bits, used commonly in binary

encoded GA. Random Resetting is an addition of the bit

flip for the numeral depiction. A random value from the set

of acceptable values is initialized to an arbitrarily selected

gene. Swap Mutation selects two points on the

chromosome at arbitrary, substitute the values. They are

used in permutation-based encodings. Fitness functions

[14] depend on the goal, priorities, and execution

specifications. Usually, a weighted sum is used, as

mentioned in previous sections.

A. GA APPROACH

 As per the above mentioned there are several

characteristics of web applications which makes the test

case generation a complex process.GA approach here

considers the initial population form the derived testcases,

Ts={<td1,tp/f1>,{<td2,tp/f2>,{<td3,tp/f3>,….{<tn1,tp/fn>

}.

The idea is to optimize the above test cases with a GA

algorithm run on the mentioned. White box testing the

metrics considered will be structural coverage criteria and

data flow coverage criteria[15].

Fig 3: GA Approach

 The problem of test case generation is given byT1, T2,

T3…TN-TEST SUIT,

F(T) = {T1,T2,T3,…TN}, find T such that

T={t1,t2,t3…tn} set of test cases in {T1,T2,T3,…TN} is

the best solution which gives maximum coverage.

The encoding scheme considers representing the initial

population as a node. A page can be specified with

URL and a pointer were pointing to the next page. Request

can be specified with the filed name and value of the field

it carries as the page can link to the other page bypassing

some information; Ranking based selection is used as

described in the above section.

Consider the following use case.

<useCase id="Shopping Cart ">

<description_usecse>Login.jsp page redirects to

Shopping cart page for a user. </description_usecase>

<Sequence>

 <step id="No1"> User selects the books based on

the description fields available</step>

<step id="No2"> Adds them to the cart </step>

<step id="No3">the system adds the list of the items

to the cart where user can edit further </step>

<step id="No4">System displays the summary

 </step>

 </Sequence>

 <info>

Baswaraju Swathi et al. / IJETT, 68(10), 112-116, 2020

115

<Steps>

<step id="1.1"> If there are no books as per the

description is empty system displays a message

and ends use case. </step>

</Steps>

 </info>

 </useCase>

Fig 4: A Sample Application

Test Scenarios considered for the above mentioned infig.6.

ofweb application page,

C1:P1->P4->P5->P7,

C2:P2->P1->P3->P7->P8

C3: P2->P1->P3->P4->P5->P6,

C4: P1->P2->P1->P7->P8,

the same can be considered even for a Triangle problem.

(S1->S2->S3->S4), where S is the statements which

further include statement coverage and branch coverage.

The fitness function derived here is the value proportional

to code coverage. Fitness function is considered to be a

weighted sum of the objective functions of data

dependencies and link dependencies and the constraints on

a web application which are usually applicable,

Fi=∑1/𝐶𝑖(𝑓𝑖) ∗ 𝑑𝑖, i{t1, t2,t3..tn}, where 𝑓𝑖 is the fitness

of individual chromosome proportional to code coverage

of the selected chromosome and 𝑑𝑖 is dependency factors

for both unit testing and black-box testing. Dependency

factors for the Triangle problem considered here, as stated

above.

Cross over: TwoPoint Cross over to get the new

population used to set the maximum combinations from

the selected chromosomes as it increases diversity as

described in fig.3.

Mutation: Mutation will transform the chromosomes,

thereby removing the duplicate test cases and creating

variant test cases.

Acceptance and stop criteria usually depend on the

application-specific and many other local constraints. The

current work stops the number of iterations after achieving

a specific code coverage percentage.

Step-1:Initailization:C1,C2,C3,C4

STEP-2:FitnessAssignment:directly proportional to code

coverage

Step-3:Selection: based on the Fitness value

Step-4:Crossover:

C1:P1->P4->P5->P7

C2:P2->P1->P3->P7->P8

C11:P1->P3->P7->P8

C21:P2->P4->P5->P7

STEP-5:Mutation:

C1:P1->P4->P5->P7

C3:P1->P2->P1->P7->P8

C13:P1->P2->P1->P4->P5->P7->P8

IV. EVALUATION OF THE GA

The system under test from the open-source was

considered, and our GA an optimized algorithm

was applied.GA executed has resulted in a Pareto set

intended to maximize the objectives[17]. The change in the

average objective results was recorded. Sampling the

approximate values in the test suite achieved considerable

fitness and code coverage values.

Fig 5: Code Coverage vs. Fitness

V. CONCLUSION

This paper gives an insight into the test case generation

process-specific of web applications testing and White Box

testing specific to the Triangle problem. The properties of

web application which play a significant role in test case

generation were specified. Generation of Test cases as a

multipurpose optimization is addressed; a Genetic

Algorithm, an evolutionary technique that can be applied

to test case generation, was analyzed, and the steps in the

process. Code coverage, an important metric in deciding

the test effectiveness, was focused and measured with an

example module. GA Methodology is proposed to be the

major soft computing technique to apply in the

implementation of test design development across the

software test projects.

0.00

20.00

40.00

60.00

80.00

0
.3

7

0
.3

8

0
.4

0

0
.4

1

0
.4

2

0
.4

2

0
.4

2

0
.5

2

0
.5

1

0
.5

5

0
.5

8

0
.6

4C
O

D
E

C
O

V
ER

A
G

E

FITNESS

Code Coverage vs Fitness

Baswaraju Swathi et al. / IJETT, 68(10), 112-116, 2020

116

REFERENCES

[1] NichaKosindrdecha and JirapunDaengdej, 2010, “A Test Case

Generation Process and Technique,” Journal of Software

Engineering,4:265-287, DOI: 10.3923/jse.2010.265.287.
[2] Nabuco M., Paiva A.C.R. (2014), “Model-Based Test Case

Generation for Web Applications,” In Murgante B. et al. (eds)

Computational Science and Its Applications – ICCSA 2014.
ICCSA 2014. Lecture Notes in Computer Science, vol 8584.

Springer, Cham. https://doi.org/10.1007/978-3-319-09153-2_19

[3] Arora A., Sinha M, “Web Application Testing: A Review on
Techniques, Tools, and the State of Art,” International Journal of

Scientific & Engineering Research, Volume 3, Issue 2, February-

2012 1ISSN 2229-5518.
[4] Arun Sharma, Rajesh Kumar, “Towards Multi-Faceted Test Cases

Optimization,” Journal of Software Engineering and Applications

4:550-557 · January 2011.
[5] M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective

optimization problems: test cases, approximations, and

applications,” IEEE Transactions on Evolutionary Computation,
vol. 8, no. 5, pp. 425-442, Oct. 2004, doi:

10.1109/TEVC.2004.831456.

[6] V. Antinyan, J. Derehag, A. Sandberg and M. Staron, “Mythical
Unit Test Coverage, in IEEE Software,” vol. 35, no. 3, pp. 73-79,

May/June 2018, doi: 10.1109/MS.2017.3281318.

[7] BaswarajuSwathi, Harshvardhan Tiwari, “Test Case Generation
Process using Soft Computing Techniques,” International Journal

of Innovative Technology and Exploring Engineering (IJITEE),

ISSN: 2278- 3075, Volume-9 Issue-1, November 2019.
[8] A. Shahbazi and J. Miller, "Black-Box String Test Case

Generation through a Multiobjective Optimization" in IEEE

Transactions on Software Engineering, vol. 42, no. 04, pp. 361-
378, 2016.doi: 10.1109/TSE.2015.2487958

[9] Rozmie R. Othman, Kamal Z Zamli, “T-Way Strategies and Its
Applications for Combinatorial Testing,” International Journal on

New Computer Architectures and Their Applications(IJNCAA).

[10] HirohideHaga, Akihisa Suehiro, “Automatic test case generation
based on genetic algorithm and mutation analysis,” 2012 IEEE

International Conference on Control System, Computing and

Engineering.
[11] Shirole M., Kumar R, “A Hybrid Genetic Algorithm Based Test

Case Generation Using Sequence Diagrams,” In Ranka S. et al.

(eds) Contemporary Computing. IC3 2010. Communications in
Computer and Information Science, vol 94. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-14834-7_6

[12] Deepak Kumar, ManuPhogat, “Genetic Algorithm Approach For
Test Case Generation Randomly: A Review,” International Journal

of Computer Trends and Technology (IJCTT) – Volume 49

Number 4 July 2017.
[13] A. Shukla, H. M. Pandey, and D. Mehrotra, "Comparative review

of selection techniques in genetic algorithm," 2015 International

Conference on Futuristic Trends on Computational Analysis and
Knowledge Management (ABLAZE), Noida, 2015, pp. 515-519,

doi: 10.1109/ABLAZE.2015.7154916.

[14] ArinaAfanasyeva, Maxim Buzdalov, “Choosing Best Fitness
Function with Reinforcement Learning,” 2011 10th International

Conference on Machine Learning and Applications and

Workshops.
[15] ShvetaParnami, Krishna Swaroop Sharma,

“Empirical Validation of Test Case Generation Based on All-
Edge Coverage Criteria,” International Journal of Computer

Applications, September 2015.

[16] Panichella, A., Kifetew, F. M., &Tonella, P. (2018). “Automated
Test Case Generation as a Many- Objective Optimisation Problem

with Dynamic Selection of the Targets,” IEEE Transactions on

Software Engineering, 44(2),122–158.

https://doi.org/10.1007/978-3-319-09153-2_19

