International Journal of Engineering Trends and Technology
ISSN: 2231 — 5381 /d0i:10.14445/22315381/1JETT-V68110P219

Volume 68 Issue 10, 112-116, October 2020
© 2020 Seventh Sense Research Group®

Genetic Algorithm Approach to Optimize Test
Cases

Baswaraju Swathi*, Dr.Harshvardhan Tiwari*

Research Scholar, Department of CSE, Jain University, Bengaluru, Karnataka, India.
2 Associate Professor, CIIRC, Jyothy Institute of Technology, Bengaluru, Karnataka, India

paswarajuswathi@gmail.com
2tiwari.harshvardhan@gmail.com

Abstract - Test case generation is considered a significant
and complex aspect in software testing, ensuring the
quality of a software product. In a highly competitive
environment, web applications have become crucial to
most enterprises, demanding the application's quality. The
characteristics of such applications include client-server,
distributed, and dynamic. Hence meticulous testing of a
web-based application becomes necessary. Many
strategies have been proposed to address the issues w.r.t
test case generation for web applications. One such
strategy is a Genetic Algorithm (GA), which is an
evolutionary technique. In this paper, we analyze the test
suit generation as a complex problem and derive the test
cases with traditional test case generation approaches
where the common generation problems are addressed
with a case study.

Further Genetic Algorithm approach, the parameters
which can enhance the test case generation is proposed.
The various encoding and selection techniques of GA are
considered. The parameter of fithess function which
determines the success of GA is analyzed. Finally the
evaluation criteria code coverage is examined to assess
the test effectiveness.

Keywords — code coverage, evolutionary technique,
fitness function, Genetic Algorithm, test case generation

I. INTRODUCTION

Test case/suite generation is the most central and essential
practice of software testing. There are numerous methods
accessible for creating test cases. The goal-oriented test
case creation approach is to wrap a specific segment,
statement, or procedure. The execution path is not relevant
here, but the primary objective is to test the target. The
random approach builds test cases assuming errors and
system faults. The specification model builds test cases
based on the formal requirement specifications [1]. The
code-dependent case creation method generates the source
code's control flow path, derives the tests accordingly, and
tests the executed flow. The other type of test case
generation method uses the UML diagram to build the test
cases. Many other test case generation methods are
available in the testing. Irrespective of the approach, an
appropriate test case generation process is one of the most
decisive factors for implementing a successful project.

Testing of web applications [2] remains a challenging task
for the testers. The type of browsers, interfaces, security
coercion, and overall application integration are among the
issues. As testing is a critical phase in the software
development process, the web application developer
expects unforeseen issues connected to the web application
and the testing progression [3]. Every key problem,
coupled with testing, can run into infinite correlated issues,
which can usually be solved if appropriately
acknowledged. Web application testing challenges include:
Integration testing presents problems with implementations
between distinct system components before deployment.
Besides, integration testing can show the various issues
that the program might have while communicating with
the other applications, enabling the programmer to modify
things. System and network inconsistency, specific
interaction models, and overall performance are just a few
of the problems related to deployment testing.
Interoperability is asserting end-to-end compatibility
among communications networks is often a demanding
challenge. Applications use different browsers and
operating systems. To collect data, it is very important to
test each one to validate a clear information path. Though
the browsers are identical, the web application may use
different screen resolutions and different hardware and
software configurations, thereby creating severe
applications. Security is an important parameter. Tests
w.r.t cyber threats should be countered and neutralized.
Usually, such types of threats lead to data loss or data
manipulation. The main challenge in security in web
applications deals with unsecured communication,
malicious file integration, unauthorized and
unauthenticated procedures on the client, and server-side.
Performance is all about timing. The web applications that
take much time to load/execute are usually not
recommendable. Integrating and interoperability issues, the
hardware support, and extending application features are
the main issues w.r.to the mentioned testing. Usability-
Consistency is considered crucial as the variation in
browsers, scalability, and interactivity issues need to be
considered. The web app needs to be used effectively.

el This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://www.ijettjournal.org/archive/ijett-v68i10p219
http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Baswaraju Swathi et al. / IJETT, 68(10), 112-116, 2020

Il. TEST CASE GENERATION

The test derivation can be considered as a single objective
where the priority can be given to coverage, which
includes structural coverage [4], all definitions coverage,
all path coverage [5], and code coverage [6,7] is an
important metric to evaluate test effectiveness. The other
factors can be Requirement change volatility, which may
lead to an increase in the testing effort, and the rate of
change may lead to cost and time effort. Test case
optimization also has ranked the test cases, parallel
execution, independent and dependent on other test cases
may be in a single module or different modules, thereby
defining multiple objectives [8]. The various methods like
weighted sum W(X)=>WiXi and Epsilon constraint
method fm(X)=<= Epsilon m is considered to derive the
functionality. A test suite is a complete suite of test cases
usually represented as:

Ts={<td1,tp/f1> {<td2,tp/f2>,

{<td3, tp/f3>,....{<tnltp/fn>},Ts —test suite, td-test data
and tp/fl result of the test case passed/failed. Considering
the most popular triangle problem, the figures depict the
importance of code coverage as an evaluation parameter.

Sample of unit test cases:

@Test
public void test1()

{

Triangeclassl c=new Triangleclass1();
String expectedval= “Scalene”;

String actualval= c.ftr(2,3,4);
assertEquals(expectedval,acualval);

fTest

public void test2()

{
TriangleClass c=new TriangleClass();
String expectedvalue="equilateral";
String actualvalue=c.ftringle(1,1,1);
assertEquals(expectedvalue,actualvalue);

B

fiTest

public void test3()

{
TriangleClass c=new TriangleClass();
String expectedvalue="isosceles";
String actualvalue=c.ftringle(5,5,1);
assertEquals(expectedvalue,actualvalue);

oblems @ Javadoc {¢) Declaration 4" Search &) Console &y Progress m Coverage £ 2% Call Hierarchy
leTestClass (07-Mar-2020 9:00:46 PM)
ent

Covered Instructions Missed Instr

150

Coverage

B B5%

 TriangleProject

Fig 1: Code coverage

The above figure shows that for the test cases executed for
the triangle problem, the code coverage is 78.5%. To
improve the code coverage, we have to run the other test
cases as well. Hence code coverage can be considered. The

below section deals with the test case generation usually
applicable for a web application. Considering the
following application, a shopping cart app, considering the
app's various scenarios, the test cases can be categorized as
mentioned below as per random testing alone. Exhaustive
testing is usually not preferred due to the budget and time
constraints and several other factors. If specifically, the
test cases should deal with black box and white box testing
scenarios. For example, under black box testing
equivalence testing, the test classes are divided into classes
considering both positive and negative cases must be
specified. Decision table testing specifies the scenarios
with input combinations, and behavior is captured. T-way
testing [9] is considered a superior testing technique as it
drastically reduces the test case combination. As the paper
discusses the web applications, each page in web
application consists of elements; therefore, the
combination of the input values itself generates a huge
amount of test cases, considering the functionality of every
element will further increase the count of test cases
whereby there is a need for test optimization.

The following section describes the unit test cases written
in selenium web driver, on a web application
“newtours.demoaut.com,” with test data as<” autotest,”
autotest”™>, testing the login functionality of the website.

Fig 2: Selenium unit test cases

public void Loginstudent() {
WebDriver driver = IDriver.launch("http://newtours.demoaut.com/");

WebElement objUserLoginNameTextBox = driver.findElement (By.name("userName"));
objUserLoginNameTextBox.sendKeys("autotest");

WebElement objUserPasswordTextBox = driver.findElement(By.name("password"));
objUserPas TextBox.sendKeys("autotest");

WebElement objSubmitButton = driver.findElement(By.name("login"));
objSubmitButton. click();

driver.manage(). §imgouts() implicitlyWait(5, TimeUnit.SECONDS);
WebDriverWait driverWait = new WebDriverWait(driver, 10);

driveriait.until (ExpectedConditions.visibil ityOf (driver.findElement (By .name("findF
lights"))));

assertfquals("Find a Flight: Mercury Tours:', driver.getTitle());

Ibriver.Close();

113

1. METHODOLOGY

Genetic Algorithm is an optimization algorithm [10,11]
based on natural evolution. GA deals with the natural way
of selecting the best population, usually represented with
the fitness function. Every generation is expected to
produce the best fit of individuals as parent chromosomes
evolve to be best; offspring also evolve. Fitness function is
the critical evaluation factor of GA as it determines the
best fit of individuals. The iteration can be stopped based
on the constraints of the optimization problem. Crossover

Baswaraju Swathi et al. / IJETT, 68(10), 112-116, 2020

operation leads to generating a new population, and
mutation operation usually balances the diversity and
convergence[12].

The selection stage [13] regulates the individuals chosen
for merging and the number of offsprings the selected
chromosome generates. The foremost standard of selection
approach is the better individual is selected as a parent,
determining which chromosomes need to be considered for
the next iterations and stopping, hence ensuring the best
solutions. Roulette wheel selection attaches a probability
to an individual such that the probability of individually
selected is Pti = fitness i / X i(fitness k) for k = 1 to the
number of individuals considered as a whole which can be
implemented using Naive Algorithm, which calculates the
total of all fitness, generate a number which is random
sum>r the iteration stops. Rank Selection considers
relative fitness, unlike Roulette wheel, which considers
absolute, i.e., Population of N solutions rank N, N-1, N-2,
and so on till 1 is considered. Tournament Selection selects
individuals at random the best fitness, usually called as the
winner is chosen for crossover. Crossover operations
promote diversity. The finding of global solutions Multi-
Point Crossover simplifies the one-point crossover wherein
discontinuous segments are swapped to get a new
population. Uniform crossover each gene is considered
separately. The mutation is the part of the GA that is
associated with searching the search space, which is
necessary to the convergence of the GA. Bit flip identifies
arbitrary bits and flips the bits, used commonly in binary
encoded GA. Random Resetting is an addition of the bit
flip for the numeral depiction. A random value from the set
of acceptable values is initialized to an arbitrarily selected
gene. Swap Mutation selects two points on the
chromosome at arbitrary, substitute the values. They are
used in permutation-based encodings. Fitness functions
[14] depend on the goal, priorities, and execution
specifications. Usually, a weighted sum is used, as
mentioned in previous sections.

A. GA APPROACH

As per the above mentioned there are several
characteristics of web applications which makes the test
case generation a complex process.GA approach here
considers the initial population form the derived testcases,
Ts={<td1,tp/f1>,{<td2,tp/f2>,{<td3,tp/f3>,....{<tnl tp/fh>

The idea is to optimize the above test cases with a GA
algorithm run on the mentioned. White box testing the
metrics considered will be structural coverage criteria and
data flow coverage criteria[15].

114

Sprint Backlog/
Requirements

Test Case Constraints/

> Test Cases Derived <::|Depen encies

¥

INITIALIZATION
Set of Test Cases

U

FITNESS FUNCTION

Praportional to Code Coverage

Y

OPTIMIZED TEST CASES

SELECTION
Ranking selection

{

CROSS-OVER

Two-Point cross over

J

MUTATION

Fig 3: GA Approach

The problem of test case generation is given byT1, T2,
T3...TN-TEST SUIT,

F(T) = {T1,T2,T3,...TN}, find T such that
T={t1,t2,t3...tn} set of test cases in {T1,T2,T3,...TN} is
the best solution which gives maximum coverage.

The encoding scheme considers representing the initial
population as a node. A page can be specified with

URL and a pointer were pointing to the next page. Request
can be specified with the filed name and value of the field
it carries as the page can link to the other page bypassing
some information; Ranking based selection is used as
described in the above section.

Consider the following use case.
<useCase id="Shopping Cart ">
<description_usecse>Login.jsp page redirects
Shopping cart page for a user. </description_usecase>
<Sequence>
<step id="Nol"> User selects the books based on
the description fields available</step>
<step id="No2"> Adds them to the cart </step>
<step id="No03">the system adds the list of the items
to the cart where user can edit further </step>
<step id="No4">System displays the summary
</step>
</Sequence>
<info>

to

Baswaraju Swathi et al. / IJETT, 68(10), 112-116, 2020

<Steps>
<step id="1.1"> If there are no books as per the
description is empty system displays a message
and ends use case. </step>
</Steps>
</info>
</useCase>

Search.jsp
(Pd)

Registration.jsp
(P2)

ShoppingCart.)sp
(P7)

Books.jsp
(P5)

(Pe)

Fig 4: A Sample Application

Test Scenarios considered for the above mentioned infig.6.
ofweb application page,

C1:P1->P4->P5->P7,

C2:P2->P1->P3->P7->P8

C3: P2->P1->P3->P4->P5->P6,

C4: P1->P2->P1->P7->P8,

the same can be considered even for a Triangle problem.
(S1->S2->S3->S4), where S is the statements which
further include statement coverage and branch coverage.

The fitness function derived here is the value proportional
to code coverage. Fitness function is considered to be a
weighted sum of the objective functions of data
dependencies and link dependencies and the constraints on
a web application which are usually applicable,

Fi=Y, 1/Ci(fi) = di, i{tl, t2,t3..tn}, where fi is the fitness
of individual chromosome proportional to code coverage
of the selected chromosome and di is dependency factors
for both unit testing and black-box testing. Dependency
factors for the Triangle problem considered here, as stated
above.

Cross over: TwoPoint Cross over to get the new
population used to set the maximum combinations from
the selected chromosomes as it increases diversity as
described in fig.3.

Mutation: Mutation will transform the chromosomes,
thereby removing the duplicate test cases and creating
variant test cases.

Acceptance and stop criteria usually depend on the
application-specific and many other local constraints. The

115

current work stops the number of iterations after achieving
a specific code coverage percentage.
Step-1:Initailization:C1,C2,C3,C4
STEP-2:FitnessAssignment:directly proportional to code
coverage

Step-3:Selection: based on the Fitness value
Step-4:Crossover:

C1:P1->P4->P5->P7

C2:P2->P1->P3->P7->P8

Cl11:P1->P3->P7->P8

C21:P2->P4->P5->P7

STEP-5:Mutation:

Cl:P1->P4->P5->P7

C3:P1->P2->P1->P7->P8
C13:P1->P2->P1->P4->P5->P7->P8

IV. EVALUATION OF THE GA

The system under test from the open-source was
considered, and our GA an optimized algorithm

was applied.GA executed has resulted in a Pareto set
intended to maximize the objectives[17]. The change in the
average objective results was recorded. Sampling the
approximate values in the test suite achieved considerable
fitness and code coverage values.

Code Coverage vs Fitness

80.00

w

2 60.00

[a's

£ 40.00

S

© 20,00

()

o 000

© ~ [ee] o — o o o o - wn [oe] <
Mnm N < S T DN N N 0
S dccdcaoocoddsa g

FITNESS

Fig 5: Code Coverage vs. Fitness

V.CONCLUSION

This paper gives an insight into the test case generation
process-specific of web applications testing and White Box
testing specific to the Triangle problem. The properties of
web application which play a significant role in test case
generation were specified. Generation of Test cases as a
multipurpose optimization is addressed; a Genetic
Algorithm, an evolutionary technique that can be applied
to test case generation, was analyzed, and the steps in the
process. Code coverage, an important metric in deciding
the test effectiveness, was focused and measured with an
example module. GA Methodology is proposed to be the
major soft computing technique to apply in the
implementation of test design development across the
software test projects.

(1]

[2]

(3]

(4]

(5]

(6]

[7]

8]

Baswaraju Swathi et al. / IJETT, 68(10), 112-116, 2020

REFERENCES

NichaKosindrdecha and JirapunDaengdej, 2010, “A Test Case
Generation Process and Technique,” Journal of Software
Engineering,4:265-287, DOI: 10.3923/jse.2010.265.287.

Nabuco M., Paiva A.C.R. (2014), “Model-Based Test Case
Generation for Web Applications,” In Murgante B. et al. (eds)
Computational Science and Its Applications — ICCSA 2014.
ICCSA 2014. Lecture Notes in Computer Science, vol 8584.
Springer, Cham. https://doi.org/10.1007/978-3-319-09153-2_19
Arora A., Sinha M, “Web Application Testing: A Review on
Techniques, Tools, and the State of Art,” International Journal of
Scientific & Engineering Research, VVolume 3, Issue 2, February-
2012 1ISSN 2229-5518.

Arun Sharma, Rajesh Kumar, “Towards Multi-Faceted Test Cases
Optimization,” Journal of Software Engineering and Applications
4:550-557 - January 2011.

M. Farina, K. Deb, and P. Amato, “Dynamic multiobjective
optimization problems: test cases, approximations, and
applications,” IEEE Transactions on Evolutionary Computation,
vol. 8 no. 5 pp. 425-442, Oct. 2004, doi:
10.1109/TEVC.2004.831456.

V. Antinyan, J. Derehag, A. Sandberg and M. Staron, “Mythical
Unit Test Coverage, in IEEE Software,” vol. 35, no. 3, pp. 73-79,
May/June 2018, doi: 10.1109/MS.2017.3281318.
BaswarajuSwathi, Harshvardhan Tiwari, “Test Case Generation
Process using Soft Computing Techniques,” International Journal
of Innovative Technology and Exploring Engineering (IJITEE),
ISSN: 2278- 3075, Volume-9 Issue-1, November 2019.

A. Shahbazi and J. Miller, "Black-Box String Test Case
Generation through a Multiobjective Optimization" in IEEE
Transactions on Software Engineering, vol. 42, no. 04, pp. 361-
378, 2016.doi: 10.1109/TSE.2015.2487958

116

(9]

(10]

(11]

(12]

(13]

[14]

[15]

[16]

Rozmie R. Othman, Kamal Z Zamli, “T-Way Strategies and Its
Applications for Combinatorial Testing,” International Journal on
New Computer Architectures and Their Applications(IINCAA).
HirohideHaga, Akihisa Suehiro, “Automatic test case generation
based on genetic algorithm and mutation analysis,” 2012 IEEE
International Conference on Control System, Computing and
Engineering.

Shirole M., Kumar R, “A Hybrid Genetic Algorithm Based Test
Case Generation Using Sequence Diagrams,” In Ranka S. et al.
(eds) Contemporary Computing. IC3 2010. Communications in
Computer and Information Science, vol 94. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-14834-7_6

Deepak Kumar, ManuPhogat, “Genetic Algorithm Approach For
Test Case Generation Randomly: A Review,” International Journal
of Computer Trends and Technology (JCTT) — Volume 49
Number 4 July 2017.

A. Shukla, H. M. Pandey, and D. Mehrotra, "Comparative review
of selection techniques in genetic algorithm,” 2015 International
Conference on Futuristic Trends on Computational Analysis and
Knowledge Management (ABLAZE), Noida, 2015, pp. 515-519,
doi: 10.1109/ABLAZE.2015.7154916.

ArinaAfanasyeva, Maxim Buzdalov, “Choosing Best Fitness
Function with Reinforcement Learning,” 2011 10th International
Conference on Machine Learning and Applications and
Workshops.

ShvetaParnami, Krishna Swaroop Sharma,
“Empirical Validation of Test Case Generation Based on All-
Edge Coverage Criteria,” International Journal of Computer
Applications, September 2015.

Panichella, A., Kifetew, F. M., &Tonella, P. (2018). “Automated
Test Case Generation as a Many- Objective Optimisation Problem
with Dynamic Selection of the Targets,” IEEE Transactions on
Software Engineering, 44(2),122-158.

https://doi.org/10.1007/978-3-319-09153-2_19

