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Abstract — A photovoltaic module consists of grouping 

photovoltaic cells in series or parallel to allow their use at 

practical voltages and currents while ensuring their 

electrical insulation and their protection against external 

factors as humidity, rain, snow, etc. dust, corrosion, or 

mechanical shock. 

In this perspective, we plan to establish a numerical 

Modeling and experimental validation of new material 

such as S355 steel in favor of photovoltaic panels' 

framework given its energy potential. 

To this end, our work will be focused on numerical 

modeling by finite elements of a double notch tensile test 

specimen using the CAST3M 2009 calculation code. We 

will analyze the evolution of the maximum stress along the 

axis of the l. test specimen and the stress concentration 

factor with the crack length and the applied stress. 

 

Keywords — Notch, finite elements, photovoltaic, 

maximum stress, stress concentration factor, nominal 

stress. 

I. INTRODUCTION 

In metal structures, cracks most often begin at the level of 

geometric discontinuities such as notch (defects). The 

geometric parameters of the structures and discontinuities 

govern the priming or propagation of cracks and, therefore, 

the holding in the structural resistance service. In the 

industrial sector, for economic or safety reasons, we try to 

know the degree of harmfulness of these defects and their 

residual lifespan. This involves establishing models based 

on the mechanics of rupture or fatigue. In terms of defects, 

the distribution of stresses is relatively complex, as are 

fracture mechanics parameters. Digital methods, such as 

finished elements, provide a robust solution to this 

problem. This solution must be validated, compared to the 

analytical solution when it exists, and if possible, faced 

with experience.  [Figure 1]. 

                       

 

Fig. 1  solar panel Aluminium Frame 

 

A. EL Hakimi [1] studied the correction function i0 by 

applying constant pressure along the crack's lips. 

According to the calculations' results, the integral J in the 

case of a defect at the base of the transition is always 

higher than that of a similar case in a straight tube [2].  

 

II. METHOD USED 

In this work, we consider a double-notch specimen side, 

stressed in tension (mode I), causing a crack opening. 

Finite elements discredited the specimen. 

The simulation is done using the computer code 

CASTEM 2009, including a calculation procedure 

described in steps of calculation described by a specific 

code. The results are validated by the bibliographic results 

[3]. The applied stresses are Δσ: 352 MPa, 282MPa, and 

248MPa. 

The finite element method used in this report is suitable for 

the calculation of fracture mechanics. The area of the 

notch is finely refined. 

The parameters to calculate the 3-dimensional 

geometric elements are cubic with 8 node elements. 

Numerical calculations in fracture mechanics can 

generate large sequences. This may cause an inability to 
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solve these problems by means of a conventional computer 

or get erroneous results. 

Model validation is established by comparisons with other 

authors' numerical results; in cases where we have the 

analytical solution is compared with experimental results. 

To validate our numerical results, we conducted a 

comparison with experimental results [3]. 

The study shows that the type of elements, the number of 

circles on the cut, and the mesh size directly affect 

calculation results. 

 

III. EXPERIMENTAL SPECIMEN 

The dimensions of notched tensile doubles specimens 

in S355 are shown in Figure 2 [3]. The section after 

machining these specimens is 221.9 mm2. 

   The tricky part of this operation is to achieve a root 

radius notch sharpest possible,  to initiate a fatigue 

crack at low stresses.  

   The machining process using slitting saws was 

executed in several phases. Machining with a roughing 

cutter of the V-shaped notch. This produces a flat 

bottomed notch about 0.5 mm. Finishing the notch 

root with a well-sharpened cutter to fit the angle of 60°. 

The radius is less than 0.1 mm. 

   The microscope verifies the notch root radius at a 

magnification of 280. The cuts have obtained a radius of 

about 0.05mm. 
 

TABLE 1. MECHANICAL PROPERTIES OF STEEL 

S355 

 

σu: Stress at break 

σe: yield 

E: Young's modulus 

 

Its chemical composition is reported in Table 2.  

 
TABLE 2. CHEMICAL COMPOSITION OF STEEL 

S355 

 
                       Composition (%) 

 

S355 

C Mn P S Si Cu 

  

0,29 

 

0,80-1,20 

 

0,09 

 

0,05 

 

0,15-0,30 

 

0,2

0 

 

A. Material 

The material in our computer code is the Steel S355 (EN 

10020). Its mechanical characteristics are summarized in 

Table 1. 

Figure 3 shows the curve of conventional experimental 

evolution of the stress as a function of material 

deformation. The general shape of this curve showed a 

ductile behavior. 

 

 
 

 

 

 

 
Fig. 3. Diagram of traction  

Values main mechanical characteristics of the 

material obtained by tensile tests are given in Table 1. 
 

 

B. Mesh and boundary conditions 

 In this section, we model the traction behavior of the bi-

notched test tube. This 

problem has two symmetry planes, and therefore only a 

quarter of the test tube is 

Modeled. The model has 4980 cubic-type elements at 8 

knots. 

The mesh of the specimen is shown in Figure 4a. The 

mesh is refined notch root (Figure 4b).       
 

The tensile force is applied to the specimen via a rigid 

triangle indicated by the arrow. This ensures that the effort 

is perfectly aligned. 

Specification Properties 

 

S355 

σu (Mpa)      σe (Mpa)        E (Gpa) 

         621                    372                 

200 

Double notch specimen 

side 

General tolerance on 

dimensions is  0.1  
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     Fig. 2 Specimen dimensions of study 
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From both sides of axes, the quarter of the sample studied's 

symmetry, and we inhibited all displacements and 

rotations U = 0 and R = 0. 

IV. RESULTS AND DISCUSSION 

A. Maximum stress and nominal stress traction 

For an amplitude of applied stress Δσ, there is maximum 

stress and stress distribution along the traction axis. This 

axis is perpendicular to tensile stress and from the bottom 

of the notch until mid-width (half-ligament). In all cases, 

we verify that the maximum stress is located in σMax notch 

root.  

This constraint then a parabolic evolution along the 

ligament to stabilize the value of nominal stress σnom. 

Table 3 below gives the values of maximum stresses, 

ratings for the three levels of applied loads. 

 

TABLE 3.  NUMERICAL VALUES OF THE 

MAXIMUM STRESS AND THE NOMINAL STRESS 

WITH APPLIED STRESS 

 

Δσ(MPa) σMax(MPa) σnom  (MPa) 

352 700 155 

282 690 153 

248 678 150 

 

Δσ: stress applied 

σMax: maximum stress 

σnom: nominal stress 

We note that the maximum stress and the nominal stress 

increases with applied stress. 

 

B. Coefficient of stress digital concentration  

Most structures are broken in the areas of stress 

concentration. These areas generally have either 

discontinuities or irregularities in the part's geometry (cuts, 

cracks ...). The notch root radius ρ increases with 

decreasing Kt for CT specimens, which tends to 0 as tends 

to infinity [3]. R. Peterson [4] defines the stress 

concentration factor Kt by: 

                              
Kt = σmax / σnom                                               (1)                

 

      We calculated the coefficient of dialogue constraint 

numerically from relation (1). 

      Table 4 below gives the values of maximum stresses, 

nominal, and the coefficients of stress concentration Kt 

three levels of applied loads. 

 
 

 

 

 

 

TABLE 4. NUMERICAL VALUES OF MAXIMUM 

STRESS AND NOMINAL STRESS WITH APPLIED 

STRESS AND COEFFICIENT OF STRESS 

CONCENTRATION 

 

Δσ: stress applied 

σMax: maximum stress 

σnom: nominal stress 

Kt (num): coefficients of stress digital concentration  

Kt (exp): coefficients of experimental stress concentration  

 

The numerical value of the stress concentration Kt 

coefficient for each of the three applied stresses (Δσ = 352 

MPa, 282MPa, 248MPa) coincides with Kt found 

experimentally that its value is equal to 5 [3]. The small 

value of the notch radius (<0.2 mm) and its 60 ° angle 

make the stress concentration factor Kt high. 

 

C. Evolution of numerical constraint along the 

horizontal axis of the specimen  

The curves in Figure 5,6,7 show the evolution of 

numerical constraint along the specimen's horizontal axis 

for three stresses: Δσ = 352MPa, 282MPa, 248 MPa. 

 

 

Fig 4a. Mesh Fig 4b. Mesh in the vicinity of  

the notch 



Khadija Ezzouitine et al. / IJETT, 68(11), 145-149, 2020 

 

148 

 

 
 

Fig  5. Evolution of numerical constraint along the 

horizontal axis of specimen for the applied stress Δσ = 

352MPa 

 

 

 
 

Fig 6. Evolution of numerical constraint along a 

horizontal axis of specimen for the applied stress Δσ = 

282MPa 

 

 

 
 

Fig 7. Evolution of numerical constraint along the 

horizontal axis of specimen for the applied stress Δσ = 

248MPa 

 
The numerical study reveals that maximum stress 

σMax is localized near the notch root for all three cases. 

This constraint to a parabolic trend over the range 0 to 2 

mm to stabilize the value of nominal stress σnom. The 

maximum value is due to localized plastic flow. The notch 

vicinity's stress concentration causes plastic deformation in 

that area, while areas remote from the notch undergo only 

purely elastic deformation. 

 

D. Evolution of the variation of stress concentration 

factor as a function of the digital length of the crack 

Figure 8,9,10 shows the evolution of the various stress 

concentration factor as a function of crack length for the 

three applied stresses (Δσ = 352MPa, 282MPa, 248MPa). 

 

 
 

Fig 8. Evolution of variation stress concentration factor 

as a function of crack length for the applied stress Δσ = 

352MPa 

 

 
 

Fig 9. Evolution of variation stress concentration factor 

as a function of crack length for the applied stress Δσ = 

282MPa 

 

 
 

Fig 10. Evolution of variation stress concentration 

factor as a function of crack length for the applied 

stress Δσ = 248MPa 

 
ΔK: variation of stress intensity factor (MPa √ m) 
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     The comparison between the values of variation of 

stress concentration factor calculated by our model and 

literature [12] shows very good agreement, which allows it 

to validate our numerical model.  
 

The analysis of curves of figure 5 shows a significant 

increase in the concentration factor as a function of the 

forced length of the crack and the applied stress. 

 

V. CONCLUSION 

     In this study, the harmfulness of defects and nicks in 

cylindrical shells and pressure test tubes was apprehended, 

with a particular interest in the problem of nicks in notched 

test tubes. 

This study used several branches of mechanics ranging 

from the mechanics of the rupture and the method of the 

finished elements that have become unavoidable given its 

power for solving complex problems, hence our approach's 

integrity 

Digital modeling by finished elements was approached 

using Cast3m2009 software in the first place. A test tube 

with double cuts in S355 Steel was considered when used 

in traction, causing the crack to open with two symmetry 

planes, and therefore only a quarter of the test tube was 

modeled. The refinement of the mesh is carried out at the 

bottom of the notch using the Barsoum elements. The 

matching of numerical values obtained with experimental 

values allows us to validate our numerical study. 
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