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Abstract — This study analyses an effect of buffer 

capacity and periodic dirty buffer flush on data 

lifetime on SSDs equipped with large internal buffer 

and obtains the following results. First, if the internal 

buffer exists, the proportion of short-lived data 

decreases. However, when the dirty buffer flush 

period is shorter than 30 minutes, even if the buffer 

size increases to 512 MB, most data still has a short 

lifetime. Second, when the dirty buffer flush period 
becomes longer (for example, one day), the 

proportion of short-lived data decreases rapidly as 

the buffer size increases. As a result, the accuracy of 

the existing lifetime prediction policy drops 

drastically. These results indicate that the lifetime 

prediction policy should be designed considering the 

presence of the internal buffer in SSDs and the period 

of dirty buffer flush. 
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I. INTRODUCTION 

NAND-based SSDs are replacing hard disks not 

only in PC and mobile computing environments, but 

also in the enterprise storage market such as servers. 

In servers, most data have very short lifetime [1-3]. 

That is, data are updated frequently in a short time. 

This means that SSDs do not need to retain data for a 

long time. Conventional SSDs write data in a deep 

write mode that guarantees a long retention time but 

is slow. But, if most data are short-lived, it is more 

beneficial in terms of the performance to write data in 

a shallow write mode that is fast but guarantees a 
short retention time [1, 2]. 

The important thing is to predict the data lifetime 

accurately. For example, if long-lived data is 

mistaken for short-lived data and written in the 

shallow write mode, it should be rewritten in the deep 

write mode before its retention time expires. This 

rewrite overhead incurs an additional NAND write 

and more frequent garbage collection, which results 

in hurting the performance and the lifetime of SSDs. 

Therefore, it is important to accurately predict the 

lifespan of the data. Especially, it is necessary to 
minimize to incorrectly identify long-lived data as 

short-lived data. 

Meanwhile, there are three existing data life 

prediction policies. [1] judges all write requests from 

host as short-lived data. The overall accuracy of this 

policy is high because most data in servers are short-

lived. The second method is to determine the lifetime 

based on the write request size. For example, in [2], if 

the size of a write request is 8 KB or less, it is 

classified as short-lived data. Lastly, [3] uses both the 

request size and the previous lifetime of the data. 

When data is first written, data having a size of 32 

KB or less is classified as short-lived data. When data 
is updated, the future lifetime is predicted to be short 

if its previous lifetime is short.  

Existing life prediction policies have a common 

limitation that they predict the lifetime without 

considering the existence of the SSD internal buffer. 

Typically, SSDs employ DRAM inside to maintain 

the mapping table for FTL [4], and a portion of 

DRAM is used as a buffer for NAND. With the 

buffers, write requests are primarily handled by the 

buffer, reducing the number of write requests issued 

to NAND. Therefore, it is expected that the data 
lifetime will increase compared to the environments 

without the buffer.  

In fact, the existing study has shown that writing 

all host write requests in the shallow write mode in 

the SSD with the internal buffer significantly hurts 

the overall performance due to the rewrite overhead 

[5]. However, this study has a limitation that flushing 

the dirty buffers is not considered. That is, all write 

operations to NAND are limited to the case where the 

dirty buffer is evicted. However, in practice, the dirty 

buffers are flushed frequently due to the data 

synchronization requests by applications or kernel [6]. 
The dirty buffers are likely to be flushed by the 

synchronization request long before the dirty buffer is 

evicted. Therefore, it is necessary to reflect this dirty 

buffer flush and analyse the potential benefits of 

shallow write for the short-lived data. 

This paper aims to analyze the lifetime distribution 

from the perspective of NAND when a SSD with a 

large buffer is used as a storage device for a server. 

Especially, the periodic dirty buffer flush effect is 

considered together. The remainder of this paper is 

organized as follows. Section 2 describes SSD 
internals and NAND flash memory characteristics. 

Section 3 describes the experimental environment 

and analyses the results of data lifetime distribution. 

Section 4 draws conclusions and future research 

issues. 
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II. SSD AND NAND FLASH MEMORY 

SSDs connect multiple NAND chips in parallel to 

achieve large capacity and high performance. NAND 

is composed of pages and blocks, where a page is a 

basic unit of a read/write and a block is a basic unit 

of an erase operation. NAND is a kind of EEPROM 

and does not support overwrite operations. That is, 

data should always be written to a clean page. When 

an overwrite request occurs, data is written to a new 

clean page. Thus, the location of valid data is 

changed upon every write request, and FTL 

maintains a mapping table between logical sector 
numbers and their current data locations [8]. Since 

the mapping table is referenced upon every read/write 

request, it is maintained in the RAM inside the SSD. 

Of the RAM space, available space other than the 

mapping table is used as a buffer for NAND. 

Therefore, a large number of read/write requests are 

served through the buffer without accessing NAND. 

NAND flash cell expresses a value through the 

amount of electrons charged in its floating gate. For 

example, a SLC (Single Level Cell) expresses a state 

in which a floating gate is fully charged as 1 and an 
empty state as 0. In MLC (Multiple Level Cell), one 

cell expresses four values of 00, 01, 10, and 11. That 

is, the charge level is further subdivided to 

distinguish values. The problem is that the error rate 

increases because the charge level in one cell should 

be controlled more precisely. Moreover, as the cell 

size gradually decreases with the progress of 

semiconductor process technology, the margin of 

identifying each charge level becomes smaller. 

Therefore, NAND write operation is performed in 

an ISPP (Incremental Step Pulse Programming) 

method [7] that repeatedly charges electrons by 
increasing the voltage step by step until the target 

electrons are charged for precise control, rather than 

charging electrons at a high voltage at a time. For 

precise control, the deep write method reduces the 

threshold voltage at each repetition, and as a result, it 

is slow but the number of the charged electrons can 

be accurately controlled. So, even if the electrons are 

naturally lost, the probability of the value being 

changed is small, and the retention time of the data is 

long. Conversely, if the threshold voltage is high, 

NAND write becomes faster, but it is difficult to 
precisely control the charge. Thus, the probability of 

changing the value increases as the electrons are 

naturally lost, which shortens the retention time of 

the data. Currently, NAND Manufacturers handle 

write operations in the deep write method for the long 

retention time. However, if the data lifetime is 

accurately predicted, we can shorten the latency of 
NAND write operations by applying the shallow 

write mode for the short-lived data [1, 2]. 

III. EXPERIMENTAL RESULT 

Microsoft server traces [8] are used to analyse the 

lifetime distribution in SSDs with the internal buffer. 

The NAND page size is assumed to be 4 KB, and the 

internal buffer capacity is changed from 0 MB to 512 

MB. The dirty buffer flush cycle is changed to 1 

minute, 30 minutes, 60 minutes, and 1 day. Data 

having a lifetime of one day or less is evaluated as 

data having a short lifetime. 

Fig. 1 (a) shows the proportion of short-lived data 
in hm0 trace. First, when the internal buffer is not 

used (0MB), short-lived data accounts for 90% of the 

total. That is, most data have a lifetime of less than 

one day. When the buffer is used, some write 

requests are served by the buffer, which reduces the 

proportion of short-lived data somewhat. When the 

flush cycle is 1 minute, short-lived data occupies 

about 86% regardless of the buffer size. Even if the 

buffer size increases to 512 MB, the proportion of 

short-lived data does not increase. Because the flush 

cycle is very short, the NAND write operations 
frequently occur due to the dirty buffer flush, and the 

host's write requests mostly generate NAND write 

operations by the dirty buffer flush. As the flush 

cycle increases to 30 minutes and 60 minutes, the 

proportion of short-lived data decreases to about 81-

83%. However, even at this time, the buffer size does 

not significantly affect. The difference in the short-

lived data ratio between the buffer size of 512MB 

and the buffer size of 16MB is only 1%. However, if 

the flush cycle is extended to one day, the proportion 

of the short-lived data rapidly decreases as the buffer 

size increases. When the buffer size is 64 MB, the 
short-lived data occupies 81%, but when the buffer 

size becomes 512 MB, it decreases to 58%. This is 

because a large number of host write requests are 

served by the buffer and only some of the write 

requests generate NAND write operations by the 

dirty buffer flush or by the dirty buffer replacement. 
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Prn0 trace shows a similar trend (Fig. 1 (b)). When 

the buffer is not used, about 81% of the data is short-

lived data. When the flush cycle is 1 minute, about 

72% of the data is short-lived regardless of the buffer 

size. That is, the proportion of data with a short 

lifetime is still high. As the flush cycle increases to 

30 minutes, the proportion of short-lived data 

decreases to 61-65% depending on the buffer size. 

When the flush period is one day, the proportion of 
short-lived data decreases rapidly depending on the 

buffer size. That is, when the buffer size is 512 MB, 

only about 40% is short-lived data. 

Fig. 1 (c) shows the result of proj0 trace. In proj0 

trace, the proportion of short-lived data is very high. 

When the buffer is not used, about 99% of data is 

short-lived data. Even when the flush cycle is 1 

minute, about 99% of the data is short-lived 

regardless of the buffer size. That is, the proportion 

of data with a short lifetime is still high. As the flush 

cycle increases to 30 minutes, the proportion of short-

lived data decreases to 93-99% depending on the 
buffer size. When the flush cycle is long as one day, 

the decrease in the proportion of short-lived data 

increases depending on the buffer size. When the 

buffer size is 512 MB, about 73% of the data has a 

short lifetime. 

Fig. 1 (d) shows the result of prxy0 trace. Also in 

prxy0 trace, the proportion of short-lived data is very 

high. When the buffer is not used, about 99% of data 

is short-lived data. Even when the flush cycle is 1 

minute, about 98-99% of the data is short-lived. The 

effect of buffer size on the proportion of short lived 

data is small. When the flush cycle increases to 30 
minutes, the proportion of short-lived data ranges 

from 89 to 98% depending on the buffer size. That is, 

the proportion of short-lived data is still very high, 

and as the buffer size increases, the proportion tends 

to decrease. However, when the flush cycle is one 

day, the proportion of short-lived data is drastically 

reduced depending on the buffer size. When the 

buffer is 16 MB, the short-lived data occupies 98%, 

but when the buffer size is 256 MB, it decreases to 

19% and when the buffer size is 512 MB, it drops to 

0%.  

From the trace analysis results, we can draw the 
following common characteristics. First, in server 

traces, the proportion of short-lived data is very large. 

That is, the majority of data has a lifetime of less than 

one day. Second, if the internal buffer is present, the 
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Fig. 1  Proportion of short-lived data 
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proportion of data with a short lifetime is somewhat 

reduced. However, the reduction varies depending on 

the buffer flush cycle. When the buffer flush cycle is 

short, such as 1 minute or 30 minutes, as the buffer 

size increases, the proportion of short-lived data 

decreases somewhat, but most data still have a short 
lifetime. However, if the buffer flush period is 

increased to one day, the proportion of short-lived 

data rapidly decreases as the buffer size increases. 

Depending on the trace, 73% of the data still has a 

short lifetime, while in other trace 0% of the data has 

a short lifetime. 

Meanwhile, the reduced proportion of short-lived 

data is likely to hurt the accuracy of the lifetime 

prediction policies. Fig. 2 shows the prediction 

accuracy in hm0 trace. The host policy determines all 

host write requests as short-lived data, and the size 
policy determines the request size as 8 KB or less as 

short-lived data. The dirty buffer flush cycle is varied 

to 1 minute (fig. 2(a)) and to 1 day (fig. 2(b)). The 

result shows that when the internal buffer is used, the 

accuracy degrades in the both policies regardless of 

the flush cycle. When the buffers are flushed every 

minute, the accuracy of the host policy decreases 

from 93.7 (0MB buffer) to 91.0% (512MB buffer) 

and the accuracy of the size policy decrease from 

48.7 (0MB buffer) to 33.9% (512MB buffer). The 

decrease of the accuracy is more conspicuous when 

the buffers are flushed every day. The accuracy of the 
host policy decreases to 67.1% (512MB buffer) and 

the accuracy of the size policy decrease to 34.6% 

(16MB buffer). Especially, the accuracy of the host 

policy drastically drops as the buffer size increases 

because the proportion of short-lived data greatly 

decreases. 

As the prediction accuracy decreases, the incorrect 

prediction of long-lived data will increase, which 

results in the increase of the rewrite overhead. Fig. 3 

shows the rewrite overhead in hm0 trace. This rewrite 

overhead is the ratio of the incorrect prediction of 
long-lived data for the total predictions. When the 

buffers are flushed every minute, the overhead 

increases from 6.3 (0MB buffer) to 9.0% (512MB 

buffer) in the host policy. In the size policy, the 

overhead increases from 0.3 (0MB buffer) to 0.5% 

(512MB buffer). The overhead increase is not serious. 
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Fig. 2. Prediction accuracy in hm0 trace 

 

 

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0MB 16MB 32MB 64MB 128MB 256MB 512MB

Rewrite overhead (1 minute)

host size

         

0%

5%

10%

15%

20%

25%

30%

35%

0MB 16MB 32MB 64MB 128MB 256MB 512MB

Rewrite overhead (1 day)

host size

 

(a)  1 minute of flush cycle                                                               (b) 1 day of flush cycle 

Fig. 3. Rewrite overhead due to incorrect prediction in hm0 trace 

 



International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 4- April 2020 

 

ISSN: 2231-5381                                http://www.ijettjournal.org                                  Page 58 

However, when the buffers are flushed every day, the 

overhead of the host policy increases to 33.0% 

(512MB buffer), which is significant. In the size 

policy, the overhead increases to 2.5% (512MB 

buffer). The increase is more conspicuous in the host 

policy when the buffer size is large. 

IV. CONCLUSIONS 

The SSD internal buffer size and dirty buffer flush 

cycle had a significant effect on the lifetime of the 

data. When the buffer flush cycle was short, most 

data had a short lifetime, regardless of the buffer size. 

As a result, the accuracy of the existing lifetime 

prediction policies did not drop significantly. 

However, if the buffer flush period became one day, 

the proportion of short-lived data rapidly decreased 

as the buffer size increased. Even in prxy0 trace, 0% 

of the data had the short lifetime when the buffer was 

512MB. As a result, the accuracy of the host policy 
dropped significantly, and the rewrite overhead 

increased drastically as the buffer size increased. 

Therefore, the policy of evaluating the data lifetime 

in SSD must be designed considering the buffer size 

and dirty buffer flush cycle.  

The evaluation results indicate that if NVRAM 

(Non-volatile RAM) is used as the internal buffer of 

SSDs, the dirty buffer flush will not occur frequently 

and the proportion of short-lived data will be low, so 

identifying short-lived data and applying the shallow 

write to them is not likely to be effective. However, if 
DRAM is employed, the dirty buffer flushing is 

inevitable, and therefore, most data are likely to be 

short-lived and the shallow write will still be 

effective. As a future study, we plan to improve the 

performance of SSDs with DRAM by designing the 

lifetime prediction policy considering the dirty buffer 

flush cycle and by processing the short-lived data in 

the shallow write. 
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