
International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 4- April 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 54

Analysing an Effect of Buffer Capacity and

Periodic Dirty Buffer Flush on Data Lifetime

Ilhoon Shin
1
,

Kyungah Lee

2

1 Professor, Department of Electronic & IT Media Engineering, Seoul National University of Science and

Technology, Seoul, South Korea
2 Student, Department of Electronic & IT Media Engineering, Seoul National University of Science and

Technology, Seoul, South Korea

Abstract — This study analyses an effect of buffer

capacity and periodic dirty buffer flush on data

lifetime on SSDs equipped with large internal buffer

and obtains the following results. First, if the internal

buffer exists, the proportion of short-lived data

decreases. However, when the dirty buffer flush

period is shorter than 30 minutes, even if the buffer

size increases to 512 MB, most data still has a short

lifetime. Second, when the dirty buffer flush period
becomes longer (for example, one day), the

proportion of short-lived data decreases rapidly as

the buffer size increases. As a result, the accuracy of

the existing lifetime prediction policy drops

drastically. These results indicate that the lifetime

prediction policy should be designed considering the

presence of the internal buffer in SSDs and the period

of dirty buffer flush.

Keywords — Buffer capacity, dirty buffer flush, data

lifetime, SSD

I. INTRODUCTION

NAND-based SSDs are replacing hard disks not

only in PC and mobile computing environments, but

also in the enterprise storage market such as servers.

In servers, most data have very short lifetime [1-3].

That is, data are updated frequently in a short time.

This means that SSDs do not need to retain data for a

long time. Conventional SSDs write data in a deep

write mode that guarantees a long retention time but

is slow. But, if most data are short-lived, it is more

beneficial in terms of the performance to write data in

a shallow write mode that is fast but guarantees a
short retention time [1, 2].

The important thing is to predict the data lifetime

accurately. For example, if long-lived data is

mistaken for short-lived data and written in the

shallow write mode, it should be rewritten in the deep

write mode before its retention time expires. This

rewrite overhead incurs an additional NAND write

and more frequent garbage collection, which results

in hurting the performance and the lifetime of SSDs.

Therefore, it is important to accurately predict the

lifespan of the data. Especially, it is necessary to
minimize to incorrectly identify long-lived data as

short-lived data.

Meanwhile, there are three existing data life

prediction policies. [1] judges all write requests from

host as short-lived data. The overall accuracy of this

policy is high because most data in servers are short-

lived. The second method is to determine the lifetime

based on the write request size. For example, in [2], if

the size of a write request is 8 KB or less, it is

classified as short-lived data. Lastly, [3] uses both the

request size and the previous lifetime of the data.

When data is first written, data having a size of 32

KB or less is classified as short-lived data. When data
is updated, the future lifetime is predicted to be short

if its previous lifetime is short.

Existing life prediction policies have a common

limitation that they predict the lifetime without

considering the existence of the SSD internal buffer.

Typically, SSDs employ DRAM inside to maintain

the mapping table for FTL [4], and a portion of

DRAM is used as a buffer for NAND. With the

buffers, write requests are primarily handled by the

buffer, reducing the number of write requests issued

to NAND. Therefore, it is expected that the data
lifetime will increase compared to the environments

without the buffer.

In fact, the existing study has shown that writing

all host write requests in the shallow write mode in

the SSD with the internal buffer significantly hurts

the overall performance due to the rewrite overhead

[5]. However, this study has a limitation that flushing

the dirty buffers is not considered. That is, all write

operations to NAND are limited to the case where the

dirty buffer is evicted. However, in practice, the dirty

buffers are flushed frequently due to the data

synchronization requests by applications or kernel [6].
The dirty buffers are likely to be flushed by the

synchronization request long before the dirty buffer is

evicted. Therefore, it is necessary to reflect this dirty

buffer flush and analyse the potential benefits of

shallow write for the short-lived data.

This paper aims to analyze the lifetime distribution

from the perspective of NAND when a SSD with a

large buffer is used as a storage device for a server.

Especially, the periodic dirty buffer flush effect is

considered together. The remainder of this paper is

organized as follows. Section 2 describes SSD
internals and NAND flash memory characteristics.

Section 3 describes the experimental environment

and analyses the results of data lifetime distribution.

Section 4 draws conclusions and future research

issues.

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 4- April 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 55

II. SSD AND NAND FLASH MEMORY

SSDs connect multiple NAND chips in parallel to

achieve large capacity and high performance. NAND

is composed of pages and blocks, where a page is a

basic unit of a read/write and a block is a basic unit

of an erase operation. NAND is a kind of EEPROM

and does not support overwrite operations. That is,

data should always be written to a clean page. When

an overwrite request occurs, data is written to a new

clean page. Thus, the location of valid data is

changed upon every write request, and FTL

maintains a mapping table between logical sector
numbers and their current data locations [8]. Since

the mapping table is referenced upon every read/write

request, it is maintained in the RAM inside the SSD.

Of the RAM space, available space other than the

mapping table is used as a buffer for NAND.

Therefore, a large number of read/write requests are

served through the buffer without accessing NAND.

NAND flash cell expresses a value through the

amount of electrons charged in its floating gate. For

example, a SLC (Single Level Cell) expresses a state

in which a floating gate is fully charged as 1 and an
empty state as 0. In MLC (Multiple Level Cell), one

cell expresses four values of 00, 01, 10, and 11. That

is, the charge level is further subdivided to

distinguish values. The problem is that the error rate

increases because the charge level in one cell should

be controlled more precisely. Moreover, as the cell

size gradually decreases with the progress of

semiconductor process technology, the margin of

identifying each charge level becomes smaller.

Therefore, NAND write operation is performed in

an ISPP (Incremental Step Pulse Programming)

method [7] that repeatedly charges electrons by
increasing the voltage step by step until the target

electrons are charged for precise control, rather than

charging electrons at a high voltage at a time. For

precise control, the deep write method reduces the

threshold voltage at each repetition, and as a result, it

is slow but the number of the charged electrons can

be accurately controlled. So, even if the electrons are

naturally lost, the probability of the value being

changed is small, and the retention time of the data is

long. Conversely, if the threshold voltage is high,

NAND write becomes faster, but it is difficult to
precisely control the charge. Thus, the probability of

changing the value increases as the electrons are

naturally lost, which shortens the retention time of

the data. Currently, NAND Manufacturers handle

write operations in the deep write method for the long

retention time. However, if the data lifetime is

accurately predicted, we can shorten the latency of
NAND write operations by applying the shallow

write mode for the short-lived data [1, 2].

III. EXPERIMENTAL RESULT

Microsoft server traces [8] are used to analyse the

lifetime distribution in SSDs with the internal buffer.

The NAND page size is assumed to be 4 KB, and the

internal buffer capacity is changed from 0 MB to 512

MB. The dirty buffer flush cycle is changed to 1

minute, 30 minutes, 60 minutes, and 1 day. Data

having a lifetime of one day or less is evaluated as

data having a short lifetime.

Fig. 1 (a) shows the proportion of short-lived data
in hm0 trace. First, when the internal buffer is not

used (0MB), short-lived data accounts for 90% of the

total. That is, most data have a lifetime of less than

one day. When the buffer is used, some write

requests are served by the buffer, which reduces the

proportion of short-lived data somewhat. When the

flush cycle is 1 minute, short-lived data occupies

about 86% regardless of the buffer size. Even if the

buffer size increases to 512 MB, the proportion of

short-lived data does not increase. Because the flush

cycle is very short, the NAND write operations
frequently occur due to the dirty buffer flush, and the

host's write requests mostly generate NAND write

operations by the dirty buffer flush. As the flush

cycle increases to 30 minutes and 60 minutes, the

proportion of short-lived data decreases to about 81-

83%. However, even at this time, the buffer size does

not significantly affect. The difference in the short-

lived data ratio between the buffer size of 512MB

and the buffer size of 16MB is only 1%. However, if

the flush cycle is extended to one day, the proportion

of the short-lived data rapidly decreases as the buffer

size increases. When the buffer size is 64 MB, the
short-lived data occupies 81%, but when the buffer

size becomes 512 MB, it decreases to 58%. This is

because a large number of host write requests are

served by the buffer and only some of the write

requests generate NAND write operations by the

dirty buffer flush or by the dirty buffer replacement.

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 4- April 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 56

Prn0 trace shows a similar trend (Fig. 1 (b)). When

the buffer is not used, about 81% of the data is short-

lived data. When the flush cycle is 1 minute, about

72% of the data is short-lived regardless of the buffer

size. That is, the proportion of data with a short

lifetime is still high. As the flush cycle increases to

30 minutes, the proportion of short-lived data

decreases to 61-65% depending on the buffer size.

When the flush period is one day, the proportion of
short-lived data decreases rapidly depending on the

buffer size. That is, when the buffer size is 512 MB,

only about 40% is short-lived data.

Fig. 1 (c) shows the result of proj0 trace. In proj0

trace, the proportion of short-lived data is very high.

When the buffer is not used, about 99% of data is

short-lived data. Even when the flush cycle is 1

minute, about 99% of the data is short-lived

regardless of the buffer size. That is, the proportion

of data with a short lifetime is still high. As the flush

cycle increases to 30 minutes, the proportion of short-

lived data decreases to 93-99% depending on the
buffer size. When the flush cycle is long as one day,

the decrease in the proportion of short-lived data

increases depending on the buffer size. When the

buffer size is 512 MB, about 73% of the data has a

short lifetime.

Fig. 1 (d) shows the result of prxy0 trace. Also in

prxy0 trace, the proportion of short-lived data is very

high. When the buffer is not used, about 99% of data

is short-lived data. Even when the flush cycle is 1

minute, about 98-99% of the data is short-lived. The

effect of buffer size on the proportion of short lived

data is small. When the flush cycle increases to 30
minutes, the proportion of short-lived data ranges

from 89 to 98% depending on the buffer size. That is,

the proportion of short-lived data is still very high,

and as the buffer size increases, the proportion tends

to decrease. However, when the flush cycle is one

day, the proportion of short-lived data is drastically

reduced depending on the buffer size. When the

buffer is 16 MB, the short-lived data occupies 98%,

but when the buffer size is 256 MB, it decreases to

19% and when the buffer size is 512 MB, it drops to

0%.

From the trace analysis results, we can draw the
following common characteristics. First, in server

traces, the proportion of short-lived data is very large.

That is, the majority of data has a lifetime of less than

one day. Second, if the internal buffer is present, the

50

55

60

65

70

75

80

85

90

95

0MB 16MB 32MB 64MB 128MB 256MB 512MB

Proportion of Short-lived Data (%, hm0)

1 min. 30 min. 60 min. 1 day

40

45

50

55

60

65

70

75

80

85

0MB 16MB 32MB 64MB 128MB 256MB 512MB

Proportion of Short-lived Data (%, prn0)

1 min. 30 min. 60 min. 1 day

(a) hm0 (b) prn0

70

75

80

85

90

95

100

0MB 16MB 32MB 64MB 128MB 256MB 512MB

Proportion of Short-lived Data (%, proj0)

1 min. 30 min. 60 min. 1 day

0

10

20

30

40

50

60

70

80

90

100

0MB 16MB 32MB 64MB 128MB 256MB 512MB

Proportion of Short-lived Data (%, prxy0)

1 min. 30 min. 60 min. 1 day

(c) proj0 (d) prxy0

Fig. 1 Proportion of short-lived data

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 4- April 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 57

proportion of data with a short lifetime is somewhat

reduced. However, the reduction varies depending on

the buffer flush cycle. When the buffer flush cycle is

short, such as 1 minute or 30 minutes, as the buffer

size increases, the proportion of short-lived data

decreases somewhat, but most data still have a short
lifetime. However, if the buffer flush period is

increased to one day, the proportion of short-lived

data rapidly decreases as the buffer size increases.

Depending on the trace, 73% of the data still has a

short lifetime, while in other trace 0% of the data has

a short lifetime.

Meanwhile, the reduced proportion of short-lived

data is likely to hurt the accuracy of the lifetime

prediction policies. Fig. 2 shows the prediction

accuracy in hm0 trace. The host policy determines all

host write requests as short-lived data, and the size
policy determines the request size as 8 KB or less as

short-lived data. The dirty buffer flush cycle is varied

to 1 minute (fig. 2(a)) and to 1 day (fig. 2(b)). The

result shows that when the internal buffer is used, the

accuracy degrades in the both policies regardless of

the flush cycle. When the buffers are flushed every

minute, the accuracy of the host policy decreases

from 93.7 (0MB buffer) to 91.0% (512MB buffer)

and the accuracy of the size policy decrease from

48.7 (0MB buffer) to 33.9% (512MB buffer). The

decrease of the accuracy is more conspicuous when

the buffers are flushed every day. The accuracy of the
host policy decreases to 67.1% (512MB buffer) and

the accuracy of the size policy decrease to 34.6%

(16MB buffer). Especially, the accuracy of the host

policy drastically drops as the buffer size increases

because the proportion of short-lived data greatly

decreases.

As the prediction accuracy decreases, the incorrect

prediction of long-lived data will increase, which

results in the increase of the rewrite overhead. Fig. 3

shows the rewrite overhead in hm0 trace. This rewrite

overhead is the ratio of the incorrect prediction of
long-lived data for the total predictions. When the

buffers are flushed every minute, the overhead

increases from 6.3 (0MB buffer) to 9.0% (512MB

buffer) in the host policy. In the size policy, the

overhead increases from 0.3 (0MB buffer) to 0.5%

(512MB buffer). The overhead increase is not serious.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0MB 16MB 32MB 64MB 128MB 256MB 512MB

Prediction accuracy (1 minute)

host size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0MB 16MB 32MB 64MB 128MB 256MB 512MB

Prediction accuracy (1 day)

host size

(a) 1 minute of flush cycle (b) 1 day of flush cycle

Fig. 2. Prediction accuracy in hm0 trace

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0MB 16MB 32MB 64MB 128MB 256MB 512MB

Rewrite overhead (1 minute)

host size

0%

5%

10%

15%

20%

25%

30%

35%

0MB 16MB 32MB 64MB 128MB 256MB 512MB

Rewrite overhead (1 day)

host size

(a) 1 minute of flush cycle (b) 1 day of flush cycle

Fig. 3. Rewrite overhead due to incorrect prediction in hm0 trace

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 4- April 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 58

However, when the buffers are flushed every day, the

overhead of the host policy increases to 33.0%

(512MB buffer), which is significant. In the size

policy, the overhead increases to 2.5% (512MB

buffer). The increase is more conspicuous in the host

policy when the buffer size is large.

IV. CONCLUSIONS

The SSD internal buffer size and dirty buffer flush

cycle had a significant effect on the lifetime of the

data. When the buffer flush cycle was short, most

data had a short lifetime, regardless of the buffer size.

As a result, the accuracy of the existing lifetime

prediction policies did not drop significantly.

However, if the buffer flush period became one day,

the proportion of short-lived data rapidly decreased

as the buffer size increased. Even in prxy0 trace, 0%

of the data had the short lifetime when the buffer was

512MB. As a result, the accuracy of the host policy
dropped significantly, and the rewrite overhead

increased drastically as the buffer size increased.

Therefore, the policy of evaluating the data lifetime

in SSD must be designed considering the buffer size

and dirty buffer flush cycle.

The evaluation results indicate that if NVRAM

(Non-volatile RAM) is used as the internal buffer of

SSDs, the dirty buffer flush will not occur frequently

and the proportion of short-lived data will be low, so

identifying short-lived data and applying the shallow

write to them is not likely to be effective. However, if
DRAM is employed, the dirty buffer flushing is

inevitable, and therefore, most data are likely to be

short-lived and the shallow write will still be

effective. As a future study, we plan to improve the

performance of SSDs with DRAM by designing the

lifetime prediction policy considering the dirty buffer

flush cycle and by processing the short-lived data in

the shallow write.

ACKNOWLEDGMENT

This study was supported by the Research

Program funded by the SeoulTech (Seoul National

University of Science and Technology).

REFERENCES

[1] R. Liu, C. Yang, and W. Wu, ―Optimizing NAND flash-

based SSDs via retention relaxation,‖ in Proc. USENIX

FAST, 2012.

[2] I. Shin, ―Applying fast shallow write to short-lived data in

solid-state drives,‖ IEICE Electronics Express, vol. 15, pp.

1–9, 2018.

[3] M. Park, K. Lee, and I. Shin, ―Evaluating lifetime of server

data based on trace analysis,‖ International Journal of

Engineering Research and Technology, vol. 12, pp. 1441-

1444, 2019.

[4] Y. Yao, X. Kong, J. Zhou, X. Xu, W. Feng, and Z. Liu, ―An

advanced adaptive least recently used buffer management

algorithm for SSD,‖ IEEE Access, vol. 7, pp. 33494–33505,

2019.

[5] I. Shin, ―Applying fast shallow write to short-lived data in

solid-state drives,‖ Journal of KIIT, vol. 17, pp. 31–38,

2019.

[6] Y. Won, J. Jung, G. Choi, J. Oh, S. Son, J. Hwang, and S.

Cho, ―Barrier-enabled IO stack for flash storage,‖ in Proc.

USENIX FAST, 2018.

[7] A. Ban, ―Flash file system,‖ U.S. Patent 5 404 485, Apr. 4,

1995.

[8] Y. Pan, G. Dong, Q. Wu, and T. Zhang, ―Quasi-nonvolatile

SSD: trading flash memory nonvolatility to improve storage

system performance for enterprise applications,‖ in Proc.

IEEE HPCA, 2012.

[9] D. Narayanan, A. Donnelly, and A. Rowstron, ―Write off-

loading: practical power management for enterprise

storage,‖ in Proc. USENIX FAST, 2008.

