
International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 8 – Aug 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 53

Average Iceberg Queries Computation With

State Buckets Counter

Pallam Ravi
1
, D. Haritha

2

1
scholar K L E F

2
Professor in CSE ,K L E F University

1satishpallam@gmail.com

Abstract: in limited memory environment computing

Aggregate values needs many scan of data ,to avoid

these scans use apriori property for computing anti-

monotone iceberg queries but with efficient use bucket

counter reduce scans for computing non anti-

monotone iceberg queries ,till now all algorithms use

single state Bucket counters, which suffers massive

counter checking for candidates ,we propose two state

Bucket counter which reduce counter checking, we

conduct experiment on POP algorithm .

Keywords — Iceberg queries, Bitmap Index,

Aggregate Function, Value-based Property.

I. INTRODUCTION

In data analytics and data mining operation needs

aggregate values ,these are handle with larger unique

value called domain size, for computing aggregate

value for each unique value need large amount of

memory need ,for getting information from aggregate

value which satisfy threshold value ,finding such kind

of unique value called iceberg queries

the small set of domain values are produce as resultant

,it called tip of iceberg queries(ICQ), equaling to 10%

of domain values

ICQ are handle large amount of data ,domain size is

greater than available counter ,aggregate values

computation over attributes , small set records produces

as resultant set, and apply user threshold on aggregate

values ,its needs huge computation and many data scans

needed.

ICQ are use in many application such as data mining,

embedded system which have limited memory,

information retrieval

The aggregate function like COUNT, MIN, SUM

STDIV ,MAX, and AVERGE are used in iceberg

queries(ICQ), these classified as anti- monotone and

non anti-monotone functions anti monotone

aggregation function are MAX , MIN, SUM and

COUNT. AVERAGE and STDIV are non anti

monotone aggregation functions .use of anti-monotone

property it reduce computation in candidate generation

but not reduce in non anti monotone aggregation

function, it needs many data scans need. Challenge is

reduce data scans for computing non anti-monotone

ICQ

average iceberg query is computing AVG aggregation .

The general form of average iceberg query(ICQ)

SELECT A1,A2 … An, AVG(rest) FROM D

GROUP BY A1,A2 … An

HAVING AVG(rest) > Thres

Where D is data set which contain A1,A2 … An ,rest

attributes , Thres is threshold value

General method to Answering Average iceberg queries

is sort the data with respective target attributes values,

sorting take many scans and swapping its in efficient,

.the other method is allocating one counter buckers for

each unique target value, in this method no of counter

bucket need equals, but ICQ computed with limited

memory so memory is not available as required ,the

first work on average ICQ in [1] it use partition

methods namely POP and BOP.

Partition methods POP work as fill bucket with data

and remove which those are not satisfied threshold

value, it reparative until no more remove counter from

bucket, it suffers with many scans and check of counter

buckets it explain in section 2 ,we proposed two state

bucket to eliminate scans of counter buckets

Related work on ICQ in section2 ,in section 3 explain

two state bucket, in section 4 explain experiment and

dataset used .

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 8 – Aug 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 54

II. RELATED WORK

The first work average ICQ based on partition based

algorithm called POP and BOP [], ICQ proposed in [1]

coarse count and sampling methods it give false

negative

For anti monotone ICBQ are efficiently compute using

Bitmap Indexes[2]in [6],in[6] use dynamic pruning to

avoid mass empty BIT-WISE AND operations, the

different author are improve the performance are in [8]

cache based, in [9] checkpoint, in[11]look head pointer

, in [13 work with distributed system and in [12]work

on vertical datasets ,in[10] proposed bitmap number to

sort the targeted attributes.

The algorithm used for iceberg cubs[5][14] and

database queries[4] are not used for ICBQ .because

have its own goals, iceberg cubs algorithm optimize use

of memory where as ICBQ algorithms are reduced

computational time.

Partition methods POP work as fill bucket with data

and remove which those are not satisfied threshold

value, it reparative until no more remove counter from

bucket, it suffers with many scans and check of counter

buckets it explain

With example1 ,we proposed two state bucket to

eliminate scans of counter buckets

with one state bucket it suffers massive counter

checking for candidate selection and average

computation it will explain with an example 1

Example 1:let R is a relation with target attributes A, B

and C, threshold values is 10 and Max counter in

bucket is 3

 A B C

1 A1 B1 12

2 A1 B2 9

3 A1 B1 11

4 A2 B1 13

5 A2 B2 9

6 A1 B2 8

7 A1 B1 12

8 A2 B1 5

 Relation R

Counter allocate for each new unique record ,bucket

becomes

 Value count

A1B1 23 2

A1B2 9 1

A2B1 13 1

Table 1.a.Counter Buckets values

Bucket are fill up third record scan then remove counter

which average value is below threshold value, so A1 B2

Is removed, allocation counter for A2B2 then bucket

is full

 Value count

A1B1 23 2

A2B1 13 1

A2B2 9 1

Table 1.b.Counter Buckets values

For remove counter need to read all three counter and

calculate its average value its ,to void all counter

checking and calculating average value we proposed a

two stage counter bucket

Above problem with solve with new way checking

using theorem 1 average threshold that explain in

example 2

Theorem 1: Checking average values of a1,a2 ….an

with T

 F= –T)

F n above T

F n below T

Example2: With use of example 1 problem, checking

average value of A1B1 its allocate bucket with A1B1

2 (12-10) for record 1 for record 3 update it as A1B1

2+1 (11-10) ,it becomes 3, finally check it is above

zero are not ,so avoid maintain counter

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 8 – Aug 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 55

With use of theorem 1 bucket becomes table it

eliminate A2B1 and A2B2 without check the A1B1

 Value

A1B1 5

A2B1 -2

A2B2 -1

Table 2. two state Counter Buckets

III. TWO STATE COUNTER BUCKETS

In POP algorithm the buckets operations are New

counter, Update and remove that explain in fig 1, In this

remove operation did with respective all counter in

bucket to avoid this two state bucket counter proposed

,in state one have new counter ,remove update and

change state, the new operation change state is added

and differ in remove operation, the remove operation

remove all counter which average value below

threshold and update the counter which value greater

than threshold with value/count – threshold.

In state 2 new counter ,remove and update operation

are differ with state 1 and one state bucket operation, in

new counter bucket allocate with single values only i.e

<value - threshold> when value greater than threshold,

where as in state1 without checking value with

threshold, it create with two values i.e <value ,1>,

Update operation add value with value-threshold and

remove operation done with respective single counter if

that counter have less than zero then remove it

State 1:

New counter:

 if no Counter in Bucker for a Record then

 Allocate New Counter with <value ,1>

 Remove:

 if |counter buckets| >=Max_counter then

 for all counter update its value with its value/count -

threshold

 for all counter its value < Threshold

 Remove counter from bucket

 Update: if a record have counter in bucket

 Add value of counter with record

value and increment count

Change state: After remove, change state to state 2

State 2:

New counter:

 if no Counter in Bucker for a Record and its value

> Threshold then Allocate New Counter

with <value - threshold>

 Remove: if counter value <0 then

 Remove counter from bucket

 Update: if a record have counter in bucket

 Add value of counter with record

value-threshold

Change state: After buckets is full, change state to

state1

In state 1 &2 in bucket operation flow represent in fig

5 & 6 respectively , in state 1 first its check for new

counter allocation ,if already have counter for it update

it for record not able to create new counter perform

remove operation then change state to 2 .

In state 2,first check for new bucket allocation if it have

counter for it update it and perform remove operation,

change state operation done when no counter for a

record

Algorithm: state 1 Bucket operation

If(!New counter){

 if(!Update){

 if(Remove){

 Change state 2

 }

 }

}

Algorithm: state 2 Bucket operation

If(!New counter){

 if(Update){

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 8 – Aug 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 56

 if(Remove){

 }

 }

}else{

Change state 1

}

One State Counter Buckets:

New counter: if no Counter in Bucker for a Record

then

 Allocate New Counter with <value ,1>

 Remove:

 if |counter buckets| >=Max_counters then

 for all counter its value < Threshold

 Remove counter from bucket

 Update: if a record have counter in bucket

 Add value of counter with record

value and increment count

In POP algorithm have two scans namely first_scan and

Second_Scan , our two state bucket used in first_scan

only , in second_scan differs the record update ,it did as

Update operation in state 2, in first_ scan bucket in

state1 New Counter and Update operation are not differ

only differ in remove operations

Algorithm: Two State Bucket POP

algorithm(statesPOP)

First Scan: start with Bucket in state 1

 In State2 :change state start second scan

Second scan: perform State2 :Update

 Print counters in Bucket which > 0

Domain

Ration 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

uniform 118 2571 1900 2000 2062 2631 3229 4753 5231

Normal 3 42 325 755 153 208 122 193 170

Table3:No of counter Buckets Scans

IV. EXPERIMENT

We conduct experiment on 4GB RAM and windows 7

operation system, we use two synthesized data set with

different distribution namely normal and uniform

distribution of target attributes

for this experiment with 100,000,000 records, about

2.1 GB. The distribution of target attributes values ,

domain size and max average value as follow

Dataset 1: Target attributes in normal distribution and

domain size 220000, min and max values are 0 and

999000 respectively

Dataset 2: Target attributes are in uniform distribution

and domain size 1,000,000 , min and max values are -

19000and 21000 respectively

Domain Ratio: It is the ratio of domain size and no of

counter buckets ,Domain ratio >=1.0 indicates

sufficient counter bucket available for all possible

target values(domain size),if it is <1.0 indicates

insufficient counter buckets

To evaluate Performance of statesPOP ,we did an

experiment with respective of execution time , In this

experiment keep threshold value constant with

changing of domain ratio, threshold value of 700,000

for data set1and 14000 for dataset2,the experiments

reveals the statesPOP gives better performance shows

in fig 1 &2. Due to reduce scans of counter buckets

shown in table 1

Fig 1 .Execution Time with Dataset 1

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume 68 Issue 8 – Aug 2020

ISSN: 2231-5381 http://www.ijettjournal.org Page 57

 Fig 2. Execution Time with Dataset 2

IV. CONCLUSION

Our theorem for efficient checking of average value

with threshold used in our two sate counter buckets for

eliminate rescans of entire counter buckets for remove

counter which are below threshold value due this

reduce computation time for average iceberg queries.

References

[1] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and

J.D. Ullman, “Computing Iceberg Queries Efficiently”, Proc.
Int’l Conf. Very Large Data Bases (VLDB), pp. 299-310,

1998.

[2] C.Y. Chan and Y.E. Ioannidis, “Bitmap Index Design and
Evaluation”, Proc. ACM SIGMOD Intl Conf. Management of

Data, 1998.
[3] J.Bae and S.Lee. ”Partitioning algorithms for the computation

of average iceberg queries.” Proc. Second Intl Conf. Data

Warehousing and Knowl-edge Discovery (DaWaK), pp. 276-
286, 2000.

[4] K.P. Leela, P.M. Tolani, and J.R. Haritsa, “On Incorporating

Iceberg Queries in Query Processors”, Proc. Intl Conf. Data-
base Systems for Advances Applications (DASFAA), pp. 431-

442, 2004.

[5] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient Computation
of Iceberg Cubes with Complex Measures”, Proc. ACM

SIGMOD Int’l Conf. Management of Data, pp. 1-12, 2001.

[6] B.He,H-I.Hsia,Z.Liu,Y.Huang and Y.Chen “Efficent
computing Iceberg queries using compresed bitmap index”

IEEE TRANSACTION ON KNOWLEDGE AND DATA

ENGINEERING,2012‘
[7] Vuppu shanker et al .”Effective Iceberg Query Evaluation by

Deferring Push and Pop Operations,IJAC, ISSN:2051-0845,

Vol.36, Issue.2.2015
[8] Vuppu shanker et al,” Cache Based Evaluation of Iceberg

Queries” ICCCT-2014 IEEE,2014

[9] Vuppu shanker et al, Answering Iceberg Queries Efficiently
Using Check Point Mechanism,IJAC , Vol.46, Issue.2,2015

[10] Pallam Ravi et al “COMPUTING ICEBERG QUERIES

HAVING NON ANTI MONOTONE CONSTRAINS WITH BIT
MAP NUMBER”, JATIT,Vol. 8. No. 2 – 2016

[11] Kale Sarika Prakash et al,”Tracking Pointer and Look Ahead

Matching Strategy to Evaluate Iceberg Query”.JCS,2017
[12] Y.Cui, W.Perrizo ”Aggregate Function Computation and

Iceberg Query-ing in Vertical Database”,Computers and Their

Applications,2006

[13] Vuppu shanker et al “Efficient iceberg evaluation in
Distributed databases by Developing Deferred

Strategies”,2016

[14] K.S. Beyer and R. Ramakrishnan, “Bottom-Up Computation of
Sparse and Iceberg CUBEs”, Proc. ACM SIGMOD Int’l Conf.

Management of Data, pp. 359-370, 1999.

Pallam Ravi, Research scholar in KL university,

Assistant professor in Dept. of Computer Science &

Engineering Anurag Group of institutions, he reived

B.Tech in Computer Science & Information Technology

from JNTU Hyderabad, M.Tech in Software

Engineering from JNTU Hyderabad University, he

present research on data mining

Dr. D. Haritha, Professor in Dept. of Computer

Science & Engineering is a Committed Academician

and Active Researcher having 8 years of teaching

experience at KL University. She Received B.Tech in

Computer Science & Engineering from JNTU

Hyderabad, M.Tech in Computer Science &

Engineering from Acharya Nagarjuna University, Ph.D

from Acharya Nagarjuna University in the area of

Software Reliability. She has 14 research publications

in various referred International Journals. She is a life

member of CSI. Currently 4 research scholars are

pursuing Ph.D. degree under her guidance. Her areas of

interest are Software Reliability, Data Analytics and

Text Mining.

http://www.ijettjournal.org/

