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Abstract — In the textile industry, defect identification is 

the most crucial process for localizing Fabric Defects 

(FDs) and enhancing yarn quality. In earlier centuries, 
many techniques were discussed to identify the FDs 

automatically. Among those, a hybrid technique called 

Pairwise-Potential Activation Layer in Convolutional 

Neural Network (PPAL-CNN) localizes the fine structures 

in textile imagery through integrating dynamic AL on CNN 

and a PP factor in the Conditional Random Fields (CRFs). 

However, this CRF should be supplied a priori rather than 

learned. It was hard for a complex interaction between 

FDlabels/classes while performing multiple, or long-range 

dependencies exist. Therefore, this paper proposes an 

Enhanced PPAL-CNN (EPPAL-CNN) technique to 
manage the complex structure interaction of FDs. First, 

the CRF is extended by integrating external memory 

strategies stimulated from the memory networks and thus 

facilitating CRFs for interpretation beyond localized 

characteristics and have access to the complete image. It 

encompasses the memory and Dynamic CRF (DCRF) 

layers. The memory layer is partitioned into input, output, 

and current input memory. The interpretations of input and 

output memory have interacted through an attention model 

in which weights are calculated by the relation of an input 

and a current input memory. Then, an outcome of the 
memory layer is taken as input to the DCRF layer. The 

DCRFs are simplified linear CRFs and are used for 

defining the shared hidden state and complicated relation 

between labels. Its factorial construction includes the 

relations among cotemporally labels, explicitly modeling 

constrained likelihood dependencies among various labels. 

So, a high-level Markov dependency among labels is 

modeled by considering the external memory. Finally, the 

investigational outcomes exhibit that the EPPAL-CNN 

achieves 93.36% accuracy compared to the PPAL-CNN 

technique using the TILDA database. 

Keywords — Fabric defects, Defect identification, CNN, 

Pairwise-potential activation, CRFs, Memory network. 

 

 

I. INTRODUCTION 

The manufacturing of textiles is a frequently 

practiced regular commodity. Usually, a natural ingredient 

is applied to create textile fibers. The design process 

reveals a defect in the material’s foundation. A faulty 

steering system or the fabric’s breakage on the sewing 

machine may cause a structural difference between the 
duration of its discovery in filament, weft, or spot flaws 

like the misdrawing of the brace, infrastructure, 

inconsistency, and slub. Faults can reduce manufacturing 

costs by 45-65%. Weavers can inspect the textile material 

for highly complex flaws in classical Sewing Machines by 

periodically crossing a couple of machines, as every fiber 

fault can be prevented or remedied when detected [1]. 

So, the fashion domain is advanced towards the 
automated monitoring of textiles for specific fabric 

consistency measurements. Automation is a performance 

measurement method, which recognizes and informs 

defects in production goods, often called assessments. 

Commonly, manual testing on wood panels is the only way 

of ensuring consistency and helping to repair minor flaws 

on a timely basis. But at the same time, strain triggers a 

systematic error, and minor deficiencies are always 

undiscovered. Detection accuracy can be exploited by the 

usual automated fabric analysis of about 80% than the 

manual assessment [2]. Thus, automated assessments are a 
natural solution to grow fabric productivity by reducing 

manufacturing costs. However, this is hard at times. 

Several automated fiber analysis techniques depend on 

machine vision tools, namely image analysis and data 

mining schemes which can segment and recognize the 

defective fabrics. The FDs identification techniques are 

categorized into numerical, contextual, hierarchical, 

composite, training, and model-based techniques. These 

techniques are sensitive to errors, high cost, limited to 

special flaws and conflicting with changes in fiber quality 

and context. During the past few years, many schemes 

have been developed for recognizing FDs. 
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Among those techniques, the hybrid algorithm is 

designed to achieve a high sturdiness in controlling 

dissimilarities in fabric patterns and defect categories. But 

they were unsuccessful in recognizing flaws when 

compared to the repetitive unit of a patterned fiber. In 
recent centuries, deep learning such as CNN has been 

adopted for the effective segmentation of textile imagery. 

The types of CNNs include Fully Convolutional Network 

(FCN) [3], U-Net [4], SegNet [5], and so on, each 

distribute the fundamental units such as convolution, 

pooling, and activation processes where pooling is 

considered to prevent overfitting and lessen the spatial 

dimensions. But, these offer features along with an overall 

semantic significance and intellectual data, which are not 

appropriate for segmenting adequate image details since 

standard CNNs are highly accessible, and small patterns 

are minimized via pooling [6]. 

So, many FDs are taken into account as small 

structures as they are denoted only via a less amount of 

image pixels. A flawed look on textile imagery like dual, 

loss, rough picks, and so on indicates a small/adequate 

surface pattern and always includes smaller than 35% of 

pixels providing an imbalanced FD database. To enhance 

the small structure segmentation, an additional task is 
essential to modify CNN’s coarse outcomes. The other 

usual challenge in the deep learning algorithms is that data 

from real-time applications might not often uniformly 

share among classes [7]. So, two essential functions are 

accounted for constructing the CNN for identifying the 

FDs: maintenance of small patterns and handling an 

imbalanced database. The required CNN must not 

comprise several convolutional layers for avoiding data on 

textile imagery from missing and must prevent by pooling 

for retaining the image perseverance in the feature maps.  

From this perspective, the PPAL-CNN technique 

[8] was developed, which adopts statistical flaw details and 

a CNN for identifying the FDs. Originally, the motif of 

fabrics was computed via the auto-correlation of fiber 

images for interpreting the recurring fabric textures. After, 

a motif-center-point map was created via normalizing the 

cross-correlation. The node point distributions can specify 

the fabric texture's stability to derive the statistical rule. 

This statistical rule was applied as PPAL in CNN for 
associating the node points in a motif area to the flaw 

decision. Moreover, a defect likelihood map was applied 

as a CNN’s dynamic ALalong withCRF’s PP factor for 

accurately localizing small structures and handling the 

imbalanced dataset during CNN training.  

But, this CRF should be supplied a priori rather 

than learned. This was difficult for complicated relations 

among FD classes when executing multiple or long-range 
dependences occur. Hence, this article designed the san 

EPPAL-CNN technique for handling the complex structure 

interaction of FDs. Initially, the CRF is extended via 

combining external memory strategies inspired by the 

memory networks and so allowing CRFs to indicate 

beyond localized features and utilize the whole image. It 

encompasses memory and DCRF layers. The memory 

layer is split into input, output, and the current input 

memory, i.e., a present stage. The interpretations of input 

and output memory are associated through attention which 

determines the weights using the relevance of input and 

current input memory. Then, the result of the memory 
layer is considered as input to the DCRF layer, which is a 

simplification of linear CRFs. Its factorial construction 

includes the connections among cotemporally labels, 

clearly forming restricted likelihood dependences among 

different labels. This creates a higher-order Markov 

dependence between labels via accounting an external 

memory. Thus, it improves the efficiency of PPAL-CNN 

for identifying the complex related FDs efficiently. 

The following sections are included: Section II surveys the 

researches related to the identification of FDs. Section III 

explains the methodology of the EPPAL-CNN technique, 

and Section IV discusses its performance. Section V 

summarizes this research work and suggests future scope. 

II. LITERATURE SURVEY 

A context-awareness and local texture saliency-
based FD detection [9] has been suggested, which applies 

Local Binary Pattern (LBP), salient region identification, 

and segmentation using an optimum threshold. Initially, a 

target image was partitioned into segments, and the LBP 

method was employed for extracting the texture features of 

segments. Then, many other segments were selected 

randomly for determining the LBP contrast between a 

given block and the randomly selected blocks. Also, a 

saliency map was created depending on the determined 

contrast data. Further, the saliency map was segmented by 

an optimum threshold obtained via an iterative method for 

identifying the FDs. But it has high computational 

complexity. 

A discriminative interpretation [10] was 

recommended for detecting the patterned FDs. Primarily, 

fabric images were partitioned into similar size patches. 

Then, the learning of Fisher Criterion-based Stacked 

Denoising Auto-Encoder (FCSDAE) was executed to 

distinguish both defect and defect-free samples. Further, 

the thresholding scheme was used for calculating a 
residual factor of recreated and defect images. But, its false 

alarm rate was slightly high. 

An improved method using the adaptive K-means 

algorithm [11] was suggested, which produces lattice 

segments and templates for recognizing FDs in an 

automated way. In this method, the texture primitive 

principles assembled in individual texture classes were 
split into lattices via considering textile imagery standards. 

For every texture class, different pre-inspection efficacy 

analyses were carried out on a variety of defect-less 

images. Also, a template mapping was described for a 

lattice segmented from an image, and the lattices with 

distances greater were compared to the trained 

distance were recognized to be defective. But the runtime 

was high because of the fiber structure dissimilarities. 
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An automated learning-based method [12] was 

proposed for detecting FDs depending on the interpretation 

of fiber structure via the Redundant Contourlet Transform 

(RCT). First, pre-processing was used to identify the 

fundamental structure dimension and decompose the 
images. After, categorize fiber images were trained by the 

Bayes classification for distinguishing flaws and perfect 

fibers. But it doesn’t give correct outcomes in a few 

situations where there exists dependency among variables. 

An artificial learning method [13] was suggested 

for recognizing and localizingFDs. In this method, a Multi-

Scale Convolutional Denoising Auto-Encoder (MSCDAE) 

was employed for recovering the image slices and 
synthesizing the impacts from the relevant channels. The 

residue of every image patch was considered because of 

the prediction of the clear pixel. At every point of 

resolution, the residual map was segmented and 

synthesized for obtaining the outcome. But, it was trained 

only on some defect-free samples and was more 

sophisticated because of high computation time. 

A Multi-scaling CNN (MCNN) [14] was 

designed to recognize FDs where outcomes of every CNN 

were averaged via an overlapping averaging scheme for 

increasing the accuracy. Also, a classical Alex 

Netframework was applied for learning MCNN by taking 

into consideration of the TILDA database. However, the 

mean error rate was high. A novel Defect Enhancement 

Generative Adversarial Network (DEGAN) [15] 

framework was developed depending on the defect 

improvement algorithm in a forward channel and after 

discriminator. A generation and discriminant model were 

designed to reconstruct the actual defect data and retain the 

defect characteristics. Moreover, a specified reconstruction 

error method was used for attributes with microcrack 

defects to create more detailed local defect characteristics. 

But the hyper-parameters used in this DEGAN were 

needed to optimize for enhancing efficiency. 

An enhanced unsupervised model [16] was 

developed to identify FDs via Deep Convolutional GAN 

(DCGAN) and reconstruct the fabrics maintained in the 

query image. Here, the defects were identified in the 

background via creating a residual map during 

reconstruction. Also, the discriminator was used to 

enhance the efficacy. But, average accuracy was not 
effective. An efficient CNN called Mobile-UNET [17] was 

structured for segmenting flaws using MobileNetV2 

feature extractor and 5 deconvolution units. The mid-band 

matching loss function and a depth-wise independent 

convolution were employed to resolve the data imbalance 

issue and difficulty. At last, SoftMax was employed for 

creating a segmented mask. But, it was not apt for less data 

for training. 

III. PROPOSED METHODOLOGY 

This part describes the EPPAL-CNN technique in 

detail. Consider an input: 𝒟 = {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁  where 𝑥𝑖is an 

input of 𝑖𝑡ℎ image in the dataset 𝒟 and comprises a series 

of {𝑥𝑖1, … , 𝑥𝑖𝑇}. Likewise, input𝑦𝑖 is of similar length as 𝑥𝑖 

and has related labels {𝑦𝑖1,… , 𝑦𝑖𝑇}. During FD 

identification, every input𝑥𝑡denotes temporal information 

in the image with 𝑦𝑡 Being the respective FD class. Figure 

1 depicts the block diagram of the proposed FDs 

identification framework using EPPAL-CNN. 

 

 

 

 

 

 

 

 

 

Figure 1. Block Diagram of Proposed FDs Identification Framework 

The memory-enhanced DCRF in EPPAL-CNN is 

portrayed in Figure 2. It is split into memory and DCRF 

layers. The memory layer is segmented as the input 

memory 𝑚1:𝑡, output memory 𝑐1:𝑡 and a present input 𝑢𝑡 

i.e., a query in MemNet. The interpretations of input and 

output memory are associated with attention which 

determines the weights through relations of input memory 

and the present input. The outcome of the memory layer is 

considered as input to the DCRF layer. The below section 

explains the components of memory-enhanced DCRF in 

the EPPAL-CNN technique for identifying the FDs. 
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Figure 2. Design of Memory Enhanced DCRFs with a Single Memory Hop in EPPAL-CNN  
 

 

A. Memory Layer 

a) Input Memory 

Each pixel in 𝑖 is encoded with a function 𝜙(𝑖𝑡), 

where 𝜙(∙) maps 𝑖𝑡  into a vector that belongs to ℝ𝑑. The 

outcome is labeled as{𝑖1, … , 𝑖𝑡}. While this enhanced 

image is observed as a memory in MemNets, the issue 

becomes insensitivity to the temporal data between 

memory cells. So, the temporal data is integrated with 

memory using a bi-directional Gated Recurrent Unit 

(GRU). The encoding is explained as follows: 

�⃗⃗� 𝑡 = 𝐺𝑅𝑈⃗⃗⃗⃗ ⃗⃗⃗⃗  ⃗(𝑖𝑡 , �⃗⃗� 𝑡−1)    (1) 

�⃗⃗⃖�𝑡 = 𝐺𝑅𝑈⃖⃗⃗⃗⃗⃗ ⃗⃗⃗⃗ (𝑖𝑡 , �⃗⃗⃖�𝑡+1)    (2) 

𝑖𝑡 = tanh(�⃗⃗⃗� 
𝑚�⃗⃗� 𝑡 + �⃗⃗⃗⃖�𝑚 �⃗⃗⃖�𝑡 + 𝑏𝑚)  (3) 

In Eq. (3), �⃗⃗⃗� 
𝑚 , �⃗⃗⃗⃖�𝑚 and 𝑏𝑚 Are learnable parameters. 

b) Current Input 

This is utilized for defining the ongoing stage 

𝑖𝑡Be it a defect or defect-free image. Since in MemNets, it 

is essential to implement the present input to be in a 

similar region like an input memory; thus, an attention 

weight of each pixel in the memory is computed via 

estimating the significance between the two. The current 

input is defined as 𝑢𝑡 = 𝑚𝑡 . 

c) Attention 

The significance between the ongoing stage 𝑢𝑡 

and 𝑚𝑖 for 𝑖 ∈ [1, 𝑡] is determined by SoftMax to measure 

the attention range of each pixel in the memory. 

𝑝𝑡,𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢𝑡
⟙𝑚𝑖)   (4) 

Where 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑖) =
𝑒𝑎𝑖

∑ 𝑒
𝑎𝑗

𝑗
  (5) 

d) Output Memory 

The output memory 𝑐𝑡  is calculated analogously, 

however, using multiple sets of GRUs variables and tanh 

layers of Eqns. (1)-(3). 𝑐𝑡Gives the results of the memory 

layer and is employed in the DCRF layer as input. 

e) Memory Layer Output with Extension 

After determining the attention weights, the 

memory access regulator accepts the response𝑜as a 

weighted sum over the interpretation of output memory: 

𝑜𝑡 = ∑ 𝑝𝑡,𝑖𝑐𝑖𝑖     (6) 

This network model is improved via stacking 

many memory hops were an outcome of 𝑘𝑡ℎ hop is termed 

as input to(𝑘 + 1)𝑡ℎ hop as: 

𝑢𝑡
𝑘+1 = 𝑜𝑡

𝑘 + 𝑢𝑡
𝑘    (7) 

In Eq. (7),𝑢𝑡
𝑘+1 encodes not only data at the ongoing stage 

(𝑢𝑡
𝑘), but also relevant significant information from 

memory (𝑜𝑡
𝑘). Here, the number of hops is restricted to 1. 

B. Dynamic CRF Layer 

After determining the interpretation of 𝑢𝑡
𝑘+1 and 

significant data is integrated from memory, and it is fed 

into the DCRF layer, which generalizes both linear CRFs 

and highly complicated patterns. EPPAL-CNN considers a 

factorial CRF consisting of linear label sequences 
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including relations among cotemporally labels. Let a 

factorial CRF along with𝐿sequences wherein𝑌𝑙,𝑡Denotes a 

parameter in 𝑙 at interval 𝑡. The DCRF’s group indexes are 
{(0, 𝑙), (1, 𝑙)} for every within-sequence margin and 
{(0, 𝑙), (0, 𝑙 + 1)}For every between-sequence margin. 

The factorial CRF 𝐺 represents a likelihood over hidden 

states as: 

𝒫(𝑦|𝑥) =
1

𝒵(𝑥)
(∏∏𝜙𝑙(𝑦𝑙,𝑡 , 𝑦𝑙,𝑡+1, 𝑥, 𝑡)

𝐿

𝑙=1

𝑇−1

𝑡=1

) 

(∏ ∏ 𝜓𝑙(𝑦𝑙,𝑡 , 𝑦𝑙+1,𝑡 , 𝑥, 𝑡)𝐿−1
𝑙=1

𝑇
𝑡=1 ) (8) 

In Eq. (8), {𝜙𝑙}and {𝜓𝑙} denote the possibilities 

over within-sequence and between-sequence margins 

and𝒵(𝑥)Stands for a split factor. Figure 3 displays a 

graphical interpretation of factorial CRFs. 

 

Figure 3. Graphical Interpretation of Factorial 

CRFs(*the dashed line denotes the edge between 

timestamps) 

The potentials factorize depend on the features 
{𝑓𝑘} and weights {𝜆𝑘} of 𝐺 as: 

𝜙𝑙(𝑦𝑙,𝑡 , 𝑦𝑙,𝑡+1, 𝑥, 𝑡) = 𝑒{∑ 𝜆𝑘𝑓𝑘(𝑦𝑙,𝑡,𝑦𝑙,𝑡+1,𝑥,𝑡)𝑘 }  (9)

  

𝜓𝑙(𝑦𝑙,𝑡 , 𝑦𝑙+1,𝑡 , 𝑥, 𝑡) = 𝑒{∑ 𝜆𝑘𝑓𝑘(𝑦𝑙,𝑡,𝑦𝑙+1,𝑡,𝑥,𝑡)𝑘 }  (10)

  

Additionally, more complex structures probably 

rely on how long the sequence is in its present state. This 

factorized structure utilizes several variables than the state 

space of the cross-product. 

a) Inference in DCRFs 

Inference in theDCRF is achieved for unlabeled 

image𝑥to resolve two inference issues: determining the 

marginal 𝒫(𝑦𝑡,𝑐|𝑥)in each group𝑦𝑡,𝑐 and the Viterbi 

decoding 𝑦∗ = argmax
𝑦

𝒫(𝑦|𝑥).  

It is applied for labeling an unknown image, and 
marginal determination is applied to estimate the variables. 

Since marginal determination is required during training, 

the inference should be effective so that huge training sets 

are used though if there are several labels. Here, the 

approximate inference is characterized via Belief 

Propagation (BP) which iteratively update a vector 𝑖𝑡 =
(𝑚𝑢(𝑖𝑣)) of temporal data between 𝑖𝑢 and 𝑖𝑣. The update 

from 𝑖𝑢 to 𝑖𝑣 is as: 

𝑚𝑢(𝑖𝑣) ← ∑ 𝜙(𝑖𝑢 , 𝑖𝑣)𝑖𝑢
∏ 𝑚𝑡(𝑖𝑢)𝑖𝑡≠𝑖𝑣

  (11) 

In Eq. (11), 𝜙(𝑖𝑢 , 𝑖𝑣)stands for the potential on the margin 
(𝑖𝑢 , 𝑖𝑣). Executing this modification for single margin 
(𝑖𝑢 , 𝑖𝑣)separately is known forwarding a piece of pixel 

information from 𝑖𝑢 to 𝑖𝑣. An approximate marginal for 𝑖𝑡  

is determined as: 

𝒫(𝑖𝑢 , 𝑖𝑣) ← 𝜅𝜙(𝑖𝑢 , 𝑖𝑣)∏ 𝑚𝑡(𝑖𝑢)𝑖𝑡≠𝑖𝑣
∏ 𝑚𝑤(𝑖𝑣)𝑖𝑤≠𝑖𝑢

 (12) 

In Eq. (12), 𝜅 denotes a regularization function. 

At each iteration of BP, temporal data are forwarded in all 
ways, and selecting a better plan may influence how 

quickly the overfitting is reduced. Here, tree-based and 

random plans are used for BP. The tree-based plan 

propagates temporal data, including a group of cross-

cutting spanning trees of the actual graph. At every 

iteration of this plan, a spanning tree 𝒯(𝑖) ∈ 𝛶 is chosen, 

and temporal data are forwarded in end-to-end with each 

margin 𝒯(𝑖) to get accurate inference on 𝒯(𝑖). Generally, 

trees are chosen from any groups𝛶 = {𝒯} Provided that 

the trees in 𝛶 comprise the margin group of the actual 

graph. Practically, trees are chosen randomly, but the 
initial margins are chosen that were not used in any prior 

iteration. 

The random path easily forwards temporal data 

across each margin randomly. To enhance convergence, 

every margin 𝑒𝑖 = (𝑠𝑖 , 𝑡𝑖) is randomly ordered, and each 

temporal data 𝑚𝑠𝑖
(𝑡𝑖)is propagated before any data 

𝑚𝑡𝑖
(𝑠𝑖). It is also applied to execute Viterbi decoding, but 

the summation in Eq. (11) is substituted by maximization. 

As well, inference in DCRFs with higher groups is 

executed directly by generalized varieties of variational 

methods. 

b) Parameter Determination in DCRFs 

The aim of the determination of variables is to 

obtain a group of variables 𝜁 = {𝜆𝑘}in 𝒟 = {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁 . The 

conditional log-probability is optimized as: 

ℒ(𝜁) = ∑ log𝒫𝜁(𝑦𝑖|𝑥𝑖)𝑖    (13) 

The derivative of ℒ(𝜁)regarding 𝜆𝑘 related to group index 

𝑐 is as: 

𝑤𝑡−1 

𝑦𝑡−1 

𝑣𝑡−1 

𝑤𝑡 

𝑦𝑡 

𝑣𝑡 
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𝜕ℒ

𝜕𝜆𝑘
= ∑ ∑ 𝑓𝑘(𝑦 𝑖,𝑡,𝑐 , 𝑥𝑖 , 𝑡)𝑡𝑖 −

∑ ∑ ∑ 𝒫𝜁(𝑦 𝑡,𝑐|𝑥𝑖)𝑓𝑘(𝑦 𝑡,𝑐 , 𝑥𝑖 , 𝑡)�⃗� 𝑡,𝑐𝑡𝑖  (14) 

In Eq. (14), 𝑦 𝑖,𝑡,𝑐 denotes the distribution of 𝑦𝑡,𝑐 in 𝑦𝑖 and 

𝑦 𝑡,𝑐varies over distributions to 𝑦𝑡,𝑐. Notice that it is the 

variable 𝒫𝜁(𝑦 𝑡,𝑐|𝑥𝑖)Which desires to determine marginal 

likelihoods in the unfolded DCRFs.A prior 𝒫(𝜁) is defined 

over variables and log𝒫(𝜁|𝒟) = ℒ(𝜁) + log𝒫(𝜁) It is 
adjusted to avoid overfitting. A spherical Gaussian prior is 

used along average 𝜇 = 0 and covariance matrix 𝛴 = 𝜎2𝑥, 

thus a gradient becomes: 

𝜕𝒫(𝜁|𝒟)

𝜕𝜆𝑘
=

𝜕ℒ

𝜕𝜆𝑘
−

𝜆𝑘

𝜎2    (15) 

Thus, the CRF in PPAL-CNN is enhanced via 

combining external memory and DCRFs strategy for 

identifying the FDs accurately. 

Algorithm: EPPAL-CNN for FDs Identification 

Input: Training dataset 𝒟 = {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁  

Output: FDs and non-FDs 

 Begin 

 Initialize 𝑁 number of training images; 

 Apply the EPPAL-CNN; 

 //memory enhanced DCRFs in EPPAL-CNN 

 Initialize the learnable parameters; 

Integrate the temporal information with memory; 

Determine the input memory via Eqns. (1)-(3); 

 Denote the current input as 𝑢𝑡 = 𝑚𝑡; 

 Measure the significance between input memory 

&current input via Eq. (4); 

 Obtain the output memory via Eqns. (6)-(7); 

Apply the output memory as input to the dynamic 

(factorial) CRFs; 

 Determine the distribution over hidden states as 

Eq. (8); 

 Compute the potentials factorize using {𝑓𝑘} and 
{𝜆𝑘} as Eqns. (9)-(10); 

 Update 𝑖𝑡  of temporal data between 𝑖𝑢 and 𝑖𝑣 as 

Eq. (11); 

 Calculate the approximate marginal for 𝑖𝑡  using 

Eq. (12); 

 Optimize the conditional log-likelihood via Eqns. 

(13)-(15); 

 Execute the EPPAL-CNN; 

 Identify the FDs and non-FDs; 

 End 

IV. RESULTS& DISCUSSIONS 

This section presents EPPAL-CNN performance 

via implementing it in MATLAB 2017b with the help of 

TILDAin, in which every image comprises a text reporting 

flaw regions in it. TILDA includes an overall of 8 

representative textile categories and also 8 sorts of classes 

for every category of textile that has existed. So, an entire 

database has 3200 TIF images having a total capacity of 
1.2GB. Also, its efficiency is analyzed with PPAL-CNN 

based on precision, recall, f-measure, and accuracy. The 

confusion matrix for every class is obtained independently, 

and an average of identified outcomes for EPPAL-CNN is 

depicted in Table 1. 

Table 1. Confusion Matrix for 1100 Test Images 

 Identified Class 

 

Actual 

Class 

 Positive Negative 

Positive (547 

for each class) 

True 

Positive 

512 

False 

Negative 

35 

Negative(550 

for other class) 

False 

Positive 

38 

True 

Negative 

512 

A. Accuracy 

It is the percentage of recognizing FDs accurately over the 

sum amount of attempts executed. 

𝐴𝑐𝑐 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

TP gives a result where the EPPAL-CNN properly 

identifies FDlabels as FDs. FP gives a result where the 

EPPAL-CNN inexactly detects FDlabels as non-FDs.FN 

gives a result where the EPPAL-CNN inexactly detects 

non-FDlabels as FDs.TN gives a result where the EPPAL-

CNN exactly detects non-FDlabels as non-FDs. 

 

Figure 4. Comparison of Accuracy 
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Figure 4 portrays 𝐴𝑐𝑐(%) of EPPAL-CNN and PPAL-

CNN techniques. It indicates that𝐴𝑐𝑐of EPPAL-CNN is 

0.59% higher than PPAL-CNN because of applying DCRF 

and external memory strategies. 

B. Precision 

It is some exactly identified FD classes at TP and 

FP. 

𝑃𝑟𝑠𝑛 =
𝑁𝑜.𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐹𝐷 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐹𝐷 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
+

𝑁𝑜.𝑜𝑓 𝑖𝑛𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐹𝐷 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

  

 

Figure 5. Comparison of Precision 

In Figure 5, 𝑃𝑟𝑠𝑛of EPPAL-CNN and PPAL-

CNN techniques are depicted. It notices that 𝑃𝑟𝑠𝑛of 
EPPAL-CNN is 1.46% greater compared to PPAL-CNN 

owing to the consideration of enhancing CRF in PPAL-

CNN. 

c) Recall 

It is the rate of correctly identifying the FD 

classes at TP and FN. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑜.𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐹𝐷 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝐹𝐷 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
+

𝑁𝑜.𝑜𝑓 𝑖𝑛𝑒𝑥𝑎𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑛𝑜𝑛−𝐹𝐷 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

  

 

Figure 6. Comparison of Recall 

Figure 6 portrays the recall of PPAL-CNN and EPPAL-

CNN techniques. It denotes that the recall of EPPAL-CNN 

is 0.68% maximized than PPAL-CNN. The reason is 

handling the complex structure interaction of FDs using 

DCRF, including external memory strategies efficiently. 

D. F-measure 

It defines a harmonic average of precision and 

recall. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

In Figure 7, the f-measure of PPAL-CNN and EPPAL-

CNN techniques are depicted. It concludes that the f-
measure of EPPAL-CNN is 0.56% increased than the 

PPAL-CNN. 

 

Figure 7. Comparison of F-measure 

V. CONCLUSION 

This article suggests the EPPAL-CNN method to 

control the complex structure interaction of FDs. At first, 

the CRF is developed via combining external memory 

strategies encouraged from the memory networks and so 

allowing the CRFs for representing the localized features 

and using a complete image. It comprises memory and 

DCRF layers. The memory layer is partitioned into input, 

output, and present input memory. The interpretations of 

input and output memory are associated through attention 

in which weights are calculated by the relevance of input 
and present input memory. Then, the DCRF layer is 

implemented by taking the outcome of the memory layer 

as its input defines the distributed hidden state and 

complex relation between labels. Its factorial construction 

includes the relations among cotemporally labels, 

explicitly modeling constrained likelihood dependencies 

among various labels. Using EPPAL-CNN, a higher-order 

Markov dependence between labels is modeled by taking 

into consideration of the external memory. To end, the 

investigational outcomes proved that the EPPAL-CNN had 

achieved 93.36% accuracy, which is 0.6% larger compared 

to the PPAL-CNN technique for the TILDA database. But 
it causes undesirable convergence behavior and unwanted 

estimations. So, future research will solve these problems 

using weight optimization methods. 

0.91

0.915

0.92

0.925

0.93

0.935

0.94

FD Identification
Techniques

P
re

ci
si

o
n

PPAL-CNN

EPPAL-CNN

0.92

0.925

0.93

0.935

0.94

FD Identification
Techniques

R
ec

al
l

PPAL-CNN

EPPAL-CNN

0.924

0.926

0.928

0.93

0.932

0.934

FD Identification
Techniques

F-
m

ea
su

re

PPAL-CNN

EPPAL-CNN



B. Vinothini & S. Sheeja. / IJETT, 69(10), 227-234, 2021 

 

234 

ACKNOWLEDGMENT 

The authors would like to thank 

KarpagamUniversity, Coimbatore, Tamil Nadu, India, for 

supporting the research and provide facilities. 

REFERENCES 
[1] Ngan, H. Y., Pang, G. K., & Yung, N. H. (2011). Automated fabric 

defect detection—a review. Image and Vision Computing, 29(7) 

442-458. 

[2] Tsang, C. S., Ngan, H. Y., & Pang, G. K.. Fabric inspection based 

on the Elo rating method. Pattern Recognition, 51 (2016) 378-394. 

[3] Long, J., Shelhamer, E., & Darrell, T. Fully convolutional networks 

for semantic segmentation. In Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, (2015) 3431-3440. 

[4] Ronneberger, O., Fischer, P., &Brox, T. U-net: convolutional 

networks for biomedical image segmentation. In International 

Conference on Medical Image Computing and Computer-Assisted 

Intervention, Springer, Cham, (2015) 234-241. 

[5] Badrinarayanan, V., Kendall, A., & Cipolla, R.  SegNet: a deep 

convolutional encoder-decoder architecture for image 

segmentation. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 39(12) (2017) 2481-2495. 

[6] Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., 

Du, D., ... & Torr, P. H. Conditional random fields as recurrent 

neural networks. In Proceedings of the IEEE International 

Conference on Computer Vision, (2015) 1529-1537. 

[7] Çelik, H., Dülger, L. C., Topalbekiroglu, M., & Rosa, J. L. G. 

Application of neural networks (NNs) for fabric defect 

classification. In Artificial Neural Networks Models and 

Applications. InTech(2016). 

[8] Ouyang, W., Xu, B., Hou, J., & Yuan, X. Fabric defect detection 

using activation layer embedded convolutional neural 

network. IEEE Access, 7(2019)70130-70140. 

[9] Liu, Z., Li, C., Zhao, Q., Liao, L., & Dong, Y. A fabric defect 

detection algorithm via context-based local texture saliency 

analysis. International Journal of Clothing Science and Technology, 

27(5) (2015) 738-750. 

[10] Li, Y., Zhao, W., & Pan, J. Deformable patterned fabric defect 

detection with fisher criterion-based deep learning. IEEE 

Transactions on Automation Science and Engineering, 14(2) (2017) 

1256-1264. 

[11] Jia, L., Zhang, J., Chen, S., & Hou, Z. Fabric defect inspection 

based on lattice segmentation and lattice templates. Journal of the 

Franklin Institute, 355(15) (2018) 7764-7798. 

[12] Yapi, D., Allili, M. S., &Baaziz, N. Automatic fabric defect 

detection using learning-based local textural distributions in the 

contourlet domain. IEEE Transactions on Automation Science and 

Engineering, 15(3) (2018) 1014-1026. 

[13] Mei, S., Wang, Y., & Wen, G. Automatic fabric defect detection 

with a multi-scale convolutional denoising autoencoder network 

model. Sensors, 18(4) (2018) 1064. 

[14] Jeyaraj, P. R., & Samuel Nadar, E. R. Computer vision for 

automatic detection and classification of fabric defects employing 

deep learning algorithm. International Journal of Clothing Science 

and Technology, 31(4) (2019) 510-521. 

[15] Lin, S., He, Z., & Sun, L. Defect enhancement generative 

adversarial network for enlarging data set of microcrack 

defect. IEEE Access, 7, (2019) 148413-148423. 

[16] Hu, G., Huang, J., Wang, Q., Li, J., Xu, Z., & Huang, X. 

Unsupervised fabric defect detection based on a deep convolutional 

generative adversarial network. Textile Research Journal, 90(3-4) 

(2020) 247-270. 

[17] Jing, J., Wang, Z., Rätsch, M., & Zhang, H. Mobile-Unet: an 

efficient convolutional neural network for fabric defect 

detection. Textile Research Journal, (2020) 1-13. 

 


