
International Journal of Engineering Trends and Technology                                Volume 69 Issue 11, 113-121, November, 2021 
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I11P214                                                  ©2021 Seventh Sense Research Group® 
   

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Cosparse Analysis Model-Based Compressive 

Sensing With Optimized Projection Matrix  
Endra Oey1, Dadang Gunawan2, Dodi Sudiana3     

1Wireless and Signal Processing (WASP), Department of Electrical Engineering, Faculty of Engineering, Universitas 
Indonesia, Depok City, West Java 16424, Indonesia  

2Wireless and Signal Processing (WASP), Department of Electrical Engineering, Faculty of Engineering, Universitas 
Indonesia, Depok City, West Java 16424, Indonesia  

3Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok City, West Java 16424, 
Indonesia  

1oey.endra51@ui.ac.id, 2guna@eng.ui.ac.id, 3dodi.sudiana@ui.ac.id  

 

Abstract — The Compressive Sensing (CS) technique 

provides a signal acquisition dimensional reduction by 

multiplying a projection matrix with the signal. Until now, 

the projection matrix optimization is commonly performed 

using the Sparse Synthesis Model-Based (SSMB), where it 

takes a linear combination of a few atoms in a synthesis 

dictionary to form a signal. The Cosparse Analysis Model-
Based (CAMB) provides an alternative model where the 

multiplication of the signal with an analysis dictionary 

(operator) produces a cosparse coefficient. The CAMB-CS 

method is proposed in this paper by taking into account 

the amplified Cosparse Representation Error (CSRE) 

parameter and the relative amplified CSRE optimize the 

projection matrix, in addition to the mutual coherence 

parameter. The optimized projection matrix in CAMB-CS 

is obtained using an alternating minimization algorithm 

and nonlinear conjugation gradient method. In the 

optimization algorithm, the Gaussian random matrix is 

used as the initial projection matrix. The simulation results 
showed an increase in the Peak Signal to Noise Ratio 

(PSNR) and Structural Similarity Index Measure (SSIM) of 

the reconstructed image in the CAMB-CS system up to 

10.23% and 8.46%, respectively, compared to the 

Gaussian random matrix. Compared to the SSMB-CS 

optimized projection matrix, the developed method 

increases the PSNR and SSIM of the recovered image up 

to 21.21% and 17.11%, respectively. 

 

Keywords — Compressive Sensing, Cosparse Analysis 

Model, Cosparse Representation Error, Projection Matrix 
Optimization.  

 

I. INTRODUCTION 

    The Shannon-Nyquist sampling theorem underlies the 

conventional way of sampling a signal in which the 

minimum sampling frequency is twice the maximum 

frequency of the signal [1]. The theorem underlies almost 

all signal acquisition protocols used in electronic audio-

visual equipment, medical imaging equipment, radio 

receivers, and so on. Compressive Sensing (CS) or 

Compressed Sensing, a term introduced by Donoho, is a 

sampling technique in which the signal can be 
reconstructed in a much smaller number of samples than 

the Shannon-Nyquist method [2]. Since the important 

results published by Donoho [2] and Candès et al. [3]–[5], 

CS has attracted a lot of new attention in the last two 

decades and has been widely applied in various fields such 

as compressive imaging, biomedical applications, 

communication systems, pattern recognition, and so on 

[6]–[10].   

    A signal that can be generated from a few coefficients 
using an appropriate dictionary is called a sparse signal. 

The Sparse Synthesis Model-Based (SSMB) states that 

signals can be formed from a few linear combinations of 

signal atoms derived from synthesis-dictionary [8], [11]. 

The Cosparse Analysis Model-Based (CAMB) as an 

alternative to SSMB states that multiplication of the signal 

by an analysis-dictionary or operator yields a sparse 

analysis coefficient [12]–[15]. Currently, SSMB is the 

basis for CS research in general, but CAMB is starting to 

become an alternative for CS research because it provides 

better results than SSMB, as shown in [16]–[19]. 

    The three main issues in CS research are: 1) how to 
establish an appropriate dictionary; 2) designing the 

optimal projection matrix; and 3) designing a CS signal 

reconstruction algorithm. In SSMB, algorithms such as 

maximum likelihood, method of optimal directions, K-

SVD, and its development, are used to construct synthesis-

dictionary [20]–[23]. Various algorithms such as analysis 

operator learning, K-SVD analysis, and sparsifying-

transform learning have been proposed to construct an 

analysis dictionary for CAMB [24], [25], [34]–[37], [26]–

[33]. The sparse recovery algorithms such as convex and 

relaxation, greedy, Bayesian, and their combination can be 
used to recover the signal in SSMB-CS [38].  

The equivalent algorithm for CAMB-CS uses several 

methods such as convex and relaxation analysis, greedy, 

Bayesian analysis, and their combinations. can be seen in 

[13], [14], [39]–[41].   

    Compressive Sensing (CS), either on SSMB or CAMB, 

is done by multiplying the signal by a projection matrix, 

thereby reducing signal dimensions. In SSMB-CS, the 

projection matrix is designed to be incoherent with the 

synthesis dictionary so that the signal can be reconstructed 

accurately [42]. Random matrices were taken from 

independent and identically Gaussian or Bernoulli 
distributions, and partial Fourier matrices are often used as 

projection matrix in SSMB-CS because with a high 
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probability, the matrix is incoherent with most synthesis-

dictionaries [5], [42]. A deterministic and structured 

projection matrix was also developed because it has 

advantages for practical applications but requires a higher 

number of measurements than random matrices [6], [10], 
[51], [52], [43]–[50]. While the optimization of the 

projection matrix on SSMB-CS has been proposed as in 

[53], [54], [63]–[72], [55], [73]–[78], [56]–[62], but how 

to optimize the projection matrix on CAMB-CS, has not 

been widely studied. The projection matrix optimization 

method for CAMB-CS is proposed in this paper. The 

simulation results show that the proposed method produces 

better CS performance in terms of signal reconstruction 

quality compared to the previous methods.  
    The rest of the paper is arranged as follows: Section II 

explains the CS theory and projection matrix optimization 

in SSMB-CS. The proposed method is presented in section 
III. Section IV discusses the comparison results of the 

proposed method and the previous ones. Finally, some 

conclusions are given in section V. 

II. COMPRESSIVE SENSING THEORY 

    The compressive measurement of signal 
1N

x  in 

SSMB-CS can be done by projecting it into a projection 

matrix 
M N

Φ  and producing a compressed signal  
1M

y  M N  as in Equation (1). 

    y Φx           (1) 

The synthesis dictionary 
N K

Ψ  and the sparse 

coefficients 
1K

θ  K N  are used in the SSMB to 

model the signal x  as in Equation (2) with 
1N

se  is 

the sparse representation error (SRE) of the signal x . 

      sx Ψθ e                            (2) 

The signal x  in Equation (1) can be substituted by using 

Equation (2) so as to produce Equation (3) with 
M L

 D ΦΨ is an equivalent dictionary and 
1M

 s sΦe σ  is amplified SRE.  

           s sy ΦΨθ Φe Dθ Φe            (3)        

The 
0 minimization problem in Equation (4) needs to 

be solved to get the sparse coefficients θ̂  from the 

compressed signal y in Equation (3) so that the 

reconstructed signal is x̂  obtained as in Equation (5). 

            
20 2

ˆ arg min  . .    s t   s
θ

θ θ y Dθ σ    (4) 

          ˆˆ x Ψθ                         (5) 

However, the solution of Equation (4) is NP-hard [79], so 

an approximate solution of Equation (4) is needed. 

Orthogonal matching pursuit (OMP) as one of the greedy 

pursuit algorithms is often used as an approach method to 

solve Equation (4) [80]. 

    Equation (6) models the signal 
1N

x  in CAMB with 
1Nz  is the cosparse signal and 

1N
cse  is the 

cosparse representation error (CSRE) of the signal x .  

           
cs

x z e                          (6) 

The signal x  in Equation (1) can be substituted by using 

Equation (6) so as to produce Equation (7) with 
1M

cs csΦe σ  is amplified CSRE. 

       csy Φx Φz Φe               (7) 

Multiplication between the analysis dictionary or operator 
K N

Ω  with K N  and the cosparse signal 
1N

z  produces the cosparse coefficients 
1K

α . 

The 
0 minimization problem in Equation (8) needs to 

be solved to get the reconstructed signal x̂ .  

     
0 2 2

ˆ arg min   . .    s t  
x

x Ωx y Φx σcs    (8) 

However, the same as in Equation (4), the solution of 

Equation (8) is NP-hard [14], so an approximate solution 

of Equation (8) is needed. Greedy analysis pursuit (GAP) 

is often used as an approach method to solve Equation (8) 

[13], [14]. 

 The extent to which the projection matrix used in either 

the SSMB-CS or CAMB-CS satisfies several properties 

such as null space property (NSP), restricted isometry 
property (RIP) [2], [3], [81] and the spark of a matrix [82], 

[83] determines the quality of the reconstructed signal x̂ . 
However, it is not easy to determine whether a projection 

matrix satisfies those properties. Another property that is 

widely used in projection matrix optimization is mutual 

coherence because it can be calculated and fulfilled more 
easily [53], [82], [84], [85]. In the SSMB-CS, the 

equivalent dictionary can be written 

as       
M K

 ...


 1 2 KD d  d d the  ,i j  element of the 

Gram matrix of D is   
T

s ijg   i jd d  

and  1/2 1/2 1/2

11    ...  ...  s s kk s KKdiag g g g
  

  sD   is a diagonal 

matrix.  

 The normalized equivalent dictionary is  = sD DD  , and 

the normalized Gram matrix of D  is  
T

sG  D D  with 

1,  s kkg k    The Equation (9) defines the mutual 

coherence of D . 

                            maxi j s ijg  D                  (9) 

If the signal x  is exactly S sparse  that is 0se  , then 

the reconstructed signal x̂  can be exactly recovered if 

Equation (10) is fulfilled [82]. 

                                                                   

  
1 1

1
2

S


 
 
  
 D

              (10)                                                                          

The value range of the mutual coherence   D  is 

  1
B

  D  where B  defined in equation (11) is the 

Welch bound.  
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1
B

K - M

M K
 


               (11)                                                

The Welch bound can be achieved by the optimal 

Grassmannian frame, which is an equiangular tight frame 

(ETF) [58].  

    Equation (12) defines t  averaged mutual coherence 

 t D , which is used as a parameter in projection 

matrix optimization [53].  

                                                            

 
 

 
,1 ,

,1 ,

.s ij s ij
i j i j K

t

s ij
i j i j K

g t g

g t


 
  


  






D   (12)                              

The threshold value t  is usually chosen equal to 
B

  

where the indicator function   1s ijg t    if the 

condition is true and otherwise is zero.  

    Equation (13) is an optimization problem with an 

objective function  , tΦ G  that is required to be solved 

to get the optimized projection matrix in SSMB-CS. 

              

 

 

 

,

2

1

2

2

min ,

,  

                     + 

F

F





 

  



  G S Φ t
t t

T T

t t

Φ G

Φ G G Ψ Φ ΦΨ

Φ X ΨΘ

   (13)                       

tS  is a set of Gram matrix ETF, 1 2,   are weighting 

factors, training signals 
N P

X  are used to build the 

synthesis dictionary 
N K

Ψ , 
K P

Θ  is sparse 

coefficients,  and 
F

M  denotes the Frobenius norm of 

matrix M .  

    The iterative shrinkage algorithm as in Equation (14) 

where 0 1   was used in [53] to solve Equation (13) 

with 1 1  and 2 0   by minimizing t  averaged 

mutual coherence. 

 

        

,                 

 ,           

,                        

s ij s ij

s ij s ij s ij

s ij s ij

g g t

g t sign g γt  g t

g g  t







 

  

 



  









 (14) 

The alternating minimization method was used in [63] to 

solve Equation (13) with 1 1  and 2 0   by using tG  

its identity matrix KI . The alternating minimization 

method was also used in [74] by rewriting Equation (13) 

into Equation (15).     

                
2

min  
F

   
 Φ,D t

t
Φ, D ΦA B   (15)                                                        

Where
1 2         

 sA Ψ E ,
1      

 tB D  0 , the 

SRE matrix   sE X - ΨΘ , and 
tD  is an ETF. Equation 

(15) can be solved efficiently for the large set of training 

signals by using an identity matrix NI  to replace sE  [78].  

III. PROPOSED METHOD 

    As far as is known from the literature, the projection 

matrix optimization method in CAMB-CS  

has only been proposed in [86], where the equivalent 

operator 
M K

O  which is defined as 
T

O ΦΩ  was 

introduced. The novel method of projection matrix 

optimization for CAMB-CS is proposed by taking into 

account the relative amplified CSRE and the amplified 

CSRE energy as in Equation (16). 

                  

 

 

,

2

1

2
2

                              2 3 2

min ,

,

+ + 

F

F

F
F



 

 

  

  G S Φ t
t t

T T

t t

cs

cs

Φ G

Φ G G ΩΦ ΦΩ

ΦE
ΦE

ΦZ

(16) 

                 

tS  It is a set of Gram matrix ETF, 1 2 3,,    are 

weighting factors, training signals 
N P

X  are used to 

build operator 
K N

Ω , cosparse signals 
N P

Z  

can be obtained from X  by using a cosparse coding [87], 

and csE X - Z  is CSRE matrix.  

    The projection matrix optimization for CAMB-CS in 

[86] adopted method in [74] to solve Equation (16) with 

1 1  , 2 3 0   . The proposed method extends the 

work in  [86] by using the alternating minimization 

algorithm to solve Equation (16) with 1 2 3,  ,  0     

where 1 2 3+ 1    . The method in [74] was adopted 

by the proposed method to update the target Gram matrix 

tG  while optimized projection matrix Φ  was obtained by 

using the nonlinear conjugate gradient (NCG) method with 

extension to two dimensional (matrix) case to solve 

Equation (16) [88]. Fig. 1 shows the flowchart of the 

alternating minimization algorithm that is used in the 

proposed method. 
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Φ

 
Fig 1: Flowchart of the alternating minimization 

algorithm  

At first, input parameters are needed, which include 

analysis-dictionary Ω , cosparse signals trZ and CSRE 

signals trcsE  from training signals, weight factors 

1 2 3,,   , positive constants G  , and NCG  to determine 

whether the alternating minimization algorithm stopping 

criteria and the NCG method stopping criteria are reached, 

and the parameters needed for NCG. While the initial 

values of the variables needed are the initial projection 

matrix  0
Φ  and the initial target Gram matrix  0t

G . The 

next stage is updating the target Gram matrix  rt
G  so that 

it is obtained at the -thr  iteration. Next is to calculate the 

stopping criteria 
 r

EG
t

 in Equation (17) at the -thr  

iteration. 

     

2

1r r
r F

E


 
G t t

t
G G       (17) 

If  
 

G
r

E G
t

 then the algorithm will stop, which means 

the target Gram matrix 
 rt

G  has met the set convergence 

limit. Meanwhile, if 
 

G
r

E G
t

 then the stopping criteria 

have not been met so that the target Gram matrix 
 rt

G  

value obtained will be used by the NCG method to solve 

Equation (16).  In the -thk  iteration, the optimum 

projection matrix 


Φ  is obtained. In the next 

iteration 1r r  , the optimum projection matrix obtained 


Φ  will be used to update the target Gram matrix 
 rt

G  

again. The same process is carried out again, calculating 

the stopping criteria 
 r

EG
t

. If the stopping criteria are not 

met, then the NCG method will be carried out again using 

the new target Gram matrix 
 rt

G  to get the optimum 

projection matrix 


Φ  which will be used to update the 

target Gram matrix again in the next iteration. 

IV. RESULTS AND DISCUSSION 

A. Experimental Setup 

    The 40000 training images in LabelMe training data set 

[89], [90] were used to obtain the set of non-overlapping 

8 8  patches by extracting the patches randomly from 

each training image. The training signals 
64 320000

X  

are formed by reshaping each patch 8 8  as a vector of 

64 1 . KSVD algorithm [22] and the algorithm in [36] 

were used to build synthesis dictionary Ψ  and operator Ω , 

respectively with 320000P  , 64N  , 96K  , 4S  , 

and 64 4 60C     by using the training signals X . The 

backward greedy algorithm [87] was performed to obtain 

the cosparse signals Z  from X  by using the built operator 

Ω . The CSRE matrix csE  can be calculated by using 

csE = X - Z . The computational complexity of the 

proposed algorithm can be reduced by replacing Z and 

cs
E with  

r
Z  and cs r

E , respectively. The mean value of 

thn   row of Z  and csE  are nz   and cs ne  , respectively. 

The nz  and cs ne   are used as diagonal entries of  
r

Z and 

cs r
E ,  respectively.  

    The SSMB-CS uses random Gaussian optimization 
algorithms in [53], [63], and [74], [78] as projection matrix 

denoted by SSMB-CS-RG, SSMB-CS-Elad, SSMB-CS-

LZYB, and SSMB-CS-BLH-HZ, respectively. The 

CAMB-CS uses random Gaussian and proposed algorithm 

as projection matrix denoted by CAMB-CS-RG and 

CAMB-CS-Proposed, respectively. The stopping criteria 
3

 10G


 and 
3

 10NCG


 were used in the CAMB-CS-

Proposed. 
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B. Test Images and Evaluation Parameters  

    In the CAMB-CS and SSMB-CS systems, the test 

testI  images used came from two groups of images. Group 

1 test images consisted of 10 thousand test images taken 

from the LabelMe test data set [89], [90]. Blocking is 

performed on each test image to produce non-overlapping 

8 8  patches. For each test image that has been blocked, 

p  patches are taken randomly, and then each patch is 

formed into a vector 64 1 that produces a test signal 

matrix
64 10000

1

p

test



 X . Group 2 test images come 

from standard test images such as lena, peppers, barbara, 

cameraman, and so on. For each test image used in group 

2, the same process is carried out as in the test image for 

group 1. The difference is that all patches are taken from 

each test image in group 2, resulting from a test signal 

matrix 
64

2

q

test



 X  where q  is the number of patches 

in each test image group 2. The test signal matrices from 

the two groups are projected into the projection matrix of 

each method on CAMB-CS and SSMB-CS to generate a 

compressed signal matrix tesY . The reconstructed signal 

testX  is recovered from the compressed signal matrix tesY  

by using OMP and GAP for SSMB-CS and CAMB-CS, 

respectively. The deblocking process is carried out on the 

reconstructed signal 
testX  to obtain a reconstructed image 

testI . Peak Signal to Noise Ratio (PSNR) and Structural 

Similarity Index Measure (SSIM) is used to measure the 

quality of the reconstructed image.  

    SSIM was defined in [91] while PSNR in decibels (dB) 

is defined as in Equation (18), where W and H  is the 

number of pixels in the row and column, so that H W  is 

the total pixels in the image. The higher value of PSNR 

and SSIM means the quality of the reconstructed image is 

getting better and closer to the test image. However, SSIM 

provides a better measurement in assessing the similarity 
of two images because it also takes into account the quality 

of visual perception. 

 

 

    

 

2

2

1 1

max
PSNR 10log

, ,

test

H W

test test
y x

x y x y

H W

 



 



 
 
 
 
 
 
 
 

I

I I

 (18) 

 

C. Weighting Factors of the Proposed Algorithm   

    The combinations of weighting factors 1   2  and 3  

are shown in Table 1, where a step change of 0.50 is 

assigned empirically to each combination.    

 

 

 

TABLE 1 

    THE COMBINATIONS OF WEIGHTING 

FACTORS  

Weighting 

Factors 

Combinations 
1  2  3  

WF-1 1 0 0 

WF-2 0.50 0.50 0 

WF-3 0.50 0 0.50 

WF-4 0.50 0.05 0.45 

WF-5 0.50 0.10 0.40 

WF-6 0.50 0.15 0.35 

WF-7 0.50 0.20 0.30 

WF-8 0.50 0.25 0.25 

WF-9 0.50 0.30 0.20 

WF-10 0.50 0.35 0.15 

WF-11 0.50 0.40 0.10 

WF-12 0.50 0.45 0.05 

     

The random Gaussian matrix is used as the initial 

projection matrix  0
Φ  , and the optimized projection 

matrix 
*

Φ  is obtained by using CAMB-CS-Proposed with 

the number of measurements 20M  . Using  0
Φ  as the 

projection matrix on the CAMB-CS system provide PSNR 

= 28.41 dB and SSIM = 0.9553 for Group 1 the test images 

with 8p   while PSNR = 32.54 dB and SSIM = 0.9351 

for cameraman image that is used as Group 2 test images. 
The PSNR and SSIM values of the optimized projection 

matrix 
*

Φ  on the CAMB-CS system for the test images of 

group 1 and group 2 are provided in Table 2 and Table 3. 

Both tables show that for all combinations of weight 

factors, the PSNR value is > 28.41 dB, and the SSIM is > 

0.9553. This shows that the optimized projection matrix 

provides a better reconstruction signal quality than the 

random Gaussian matrix that is used as the initial 

projection matrix. 

WF-8 with weighting factors 1 0.5,  2 0.25,   and 

3 0.25   as shown in Table 2 and Table 3, provide the 

largest PSNR and SSIM values, meaning that they provide 

the best reconstructed signal quality.  
For the next simulation, the CAMB-CS projection 

matrix optimization method uses WF-8 as a weighting 

factors combination. 

TABLE 2 

RECONSTRUCTION IMAGES FOR GROUP 1 

TEST IMAGES     

Weighting 

Factors 

Combinations 

PSNR (dB) SSIM 

FB-1 31.00 0.9727 

FB-2 31.15 0.9737 

FB-3 31.04 0.9731 

FB-4 30.95 0.9725 

FB-5 31.18 0.9738 
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FB-6 31.20 0.9739 

FB-7 31.07 0.9734 

FB-8 31.21 0.9740 

FB-9 31.17 0.9738 

FB-10 31.15 0.9737 

FB-11 31.19 0.9727 

FB-12 31.19 0.9737 

TABLE 3 

RECONSTRUCTION IMAGES FOR GROUP 2 

TEST IMAGES     

Weighting 

Factors 

Combinations 

PSNR (dB) SSIM 

WF-1 35.30 0.9598 

WF-2 35.62 0.9617 

WF-3 35.47 0.9609 

WF-4 35.29 0.9598 

WF-5 35.69 0.9619 

WF-6 35.77 0.9639 

WF-7 35.75 0.9635 

WF-8 36.02 0.9648 

WF-9 35.81 0.9629 

WF-10 35.75 0.9628 

WF-11 35.71 0.9627 

WF-12 35.82 0.9633 

 

D. Performance Comparison of SSMB-CS and CAMB-

CS Systems  

    CAMB-CS and SSMB-CS use the same random 

Gaussian matrix as the initial projection matrix  0
Φ  in the 

projection matrix optimization.  

    The PSNR and SSIM comparison of the SSMB-CS and 

CAMB-CS systems for the test images of group 1  8p   

for ten trials provide in Table 4 and Table 5. CAMB-CS-

Proposed increased average PSNR by 2.79 dB (9.83%) and 

increased average SSIM by 0.0187 (1.96%) from the 
CAMB-CS-RG. Meanwhile, the increase from SSMB-CS-

BLH-HZ, which is the best projection matrix optimization 

method of SSMB-CS, is 5.45 dB (21.21%) for PSNR and 

0.0542 (5.89%) for SSIM.  

    Table 6 shows the 53 test images of group 2, while the 

average PSNR and SSIM comparison of the SSMB-CS 

and CAMB-CS systems for those test images is provided 

by Table 7 and Table 8. 

TABLE 4 

PSNR COMPARISON OF SSMB-CS AND CAMB-

CS FOR GROUP 1 TEST IMAGES     

Tria

l 

PSNR (dB) 

SSMB-CS- CAMB-CS- 

RG Elad 
LZY

B 

BL

H-

HZ 

RG 
Propos

ed 

1 
23.9

2 

24.3

1 

24.5

7 

25.7

3 

28.4

1 
31.21 

2 
23.8

8 

24.2

5 

24.5

6 

25.7

2 

28.3

4 
31.12 

3 
23.8

9 

24.2

7 

24.5

4 

25.7

3 

28.3

6 
31.18 

4 
23.8

7 

24.3

0 

24.5

2 

25.6

8 

28.3

3 
31.12 

5 
23.9

3 

24.3

6 

24.5

9 

25.7

9 

28.4

2 
31.21 

6 
23.8

3 

24.2

4 

24.4

9 

25.6

5 

28.3

3 
31.12 

7 
23.8

3 

24.2

5 

24,4

9 

25.6

4 

28.3

4 
31.11 

8 
23,9

3 
24.2

7 
24.5

6 
25.6

8 
28.3

6 
31.15 

9 
23.8

8 

24.2

8 

24.5

7 

25.7

4 

28.3

9 
31.19 

10 
23.8

6 

24.3

0 

24.5

0 

25.7

0 

28.4

1 
31.19 

Mea

n 

23.8

8 

24.2

8 

24.5

4 

25.7

1 

28.3

7 
31.16 

 

TABLE 5 

SSIM COMPARISON OF SSMB-CS AND CAMB-

CS FOR GROUP 1 TEST IMAGES     

Tr

i-

al 

PSNR (dB) 

SSMB-CS- CAMB-CS- 

RG Elad 
LZY

B 

BLH-

HZ 
RG 

Propos

ed 

1 
0.878

1 

0.894

9 

0.899

0 

0.919

6 

0.955

3 
0.9740 

2 
0.878

3 

0.894

7 

0.899

5 

0.920

1 

0.955

2 
0.9740 

3 
0.878

8 

0.895

1 

0.899

3 

0.920

5 

0.955

5 
0.9744 

4 
0.877

5 

0.894

7 

0.898

4 

0.919

4 

0.955

0 
0.9738 

5 
0.879

6 

0.896

6 

0.900

3 

0.920

9 

0.955

8 
0.9744 

6 
0.877

1 

0.894

3 

0.898

5 

0.919

1 

0.955

2 
0.9740 

7 
0.877

6 

0.894

9 

0.898

6 

0.919

2 

0.955

3 
0.9740 

8 
0.878

9 

0.895

4 

0.899

5 

0.920

0 

0.955

3 
0.9740 

9 
0.878

2 
0.895

1 
0.899

7 
0.920

3 
0.955

5 
0.9743 

10 
0.878

0 

0.895

4 

0.898

9 

0.920

0 

0.955

7 
0.9744 

M

e-

an 

0.878

2 

0.895

1 

0.899

2 

0.919

9 

0.955

4 
0.9741 
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TABLE 6 

TEST IMAGES OF GROUP 2 

Test Image 
N

o 
Test Image 

1 Cable car 28 Brick 

2 Cornfield 29 Knob 

3 Flower 30 Hats 

4 Fruits 31 Red riding hood 

5 Pens 32 Motor cross 

6 Boat 33 Boat zentime 

7 Cameraman 34 Flower & sill 

8 Crowd 35 
Seifenfabrikation 

alfred 

9 Elaine 36 Sailboats 

10 House 37 Sailboat 

11 Jet plane 38 Zentime at the peer 

12 Lake 39 Beach bums 

13 Lena 40 Mountain stream 

14 Lighthouse 41 
White water 

rafting 

15 Livingroom 42 Covello girl 

16 Mandrill 43 Land ahoy 

17 Peppers 44 Roman statue 

18 Pirate 45 Country style 

19 Splash 46 Light home 

20 Tank 47 Six more shot 

21 Tiffany 48 Lighthouse 

22 Truck 49 Rustic dream 

23 Walk bridge 50 Cockatoo 

24 
Woman dark 

hair 
51 

Little red riding 

home 

25 Zelda 52 Monarch 

26 Barbara 53 Moon 

27 Gold hill   

TABLE 7 

AVERAGE PSNR COMPARISON OF SSMB-CS 

AND CAMB-CS FOR GROUP 2 TEST IMAGES     

Average PSNR (dB) 

SSMB-CS- CAMB-CS- 

RG Elad 
LZY

B 

BLH-

HZ 
RG 

Propos

ed 

24.72 
24.8

8 
25.20 26.41 28.68 31.61 

TABLE 8 

AVERAGE SSIM COMPARISON OF SSMB-CS 

AND CAMB-CS FOR GROUP 2 TEST IMAGES     

Average PSNR (dB) 

SSMB-CS- CAMB-CS- 

RG Elad 
LZY

B 

BLH-

HZ 
RG 

Propos

ed 

0.681

9 

0.692

2 

0.707

0 

0.762

2 

0.823

1 
0.8927 

 

CAMB-CS-Proposed increased average PSNR by 2.93 

dB (increase 10.23%) and increased average SSIM by 

0.0696 (increase 8.46%) from the CAMB-CS-RG. 

Meanwhile, the increase from SSMB-CS-BLH-HZ, which 

is the best projection matrix optimization method of 
SSMB-CS, is 5.20 dB (19.69%) for PSNR and 0.1305 

(17.11%) for SSIM. Fig. 2 shows the reconstructed image 

comparison of the SSMB-CS and CAMB-CS systems for 

cameraman image.  

    
    a. PSNR = 25.25 dB     b. PSNR = 26.44 dB  

          SSIM = 0.8039                   SSIM = 0.8351 

   

    c. PSNR = 26.48 dB      d. PSNR = 27.28 dB  

        SSIM = 0.8394                     SSIM = 0.8597 

   

   e. PSNR = 32.54 dB       f. PSNR = 36.02 dB  

       SSIM = 0.9351                     SSIM = 0.9648  

Fig 2: Reconstructed cameraman image comparison  

SSMB-CS-    a. RG     b. Elad          c. LZYB          

d. BLH-HZ CAMB-CS-   e. RG     f. Proposed  
 

V. CONCLUSIONS 
A new method of projection matrix optimization for 

CAMB-CS based on alternating minimization algorithm 

and nonlinear conjugate gradient method has been 

explained in this paper. The simulation results show that 

the proposed method can improve the quality of the 

reconstructed image of the CAMB-CS system compared to 

the non-optimized one of up to 10.23% and 8.46% in terms 

of PSNR and SSIM, respectively. There was an increase of 

up to 21.21% and 17.11% compared to the best projection 

matrix optimization of SSMB-CS in terms of PSNR and 

SSIM, respectively. The future work on the projection 

matrix optimization method of CAMB-CS can be further 
developed by combining analysis-dictionary learning 
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problems into the objective function of the CAMB-CS 

projection matrix optimization so that it becomes a joint 

optimization of analysis-dictionary and projection matrix 

and will improve the quality of the reconstructed image. 
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