
International Journal of Engineering Trends and Technology Volume 69 Issue 12, 280-286, December, 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I12P233 ©2021 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Component Design of The Complex Software

Systems, Based On Solutions’ Multivariant

Synthesis

Nikita Alexandrovich Ryndin1, Sergey Vladimirovich Sapegin2

1Voronezh State Technical University, Voronezh, Russian Federation

2Сenter for Applied Research, Design and Development of Information Systems, Voronezh, Russian Federation

Abstract - One of the most critical problems in software

development is to find a balance between the allocated

resources, quality, and planned functionality of the

developed system. For large projects, it is hard to assess

risks at the initial stage of development and allocate

resources in such a way as to achieve an acceptable result.

At the same time, the professional design of the developed
system plays a significant role in achieving the result at the

initial stage, which determines a realistic sequence of

development stages. The article discusses issues of optimal

design of complex software systems (CSS) based on a

multivariable synthesis of design solutions. The existing

methods of CSS design, their disadvantages related to the

subjective approach to determining the parameters of the

future system and significantly affecting the process and

development result are considered. Method for selecting

CSS components based on evaluations of conditional

probabilities of sharing subsystems, third-party

components and documents, calculation of multivariable
integration entropies, and their minimization is proposed.

The system architecture, which is optimal for this

indicator, will help carry out the development under the

terms of reference, at the specified time and with

acceptable quality.

The main objective of the research is to find a formal way

to design complex software systems more rationally, with a

reduction of the human factor. We use multivariant

synthesis as a main methodological approach. The paper is

novel because, in contrast to general approaches aimed at

increasing the importance of the human factor and
organizing teamwork, it offers tools to rationalize

architecture under proposed quality metrics based on an

entropy approach.

Keywords - complex software systems; multivariable

synthesis; entropy; integration.

I. MAIN TEXT

In the development process of Complex Software

Systems (CSS), one of the most critical issues is managing

the development process itself, achieving the required

quality, compensating for various risks, and preventing
failures. According to different modern assessments, only

one-fifth of development projects in IT could be

successfully ended without any difficulties. In relatively

small projects, it is easy to see a failure to meet deadlines

or the possibility of failure. If the large-scale information

system (IS) is developed with the project designed for

months, then from the very beginning, it is hard to assess

risks adequately. There are a variety of process

management methodologies to mitigate these risks. At the

same time, methodologies are sets of recommendations on

phases of the design process, development and
implementation of systems, resources involved in specific

phases, input documents for each phase, phase results, and

others. Classification of existing methods of development

of components and subsystems of CSS can be presented, as

shown in Figure 1.

Figure 1. Classification of development methodologies

Engineering methodologies consider the development of

software components in the form of a traditional

production process for scientific and technical products. An

example of such methods is the process recommended by

GOST 34.601-90 "Automated systems. Stages of creation."

This standard applies to automated systems used in various

areas of activity (management, research, design, and

others), including their combinations.

These methodologies regulate in detail the process of

software component production, paying specific attention

to detailed design specifications, detailed design, and
subsequent development.

At the same time, the world experience [1, 4, 9, 17, and

18] of software component development shows that one of

the properties of such methodologies is a significant

chronic underestimation of time, material, and technical

resources required for the successful implementation of

one or another project.

Design

 methodologies

Engineering

 methodologies

Waterfall

 methodologies

Iterative

methodologies

Agile

 methodologies

https://ijettjournal.org/archive/ijett-v69i12p233
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

N. A. Ryndin & S. V. Sapegin / IJETT, 69(12), 280-286, 2021

281

Improvement of methodologies and management tools

in IS component development has resulted in

methodologies based on the so-called waterfall model. A

feature of this model is the division of the development

project into several vast phases, in which a set of processes
required to achieve the goal of each phase is formed [3, 11,

and 15].

The waterfall design model is usually used with

structural software design methodologies, such as Gain-

Sarson notation, Barker's method, and others [17]

Compared to engineering methodologies, methods based

on the waterfall model make it possible to manage

resources more freely and to make the software

development process more predictable. At the same time,

the key to successful development is the presence of

experienced analysts with substantial knowledge both in

the subject area and in IS design. In the absence of such
specialists, projects using the waterfall model are usually

characterized by high overspending of material and labor

resources at the final stages of the project due to

miscalculations at requirements analysis and design [1, 14].

A more progressive approach under initial uncertainty

of user requirements is the iterative or spiral development

model. The iterative approach implies that each phase of

the development process consists of several iterations,

which aim at consistent identification and analysis of

problems faced, building effective solutions, and, as a

consequence, reducing the risk of potential errors in the
project. At the same time, the software development task

sequence covers several phases, passing through peaks and

activity decays. Each project iteration cycle begins with

planning for what needs to be accomplished. The result of

the execution must be meaningful. The cycle ends with an

evaluation of what was done and whether the goals were

met. The Rational Unified Process (RUP) is a striking

representative of methodologies that use an iterative

approach to software development.

Methodologies based on the iterative approach to

software development can significantly increase the

efficiency of development teams and increase the
probability of success of each specific project. However,

the following objective difficulties prevent the widespread

use of the iterative approach [2, 3, 4, 12].

Due to the development of modern software

development technologies, which contribute to the

reduction of labor hours spent on implementing particular

required functionality, recently there has been a noticeable

trend of evolution of development methodologies towards

informal, person-oriented methods of organizing work. In

particular, a whole family of methodologies focused on

principles of the Agile Manifesto has recently appeared
[12, 13].

Agile-oriented development methodologies can include

XP (Extremal Programming), Scrum, and others. Agile-

oriented methodologies can seriously increase the software

quality indicators from both technical and user points of

view and accelerate the development of software

components. The main factor providing the advantage of

Agile-oriented methodologies over others is the sound use

of the human aspect. Therefore, it is possible to conclude

that the main disadvantages of this methodology family

will be high requirements to professional qualities of

specialists, constant uncertainty present in the evaluation of

development time, quality, and size of the software

product.
Analysis of all these methods allows us to conclude that

each of the presented types cannot fully provide an

advantage in developing a wide range of projects. That is

confirmed by the history of developing many existing

projects and the need to introduce a whole range of

mechanisms to ensure their flexibility and adaptability to

specific needs into many methodologies (even such

voluminous ones as RUP). In general, it makes sense to

talk about building and using a particular methodology for

each project (or a small set of similar projects), depending

on the specifics of the subject area, the user requirements

for the project, and the composition of the project team.

Among the features of the CSS component development

process that determine its specific nature, we can also

highlight the following:

 The developed product demonstrates a high degree of

novelty. The process of IS components development

almost always aims at solving some unique

challenges, achieving some unique properties of the

component. Replication of components, in contrast to

mass production of the objects of the material world,

does not bear practically any costs.

 Information technology develops rapidly. The high

rate of industry development makes it impossible to

effectively plan the development process of corporate

systems in the medium term by traditional means, not

to mention the long-term planning.

 There is a greater degree of uncertainty in the goals of

IS development. The process of building corporate IS

in practice is associated with a constant clarification

of the functional requirements for its components,

caused by both the problem of understanding between

the developers and users of the system and users'
ideas about the possibility of using IS components in

their business processes.

 There are many methodologies, tools, and solutions

in IS development for each specific component [1, 6,

13, 14]. That leads to the fact that no specialist can

form a good picture of the most effective solution in

the mind when solving problems. In practice,

developers try to find an intuitive balance between

applying already mastered technologies in solving the

tasks and the search and approbation of new ones.

These features seriously complicate the use of

methods and tools to study the software development
process by analogy with manufacturing material

products.

Adequate modeling of software development situations

requires careful analysis and development of unique

models capable of accurately describing the methodologies

used today in the production of software systems.

Multivariable synthesis of design solutions is proposed as

N. A. Ryndin & S. V. Sapegin / IJETT, 69(12), 280-286, 2021

282

one of the approaches to form a customizable software

development process for the needs of a particular project.

II. MATERIALS AND METHODS

Let us consider formalizing the CSS development task
in a general way. The structure of each set of requirements

for the Si component of CSS can be represented by the

equation [5]:

𝑆𝑖 = (1 + 𝐴(𝑡)) ∗ 𝑆𝑖 𝑡𝑒𝑐ℎ + (1 + 𝐵(𝑡) + 𝐶) ∗ 𝑆𝑖 𝑢𝑠𝑒𝑟 +

𝑆𝐷(𝑡) (1)

where Si, tech – technologies used in the work of the

component (including technologies of interaction with

other components of the system);

Si, user – user requirements for the component;

A(t), B(t) – factors that characterize the change in

requirements for a component during its lifetime;

С – ingredient of agreement of requirements to the

component between different users of CSS component;
SD(t) – a set of requirements defining the process of

combining different functionality in a component

(condition of existence of multipliers A(t), B(t)).

Thus, the task of CSS component development can be

generally represented as achieving, in a limited time, a set

of requirements Sx, as close as possible to some ideal set of

requirements Sideal. In the general case, it is impossible to

achieve the set of requirements Sideal itself in the process of

development for the following reasons:

 CSS component development time is limited. The

nature of the limited time for component
development is since not every set of requirements

for a component Sideal can be fundamentally

achievable within the time allotted for project

development. Thus, the set of requirements

formulated for the component under development

Starget should be initially realistic, i.e., the probability

of its achievement in a definite time interval must be

different from zero. Based on these considerations, it

makes sense to consider not the set of requirements

Sideal itself initially. However, the closest to it Starget

from the set of settled requirements Sxthat is
realistically achievable during the period under

consideration.

 Typically, a set of requirements for a CSS component

under development is formed not by a single user but

by a whole group (or even several groups). Each

group member may have requirements poorly aligned

with those of the rest of the group. Forming the set

Sideal implies complete and consistent unification of

all requirements, which is hard enough in practical

terms. Therefore, in practice, the set of requirements

Starget is formed not as a result of the complete
unification of the requirements of various project

participants but as a certain compromise set of the

averaged requirements of all project participants

Starg_1, Starg_2,…,Starg_n.

 The requirements for a CSS component both from

users and from the interacting software change over

time (which is reflected in formula (1) by factors A(t),

B(t)). An attempt to compensate for changes within a

software development project leads to an increase in

the labor intensity of component development. Due to

the unpredictable influence of factors A(t), B(t), many

promising software development methodologies

currently use the strategy of maximum reduction of
development time along with methodologies of early

detection of changes in requirements and quick

compensating reaction (usually due to human

factors). It does not consider the impact of the time

factor on changes in requirements for a CSS

component outside of the development and startup

process.

 Analysis of the properties of the process of achieving

user requirements usually does not consider the

subjective nature of the process itself, i.e., the

qualification of the developers working on the

software component. Usually, the qualification of the
project executors is evaluated on the principle of

matching their skills to the intended actions to

develop the component that satisfies the initially

specified requirements Starget. However, the influence

of the factor of requirements change over time, even

at the stage of CSS component development, can

significantly change the set of qualification

requirements for its developers.

Based on the above reasons, the development of

corporate is quite a heavy burden. It includes the need for
constant consideration of time and human factors and

trade-offs under uncertainty.

Among the current methodologies of CSS organization,

designed to improve the efficiency of software component

development, to use these components, and to minimize the

damage from inefficient solutions, we can highlight the

strategy of decomposition of tasks arising during the

development of the CSS component into small enough,

logically isolated parts. The ideology that embodies this

strategy is the object-oriented approach (OOA), and
technology in modern CSS, the most popular means of

implementing this ideology is the Service-Oriented

Architecture (SOA) paradigm [6]. The effect of using the

SOA paradigm in the CSS design and development is

composed of the following components:

 Reducing the size of components under development

makes them faster and cheaper to develop. Reducing

the development time reduces the impact of the time

factor on changes in the set of requirements Sx. Thus,

the component under commissioning much more

accurately meets the initially stated requirements
Starget. In this case, when a component stops meeting

the current set of requirements Sx, it is much easier to

replace it for economic reasons.

 Observing the nature of changes in requirements for

software components shows that there are groups of

interrelated requirements in sets Sx that change

according to a similar law. As a rule, these groups are

formed based on the logic of the tasks solved by the

CSS components. Breaking down the tasks of the

N. A. Ryndin & S. V. Sapegin / IJETT, 69(12), 280-286, 2021

283

system into logically distinct components makes it

possible to combine groups of interrelated

requirements within the development tasks of specific

CSS components, excluding their implementation

from other components. That minimizes the number
of components that need refining based on changes to

the common set of CSS user requirements.

 The application of existing OOA practices in CSS

component development helps seriously reduce the

influence of the factor of changing requirements to

the functionality providing the integration of

components A(t). It should be noted that the primary

trend in the strategy of software decomposition into

as small elements as possible is to increase the

importance of factor A(t). So, OOA pays much

attention to combating the integration factor of

individual components for data and functionality
encapsulation, extensive use of inter-component

interfaces, and organization of multi-version

component functions based on inheritance and

polymorphism mechanisms.

Based on the SOA concept [6], the task of maximizing

the economic effect of a single system service can be

defined as

∫ 𝑓(𝑆(𝑡); 𝐹(𝑡)) → 𝑚𝑎𝑥
𝑇0+𝑇

𝑇0

 (2)

Where S(t) – a set of business requirements for the

service, F(t) – implemented functionality, T – service usage

time, T0 – service start time, f – function evaluating the
compliance of the component functionality F(t) with

current requirements S(t), f∈[0,1]. As the simplest,

roughest version of the function f, we can use an

expression in the form

 𝑓 =
𝐷(𝑆(𝑡),𝐹(𝑡))

|𝑆(𝑡)|
 (3)

where D – the power of the symmetric difference of the

sets S(t) and F(t) at time t, |S(t)| – the power of set S(t). The
practice shows that the dependence of the distance between

the sets S(t) and F(t) (i.e., the degree of compliance of the

component functionality with the business requirements) in

case of the intensive (purposeful) development process has

S-shaped character. That is because, at the development

cycle beginning, resources are spent not so much on the

implementation of business functions but the construction

of the software architecture. Approximately in the middle

of the development cycle, the most optimal productivity is

achieved, which decreases at the end of the development

cycle due to the complication of both the process of
implementation of individual business functions (the most

complicated, complex business processes remain for

implementation) and the process of integration of

developed functions into the existing system. Accordingly,

function f variants, more consistent with statistical data,

should be sought among the families of S-functions of

different curvatures.

A schematic diagram of the function f illustrating the

ideal life cycle of such a service is shown in Figure 2.

Figure 2. Lifecycle of service in the traditional

development approach

Phases of software design and development are usually

planned within the time interval [0, T0], which ends after

the release of the first version and the start of the pilot

implementation. When using a waterfall model to organize

the workflow by time moment T0, the planned phases of

service development and design are finished. In this case,

the proportion of the x functionality of the developed

software F(t) to the set of business requirements S(t)

belongs to the range [0, 1]. Sometimes if x is less than

some threshold value, the decision is made to close the
project and exclude its results from the enterprise

automation process. Typically, after the actual closure of

an unsuccessful project, a new project is opened to solve

the same automation, where the work is done, taking into

account the experience and developments of the first

project. However, in the framework of the SOA approach,

it is also possible not to start a new project within the same

task. However, the developments of the completed project

are used for related services in terms of functionality. In

this case, the area of functionality of these services,

respectively, is expanded.
Once the implementation decision is made, refining the

service, testing, and embedding it into the operating

business processes of the enterprise begins. That

corresponds to the testing and implementation phases.

Sometimes, suppose there is a significant divergence

between the service F(t) functionality and the structure of

business requirements S(t). In that case, the process can

return to the development phase and sometimes to the

system design phase (the so-called "jumping salmon"

model). Simultaneously with refining, the use of the

developed product in the work of the enterprise begins, so

at the stage of approaching the service functionality to the
desired result [T0, T1], we can already talk about the effect

of using the service. The process of service refining and

implementation continues until some threshold value y

(ideally y=1) of service functionality F(t) meets business

requirements S(t), after which the project is formally

completed with the decision about industrial use of the

developed software product. At this point, the project in

terms of traditional methods can be considered complete.

f

1

t

x

T T T0 1 k

N. A. Ryndin & S. V. Sapegin / IJETT, 69(12), 280-286, 2021

284

III. RESULTS

Let us consider the process of building an optimal

methodology for CSS projects based on the formalized

apparatus of multivariable synthesis of design solutions. To

do this, let us define the following set of artifact types that
each project may contain:

A. Document

A document refers to an artifact that contains

descriptive, advisory, or reference information that affects

the decision-making process when using project results. A

document in our definition should be understood not only

paper or electronic documents but also other similar

entities, such as RUP models or MSDN knowledge bases.

B. Component

A component refers to an artifact created by the project
team to solve any project tasks. The artifact can be a

software application or subsystem, developed network

architecture, configuration of platform software, and

others.

C. Third-party subsystem

A third-party subsystem refers to an artifact, using a

black box metaphor with defined inputs, outputs, states,

and behavior. They may be previously developed libraries,

third-party software components, network and computing

equipment, licensed and certified methodologies (for
business processes), and others [5].

The project as a whole is described by a set of artifacts

b1…bm, which are selected from a specific set B0,

consisting of the possible in the project artifacts of all the

above types. To form each artifact in the project (in the

case of third-party subsystems – for adaptation), one or

more methods a1,…, an are used from the common set of

approaches A0, formed based on the applicability analysis

of various methodologies to the generation of artifacts. It is

assumed that only one method ai with the probability of Pij

can take part in the generation of each artifact bj. In case if

there is an initially intersecting set of methods (for
example, in the development of CSS components, there is

often such a set of paradigms as the OOA, a spiral

development methodology, and a source code design

standard), then the intersection A/
0 is formed from the set

A0, containing all possible options for a combination of

methods:

A/
0 = A01A02…A0N (4)

where for every element of the new set a/
i={ai1,

ai2,…,aiN}, which is a combination of 1...N elements of the

initial setai, the probability of its existence is P(a/
i)≠ 0. The

resulting set will consist of a plurality of combinations of
methods simultaneously applied to the generation of each

artifact.

The task of building the optimal methodology for

project maintenance is thus reduced to finding the most

optimal option for integrating the set of methods for

generating artifacts An and a set of artifacts of the project

Bm. At this, the form of interaction of the presented

integration levels is described using probability vectors of

sharing different variants of these levels:

P(Bm/An) – conditional probability of selecting the Bm-th

version of the set of design artifacts when using the An-th

variant of the synthesized project maintenance
methodology;

P(An/Bm) – the conditional probability of using the An-th

version of the methodology to generate the Bm-th variant of

the set of design artifacts.

𝐻(𝐴) = − ∑ 𝑃𝑛
𝐴𝑙𝑔𝑃𝑛

𝐴𝑁
𝑛=1 (5)

𝐻(𝐵) = − ∑ 𝑃𝑚
𝐵𝑙𝑔𝑃𝑚

𝐵𝑀
𝑚=1 (6)

The variety of variants used is measured by the entropy

of combinations, taking into account the mutual influence

of the integrated levels:

𝐻(𝑆) = 𝐻(𝐴𝐵) = 𝐻(𝐵) + 𝐻𝐵(𝐴) (7)

where HB(A)is the conditional entropy of the variety of

variants for using approaches to generate the necessary set

of artifacts B. In the case of the inverse problem, when the

set of artifacts depends on the set of used techniques, the

following relation takes place

𝐻(𝑆) = 𝐻(𝐴𝐵) = 𝐻(𝐴) + 𝐻𝐴(𝐵) (8)

Accordingly, the task of building an optimal
methodology for each particular project can be formulated

as one of the tasks of multivariable synthesis, similar to the

cases considered in [5]. For our case, the solution is to

choose one element from a modified set of approaches A/

and a set of artifact sets B according to some requirements

F*
i(i = 1, I). The number of variants for selection is

𝐿 = ∏ 𝐴𝑗 ∗ ∏ 𝐵𝑘
𝐾
𝑘=1

𝐽
𝑗=1 (9)

and apriori entropy is

𝐻(𝑆2) = ∑ 𝑙𝑔𝐴𝑗
𝐽
𝑗=1 + ∑ 𝑙𝑔𝐵𝑘

𝐾
𝑘=1 (10)

Having assessed the dimensions and performed the

transformations, we have:

𝐻(𝑆2) = ∑ 𝑙𝑔𝐴𝑗
𝐽
𝑗=1 + ∑ 𝑙𝑔𝐵𝑘 ≤𝐾

𝑘=1

𝐻(𝜇2) ≤ ∑ 𝑙𝑔𝑁𝑚
𝑀
𝑚=1 = ∑ 𝑙𝑔𝑁𝑀

𝐵 +
𝑀𝐵
𝑚=1

∑ 𝑙𝑔𝑁𝑚
𝑐𝑀

𝑚=𝑀𝐵+1

 (11)

where NR
m is the number of simple experiments

corresponding to elements of the set A(m = 1, MB); NC
m is

the number of simple experiments corresponding to

elements of the set B(m = MB+1, M). Similar to problem S2

in [5], let us introduce a set of booleans defining the

boundary conditions of the multivariate optimization

model. Let us supplement the set of constraints with logical

relations, which allow us to reject knowingly incorrect

variants of methodologies to generate artifacts (4). The

procedure of optimal choice of variants is made in two
stages:

 Sets of variants A*
j, B*

k, satisfying the above

conditions are selected, and the values are

calculated

N. A. Ryndin & S. V. Sapegin / IJETT, 69(12), 280-286, 2021

285

𝑣𝑖 = 𝜑𝑖(𝐴𝑗
∗, 𝐵𝑘

∗) (12)

 Vector values u* are selected, characterizing the

optimal parameters of the sets, providing

minimization of the sum of squares of

inconsistencies of the optimization criteria in the
problem of structural synthesis of the integrated

system, by the condition:

Ф𝑗 = (𝑣𝑖(𝑢𝑘) − 𝑦𝑖
∗) (13)

Mathematical description of relations between

indicators of the system and initial elements is made based

on approximation of functional dependences obtained from

statistical data. The varieties of optimization models used

in solving this problem may depend on:

 The degree of uncertainty in specifying design

requirements;

 A set of possible approaches and methodologies;

 The specifics of the subject area and typical

solutions;

 The composition of the basic set of artifacts.

IV. DISCUSSION

The proposed methodology for designing CSS

consisting of multiple components makes it possible to

formalize the process of selecting system architecture and
its components based on the assessment of conditional

probabilities of using one or another system component in

combination with other selected components, calculation of

multivariate integration entropy and its minimization as a

target function of multicriteria optimization. This approach

allows us at the stage of schematic design of the future

CSS to determine the set of core components, which helps

to ensure the specified requirements for the system, timing,

and development quality. Determination of conditional

probabilities of sharing the system components can be

carried out from peer reviews or collecting statistics on the

common use of these components in other projects based
on retrospective information. Process formalization of

selecting the system architecture, its components, and the

use of mathematical relationships to assess the most

promising option makes it possible to choose not based on

the vision of the chief designer but using the quantitative

characteristics of the variants under consideration.

The proposed methodology for designing complex

software systems consisting of many components makes it

possible to formalize the process of selecting system

architecture and its components based on the evaluation of

conditional probabilities of using one or another system
component in combination with other selected components,

calculation of multivariate integration entropy and its

minimization as a target function of multicriteria

optimization. In the practical application technique, it was

found that it helps to make more accurate time estimates of

the project developed since joint conditional probabilities

of the use of components to some extent characterize the

complexity of integration of these components in the

system. Also, on a certain set of projects, there are

tendencies to clarify the boundaries of different technology

stacks and, even in some cases, the possibility of predicting

for emerging technologies in which stack they will be most

popular.

Unlike others used in the development of complex

software systems, it may seem that the proposed
methodology does not consider the human factor. However,

the determination of conditional probabilities of joint use

of system components is carried out from peer inspections

of specialists or by analyzing statistics of mutual use of

these components in other projects based on retrospective

information. Both methods depend on the experience,

qualification, and thinking style of the community

developers in question. A significant human factor also

manifests itself in the methodology set up in the way

systems are divided into levels and components. That, in

turn, leads to the fact that guaranteed reproduction of the

same results of the adjusted methodology is possible only
within a sufficiently homogeneous community of

developers. The information content transfer from one

group of developers to another should, at least, be verified.

In general, the approach makes it possible at the stage of

the conceptual design of future complex software systems

to determine a set of basic components, which helps to

ensure the specified requirements for the system, timing,

and quality of development. Formalization of the selection

process of system architecture, its components, the use of

mathematical relations to evaluate the most promising

option enables to make design decisions in a balanced
manner, using the quantitative characteristics of the options

under consideration.

V. CONCLUSION

The modern software industry offers many different

methodologies and approaches to the organization of the

software development process. At the same time, due to

differences in the subject area, software scope,

technologies used, and ready-made subsystems, the most

rational variant is to build own process based on already

existing ones by borrowing different parts.

At the same time, the focus of overhead is gradually
shifting from developing individual components to

integrating selected components. In general, this process is

so complex that most projects developed today either do

not go beyond a single language or use ready-made

integration structures (such as MVC within the

HTML/JS/ServerPL technology stack). In this case, the

issue of integration arises only when there is a need to

combine large subsystems into a single whole. Usually,

such tasks are associated with significant discrepancies in

the subject area understanding, resulting in large overhead

costs for various format converters, duplication of data
with routine synchronization, and others). If initially to

perceive the CSS development project as an integration of

components, most of which are already developed, it is

possible to get a fairly large benefit in cost and time at the

stage of development. Another thing is that the integrated

components must be compatible with each other.

Availabilityofadditionaltoolsthat make it possible to

carry out process design based on the assumed rational

software architecture, in some cases, provides a significant

N. A. Ryndin & S. V. Sapegin / IJETT, 69(12), 280-286, 2021

286

economic effect. Thus, using a multivariable synthesis of

design solutions in the task of component design of CSS is

a relevant practice.

VI. DECLARATIONS

A. Author Contributions
Conceptualization, 1stand 2nd authors; methodology, 1st

author; software, 1st and 2nd authors; validation, 1st, and 2nd

authors; formal analysis, 1st and 2nd authors; investigation,

1st, and 2nd authors; resources, 1st and 2nd authors; data

curation, 1st, and 2nd authors; writing—original draft

preparation, 1st, and 2nd authors; writing—review and

editing, 1st and 2nd authors; visualization, 1st, and 2nd

authors; supervision, 1st author; project administration, 1st

author; funding acquisition, 1st, and 2nd authors. All authors

have read and agreed to the published version of the

manuscript.

B. Data Availability Statement

Data is contained within the article.

C. Funding

The publication was made at the expense of the authors'

personal funds.

D. Acknowledgments

The studies were conducted at the Center for Applied

Research, "Design and development of information

systems" (CAR DDIS), and the results were tested in

commercial projects developed by the center.

E. Conflicts of Interest

The methods of component design, software life cycle,

and rationalization of the CSS construction process
described in the article were developed for testing and

commercial use as part of the work of CAR DDIS. The use

of statistics on commercial projects under development is

limited according to the NDA used within CAR DDIS.

REFERENCES
[1] Cantor, Murray. Software leadership. A Guide to successful

software development (2002).

[2] Booch, Grady, James Rumbaugh, and Ivar Jacobson. The Unified

Modeling Language. User's guide (2000).

[3] Kuznetsov, Sergey Dmitrievich. Design and development of

corporate information systems (1998).

[4] Jacobson, Ivar, Grady Booch, and James Rumbaugh. Unified

software development process (2002).

[5] Ryndin,AlexandrAlexeevich. Multivariant integration: theory and

applications in CAD: Monograph (2018).

[6] Service-Oriented Architecture (SOA). URL Integration. url:

http://www.urlintegration.com/?page_id=752 (Accessed:

03.05.2016).

[7] Jacobson, I., and B.Meyer. Methods Need Theory. Dr. Dobb’s

(2009).

[8] Jacobson, I. and I.Spence.Why We Need a Theory for Software

Engineering. Dr. Dobb’s (2009).

[9] Gray, J., and B.Rumpe. Agile model-based system development.

Software and Systems Modeling 17(4) (2018): 1053–1054.

doi:10.1007/s10270-018-0694-1

[10] Gu, Q., and P. Lago. Guiding the selection of service-oriented

software engineering methodologies. Service-Oriented Computing

and Applications 5(4)(2011): 203–223. doi:10.1007/s11761-011-

0080-0

[11] Harlin, U., and M. Berglund. Designing for sustainable work during

industrial startups—the case of a high-growth entrepreneurial firm.

Small Business Economics 57(2)(2021): 807–819.

doi:10.1007/s11187-020-00383-3

[12] Hohl, P., J.Klünder, A. van Bennekum, R.Lockard, J. Gifford,

J.Münch, M.Stupperich, and K. Schneider. Back to the future:

origins and directions of the Agile Manifesto – views of the

originators. Journal of Software Engineering Research and

Development 6(1)(2018). doi:10.1186/s40411-018-0059-z

[13] Jacobson, Ivar, and Roly Stimson. The Essence of Software

Engineering (2017) 37-58. doi:10.1007/978-3-319-73897-0_3

[14] Karhapää, P., Behutiye, W., Rodríguez, P., Oivo, M., Costal, D.,

Franch, X., Aaramaa, S., Choraś, M., Partanen, J., andA.Abherve.

Strategies to manage quality requirements in agile software

development: a multiple case study. Empirical Software Engineering

26 (2021): 28. doi:10.1007/s10664-020-09903-x

[15] Kettunen, P., and M.Laanti. Future software organizations – agile

goals and roles. European Journal of Futures Research 5(1)(2017) 1–

15. doi:10.1007/s40309-017-0123-7

[16] Klotins, E., M.Unterkalmsteiner, andT.Gorschek. Software

Engineering in Start-up companies: an Exploratory Study of 88

experience reports. Empirical Software Engineering 24(1) (2016).

doi:10.1007/s10664-018-9620-y

[17] Rabiser, D., H.Prähofer, P.Grünbacher, M.Petruzelka, K. Eder, F.

Angerer, M.Kromoser, and A. Grimmer. Multi-purpose, multi-level

feature modeling of large-scale industrial software systems.

Software and Systems Modeling 17(3) (2018): 913–938.

doi:10.1007/s10270-016-0564-7

[18] Stevenson, J., and M. Wood. Recognising object-oriented software

design quality: a practitioner-based questionnaire survey. Software

Quality Journal 26(2) (2018) 321–365. doi:10.1007/s11219-017-

9364-8

[19] Delplanque, J., Etien, A., Anquetil, N., Auverlot, O.: Relational

database schema evolution: an industrial case study. In: 2018 IEEE

International Conference on Software Maintenance and Evolution

(ICSME) (2018). https://doi.org/10.1109/ICSME.2018.00073.

[20] Engelenburg, S. van, Janssen, M., &Klievink, B. (2019). Design of a

software architecture supporting business-to-government

information sharing to improve public safety and security:

Combining business rules, Events, and blockchain technology.

Journal of Intelligent Information Systems, 52(3), 595–618.

https://doi.org/10.1007/s10844-017-0478-z

[21] Haakman, M., Cruz, L., Huijgens, H., & van Deursen, A. (2021). AI

lifecycle models need to be revised: An exploratory study in

Fintech. Empirical Software Engineering, 26(5) 1–29.

https://doi.org/10.1007/s10664-021-09993-1

[22] Greifenberg, T., Hillemacher, S., &Hölldobler, K. (2020). Applied

Artifact-Based Analysis for Architecture Consistency Checking.

Ernst Denert Award for Software Engineering 2019, 61–85.

https://doi.org/10.1007/978-3-030-58617-1_5

[23] Hacks, S., Lichter, H.: Qualitative comparison of enterprise

architecture model maintenance processes. In: 40 Years EMISA

2019 (2020)

[24] Kude, T.: Agile Software Development Teams during and after

COVID-19. http://knowledge.essec.edu/en/innovation/agile-

software-development-during-after-COVID19.html (2020).Accessed

5 Mar 2021

[25] Salentin, J., Hacks, S.: Towards a catalog of enterprise architecture

smells. In: Gronau, N., Heine, M., Poustcchi, K., Krasnova, H.(eds.),

WI2020 Community Tracks, GITO Verlag, pp. 276–290(2020)

[26] Salameh, A., Bass, J.M. An architecture governance approach for

Agile development by tailoring the Spotify model. AI &Soc (2021).

https://doi.org/10.1007/s00146-021-01240-x

[27] Raj, V., Sadam, R. Evaluation of SOA-Based Web Services and

Microservices Architecture Using Complexity Metrics. SN

COMPUT. SCI. 2, 374 (2021). https://doi.org/10.1007/s42979-021-

00767-6

[28] Kalalali Roseline Asimini-Hart, Bennet Okoni, Nuka Nwiabu,

Mechanism For Detection of Software Design Defects, SSRG

International Journal of Computer Science and Engineering 7.3

(2020): 12-21

[29] Jigar K Patel, Critical Success Factors for Implementation of

Enterprise Resource Planning Software, SSRG International Journal

of Computer Science and Engineering 8.2 (2021): 1-5.

[30] Mitesh Athwani, A Novel Approach to Version XML Data

Warehouse, SSRG International Journal of Computer Science and

Engineering 8(9) (2021) 5-11.

https://doi.org/10.1109/ICSME.2018.00073
https://doi.org/10.1007/s10844-017-0478-z
https://doi.org/10.1007/s10664-021-09993-1
https://doi.org/10.1007/978-3-030-58617-1_5
http://knowledge/
https://doi.org/10.1007/s00146-021-01240-x
https://doi.org/10.1007/s42979-021-00767-6
https://doi.org/10.1007/s42979-021-00767-6

