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Abstract - The effect of non-uniformity on the shear stress 

distribution in open channels was investigated using a 

polynomial approximation of the shear stress profile. The 

features of the shear stress distribution were revealed in 

non-uniform gradually varied turbulent and laminar flows 
in open channels. The parameter of non-uniformity 

determining the shape of the shear stress profile in 

accelerated and decelerated flows was obtained. It was 

revealed that in the accelerated flow, the shear stress 

reaches its maximum at the bottom, while in a decelerated 

flow, it can be maximal both at the bottom and at some 

distance from the bottom. 
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I. INTRODUCTION 

Non-uniform water movement is present in almost all 

areas of natural channels [1]. Therefore, the first 

engineering problems associated with this type of 

movement were solved in relation to natural watercourses. 

In hydraulics [2], it is customary to divide non-uniform 

flows into gradually and sharply varying ones. The 
boundary between these two flow types is very conditional 

and is usually determined by the specifics of the tasks 

being solved. According to the classical works of J.B. 

Belanger [3], gradually varying flows must satisfy the 

conditions of small curvature of current lines and angles 

between adjacent current lines. For flows satisfying these 

conditions, the dependence, commonly known as the basic 

differential equation of non-uniform motion, was obtained 

from the Bernoulli equation [2]: 

 

𝐽 =
𝑑

𝑑𝑥
(

𝑉2

2𝑔
) +

𝑉2

𝐶2𝑅
 , (1) 

 

Where J = i - dh/dx is the slope of the free surface of the 

water; x, y are the longitudinal and transverse coordinates; 

h is the flow depth; i is the slope of the bottom, g is the 

gravitational acceleration, V is the mean velocity, R is the 

hydraulic radius; C is the Chezy coefficient. 

Using the traditional one-dimensional formulation of 

engineering problems of gradually varied flows has led to 
aberration from the real distributions of kinematic and 

dynamic quantities and the neglecting of some specific 

features of the flows under consideration. First of all, this 

refers to the last term in equation (1), which determines the 

energy loss. When determining the Chezy coefficient, the 

assumption is usually made about the equality of the work 

of the resistance forces of inhomogeneous and equivalent 

homogeneous flows having the same average cross-

sectional velocities per unit of length, as well as hydraulic 

radii. This leads to the conclusion about the equality of the 

Chezy coefficients of non-uniform and equivalent uniform 

flows. This assumption has not been confirmed by theory 

or experiment. It was assumed that its validity, as a basis 
for design, was verified by many years of solving practical 

problems. Nevertheless, more recent studies of this issue 

have revealed a significant influence of the non-uniformity 

of the flow both on the waterway capacity [4], [5] and on 

the magnitude of shear stresses [6], [7]. 

II. SHEAR STRESS DISTRIBUTION IN A UNIFORM 

FLOW 

Let first consider a uniform steady flow in open 

channels. Here the shear stresses are distributed according 

to the linear law [1]: 

 
τ

τ0p

= 1 − η, (2) 

 

Where  is the shear stress; 0рis the shear stress at the 

bottom of a uniform flow; =y/h is the dimensionless 

distance from the bottom. 

Experiments show (Fig. 1) that in non-uniform 
gradually varied open flows, there is a noticeable deviation 

from the law (2) [8], [9]. 

 

 
 

Fig. 1 Shear stress diagrams for open flows in a 

hydraulically smooth channel according to data of E.V. 

Zalutsky: 1 – uniform flow; 2 – decelerated flow; 3 – 

accelerated flow 

 

Experiments on studying turbulent flows were carried 

out in a tray that had glass walls and a bottom made of 

painted cement coating. A uniform flow was reached at the 
initial section of the 9.5 m long tray. Flow acceleration or 
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deceleration was achieved by giving positive (i = 0.02) or 

negative (i = -0.02) slopes to the bottom of the tray in a 

section of 1.5 m. The kinematic characteristics of the flow 

in the studied area were determined by photographing 

markers introduced into the flow. 

III. SHEAR STRESS DISTRIBUTION IN A NON-

UNIFORM GRADUALLY VARIED FLOW 

Consider a non-uniform, gradually varied flat open flow. 

The flow projection along the x-axis directed along with 

the flow motion (while the y-axis is directed pointing 

upwards) is described by the differential equation [10]:  
 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑔𝐽 +

1

𝜌

𝜕𝜏

𝜕𝑦
 , (3) 

 

Where u, v are projections of the velocity vectors on the 

x-axis and y-axis, respectively; ρ is the liquid density. 

 To approximate the shear stress profile along with 

the flow depth, following [11], we use the polynomial; 

 

τ = τ τ0 = A0 + A1 + A2
2+. . . +Ann

n ,⁄  (4) 

 

Where 0 is the shear stress at the bottom of a non-

uniform flow.  

We restrict ourselves to three terms in the 

decomposition (2.22) [138]: 
 

τ = A0 + A1 + A2
2. (5) 

 

Next, it is necessary to determine the coefficients A0, 

A1,andA2from the boundary conditions:  

At the bottom of the channel: 

a) y= 0;  

b)  = 0-by definition;  

c) /y = -gJ – according to equation (3).  

On the free surface of the flow:  

d) y=h; =0 (under the usual assumption of neglecting 

friction on a free surface). 

After substituting (a) and (b) into equation (4), we get 

A0 = 1. From condition (c), it follows that 

 

𝐴1 = −
𝜌𝑔ℎ𝐽

𝜏0

= 𝐴 . (6) 

 

From the condition on the flow surface (d), we find  

 

𝐴2 = −(1 + 𝐴). (7) 

 

Substituting the found values of the coefficients into the 

polynomial (5), we obtain 
 

τ = 1 + A − (1 + A)2. (8) 

 

Thus, the shape of the shear stress profile is determined 

by the value of the form parameter A (the parameter of 

non-uniformity). 

The polynomial (8) is defined at -2  A, which follows 

from the conditionτ  ≥ 0. In the particular case of uniform 

motion, from (6), we have A = -1. After substituting value 

A in (8), we obtain the well-known linear law of the shear 

stress distribution:  

 

𝜏 =1− (9) 

 

Rewrite the formula (6) in the form  

 

A = −
ρghi − ρgh(dh dx)⁄

τ0

=
(ρghdx)i − ρgd(h2 2)⁄

τ0dx

=
dQx + dPx

dFfx

 . 

(10) 

 
In x-axis projections, expression (10) represents the 

ratio of the sum of gravity forces (dQx=ghidx) and 

pressure forces (dPx= -gd(h2/2))to the friction forces (dFтр 

x= - 0dx), acting on an elementary liquid volume of a non-
uniform flow of length dx. 

Expression (10) can also be obtained from the general 

equation of dynamic equilibrium of forces acting on the 

concerned liquid volume, projected on the x-axis [12]: 

 

𝑑𝑄𝑥 + 𝑑𝑃𝑥 + 𝑑𝐹𝑓𝑥 + 𝑑𝐼𝑥 = 0, (11) 

 

Where dIxis the inertial force. 

From (11) follows 

 
dQx + dPx

dFfx

= 1 −
dIx

dFfx

 . (12) 

 

From the comparison of (10) and (12), it can be seen 
that parameter A characterizes the correlation between 

inertia forces and friction forces: 

In accelerated flows dIx< 0; dFfх< 0and, consequently, A 

< -1.  

In decelerated flows dIx>О; dFfх< 0 and A > -1. 

IV. SHEAR STRESSES AT THE BOTTOM OF A 

NON-UNIFORM GRADUALLY VARIED FLOW 

Let us find the shear stress value at the bottom of the 

flow. For this, we use a one-dimensional momentum 

equation [10] for stationary flow (the Boussinesq 

coefficient assumed to be a constant in the considered 

section of the flow): 

 

J =
τ0

ρgh
+

β

2g

dV2

dx
=

τ0

ρgh
+

βV

g

dV

dx
 , (13) 

 

Where V is the average velocity in the cross-section. 

Differentiating the continuity equation Vh = const, we 

get 

 
dV

dx
= −

V

h

dh

dx
 . (14) 

 

Substituting (14) into (13), we find 
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J =
τ0

ρgh
−

βV2

gh

dh

dx
 . (15) 

 

 

And after transformation (15) 

 

𝜏0 = 𝜌𝑔ℎ𝐽 + 𝛽𝜌𝑉2
𝑑ℎ

𝑑𝑥
 . (16) 

 

A similar equation was obtained in [13] when 

considering the dynamic equilibrium of a fluid volume of a 

non-uniform flow. Equation (15) can be represented as 
 

τ0 = τ0p − ρgh
dh

dx
(1 − βFr), (17) 

 

Where 0p = ghi is the shear stress at the bottom of an 

equivalent uniform flow; Fr = V2/ghis the Froude number. 

It follows from (17) that for Fr < 1/the shear stress at 

the bottom of the decelerated flow (dh/dx  0) is less, and 

for the accelerated flow (dh/dx  0) is greater than in the 

equivalent uniform flow. The reverse pattern is true when 

Fr  1/: 00p for decelerated flows and 00p – for 

accelerated flows. 

V. THE SHAPE OF SHEAR STRESS PROFILES 

Consider the shear stress profiles. The second derivative 

(8) has the form 

 

∂2τ

∂2
= −2(1 + A). (18) 

 

The sign of the derivative determines the concavity or 

convexity of the function (8). The analysis of the 

expression (18) shows that: 

For decelerated flows A > -1, and according to the 

consequences of (12),𝜕2τ 𝜕𝜂2 < 0⁄  thus the function (8) is 

convex; 

For accelerated flows, A<-1, and𝜕2τ 𝜕𝜂2 > 0⁄  

Hence the function (2.26) is concave. 

Consider the changes in the value of  near the channel 

bottom. At the channel bottom the u = v = 0, and from 

equation (3) we get 
 

∂τ

∂y
= −ρgJ = −ρg (i −

dh

dx
) . (19) 

 

To determine dh/dx, we use, as a first approximation, 

the equation of non-uniform motion in a wide rectangular 

channel [1] 

 

𝑑ℎ

𝑑𝑥
= 𝑖

ℎ3 − ℎ0
3

ℎ3 − ℎ𝑐
3

 , (20) 

 

Where h0and hсare the normal and critical depths of the 

non-uniform flow.  

After substituting (20) into (19), we obtain 

 

∂τ

∂y
= ρgi

hc
3 − h0

3

h3 − hc
3

 . (21) 

 
Channels with different bottom slopes were considered: 

I. Channels with i> 0. At that, three cases were 

considered:  

1) h0 hс, i0 iс. In this case, the depth h can be located 

in two zones (relative to hc): 

a) hhс. This case is satisfied by the backwater curve a1 

and the depletion curve b1. At that, the numerator in (21) is 

less than zero, and the denominator is greater than zero. 

Hence, /y< 0; 

b) hhс. In this case, we have a backwater curve c1. 

From (21) we get /y>0. 

2) hhс and i0 iс. Depth h can be located in two zones: 

a) hhс. A backwater curve a2 is possible. At that 

/y>0; 

b) hhс. A depletion curve b2 and a backwater curve c2 

are possible. At that, /y>0; 

3) h0 =hс and i0 = iс. Backwater curves a3 and c3 are 

possible. At that, /y = 0. 

II. Channels with i = 0. For channels with a horizontal 

bottom, we find from (19) 

 
∂τ

∂y
= ρg

dh

dx
 . (22) 

 

Therefore, for decelerated flows (dh/dx>0) we have 

/y>0, and for accelerated flows (dh/dx <0) /y<0. 

III. Channels with i< 0. For decelerated flows at a 

negative bottom slope, from equation (19), we obtain 

/y>0. For accelerated flows, J > 0 and hence /y<0. 

Based on the conducted analysis, we conclude that 

while for accelerated flows /y<0, i.e., the shear stress 
reaches its maximum value at the bottom, then for 

decelerated flows, two cases are possible /y<0 and 

/y0, and  can be maximal both at the bottom, and 
some distance from the bottom. 

Let's find the value m at which maximum shear stresses 

can occur in decelerated flows. To do this, we differentiate 

(8): 

 
∂τ

∂
= A − 2(1 + A). (23) 

 

At the maximum point ∂τ/∂= 0and, therefore, 

 


𝑚

=
𝐴

2(1 + 𝐴)
 . (24) 

 

Thus, a well-defined nature of the shear stress 

distribution over the depth of non-uniform flows is 

revealed. Since no special reservations were made above 

concerning the friction mechanism in non-uniform flows, 

the conclusions obtained about the shear stress distribution 

are equally valid for both laminar and turbulent flows. 

The experimental shear stress profiles in non-uniform 

open flows, shown in Fig. 1, are qualitatively consistent 
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with the curves corresponding to formula (8), as well as 

with the profiles obtained in [12]. 

VI. PRACTICAL APPLICATION 

The obtained data can be used to calculate the 

distribution of local flow velocities.  
Laminar flow. In the case of laminar flow, we use 

Newton's law of viscous friction 

 

𝜏 = 𝜌𝜈 (
𝜕𝑢

𝜕𝑦
), (25) 

 

Where 𝜈 is the kinematic viscosity. 

Substituting (25) into (8), we find 

 
𝜈

ℎ𝑈∗
2

𝜕𝑢

𝜕𝜂
= 1 + 𝐴𝜂 − (1 + 𝐴)𝜂2, (26) 

 

or 

 

𝜕𝑢

𝜕𝜂
=

𝑈∗
2ℎ

𝜈
[1 + 𝐴𝜂 − (1 + 𝐴)𝜂2], (27) 

 

were 𝑈∗ = √𝜏0/𝜌  Is the dynamic velocity. 

 

After integration, equation (27) takes the form 

 

𝑢 =
𝑈∗

2ℎ

𝜈
(1 +

𝐴

2
𝜂 −

1 + 𝐴

3
𝜂2) 𝜂 + 𝐶. (28) 

 

From the conditions at the flow bottom η = 0 and u = 0, 

we can find C = 0. The final dependence for the velocity 

distribution has the form 

 
𝑢

𝑈∗

=
𝑈∗ℎ

𝜈
(1 +

𝐴

2
𝜂 −

1 + 𝐴

3
𝜂2) 𝜂. (29) 

 

After substituting the value A=-1 for a uniform flow in 

(29), we obtain a known parabolic velocity profile [2]: 

 
𝑢

𝑈∗

=
𝑈∗ℎ

𝜈
(𝜂 −

1

2
𝜂2). (30) 

 

Turbulent flow. In the case of turbulent flow, shear 

stresses are determined by the formula 

 

𝜏 = 𝜌𝜈𝑇

𝜕𝑢

𝜕𝑦
 , (31) 

 

were 𝜈𝑇 is the coefficient of turbulent kinematic 

viscosity. 

The distribution of the turbulent viscosity coefficient 

over the depth of a non-uniform flow approximately 

corresponds to the parabolic law. Following the data [10], 

 

𝜈𝑇 = 𝜅𝑈∗ℎ𝜂(1 − 𝜂), (32) 

 

Where k is the Karman constant, whose value depends 

on the degree of non-uniformity of the flow. 

Experimental data of I. Nikuradze (processed by M. 

Hirano and A. Kaneko [14]), G.A. Gurjienko (processed 

by K.V. Grishanin [10]), and F. Donch [15] confirm this 

conclusion. 

 Substituting (31) and (32) into (7), we find 
 

𝜌𝜅𝑈∗𝜂(1 − 𝜂)

𝜏0

𝜕𝑢

𝜕𝜂
= (1 − 𝜂)(1 + 𝜂 + 𝐴𝜂). (33) 

 

Equation (33) can be transformed as follows 

 
1

𝑈∗

𝜕𝑢

𝜕𝜂
=

1

𝜅
[
1

𝜂
+ (𝐴 + 1)] . (34) 

 

After integrating (34) with the variable η, we find the 

distribution law of the averaged velocities: 

 
𝑢

𝑈∗

=
1

𝜅
[ln 𝜂 + (1 + 𝐴) 𝜂] + 𝐶. (35) 

 

The constant C is defined from the conditions on the 

free surface of the flow η =1 and u = Umax. In this case, 

equation (35) takes the form: 

 

𝐶 =
𝑈𝑚𝑎𝑥

𝑈∗

−
1

𝜅
(1 + 𝐴). (36) 

 

Substituting (36) into (35), we find 

 
𝑈𝑚𝑎𝑥 − 𝑢

𝑈∗

= −
1

𝜅
[ln 𝜂 − (1 + 𝐴)(1 − 𝜂)]. (37) 

 

The resulting expression corresponds to the formula of 
J.C. Rotta [16] for flows with a moderate pressure gradient 

 
𝑈𝑚𝑎𝑥 − 𝑢

𝑈∗

= −
1

𝜅
[ln 𝜂 − 𝑇(1 − 𝜂)], (38) 

 

where T is the correction parameter 

VII. CONCLUSIONS 

1. The features of the shear stress distribution in non-

uniform gradually varied open flows under turbulent and 
laminar flow regimes are revealed. 

2. The shear stress profile of a flat open flow is 

completely determined by the 𝑑ℎ/𝑑𝑥 parameter. 

3. In length-accelerated flows, shear stresses always 

have a maximum at the bottom; in decelerated flows, shear 

stresses can reach a maximum both at the bottom and at 

some distance from it. 
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