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Abstract - In this paper, the linear free vibrations analysis of 

rectangular plate resting on translational and rotational 

supports at all edges is performed by the semi-analytical 

method. The Rayleigh-Ritz method is used to investigate 

linear frequencies and associated mode shapes. The trial 

plate functions are taken as products of beam function with 

appropriate end conditions in x and y-direction. These beam 

functions have the form of the solution of the differential 

equation, which governs their vibrations. A symbolic 

calculation was used to find the transcendental equation 

solving the frequency parameters and mode shapes, and the 

numerical calculation has allowed finding the numerical 

beam results. The method used in this work does not respect 

the plate boundary conditions. However, the results of 

classical boundary conditions, including the guided case, 

were in good agreement with the bibliography. Moreover, 

different finite values of the torsional and translation springs 

stiffness are studied for several values of the aspect ratio. 

The results found were compared with the available 

bibliography; both results match with each other very well. 

Keywords : Rectangular plates,  Elastically Restraints,  

Rayleigh-Ritz method,  Linear vibration, Frequency 

parameters.  

I. INTRODUCTION  

A large number of civil engineering structures are 

modeled by plates: slab bridges,  foundation, floor, lock-

gates, and bridge decks. Plates are indispensable in the 

aerospace and naval sectors: the hull of a ship, its deck and 

its superstructure, the wings, and a large part of the fuselage 

of an aircraft. Plates are also present in the machine and 

mechanical devices [1].  The study of rectangular plate 

transverse vibrations was begun for over two centuries by 

Chladni [2]. The motion differential equation of the plate 

transverse vibrations has an analytical solution only for the 

plate simply supported or/and guided at opposite edges, and 

Levy was the first to do this work in 1899 [3]. Rayleigh-Ritz 

method [4] [5] remains now extensively used in the free 

vibration analysis of rectangular plates due to their 

flexibility and conceptual simplicity.  These types of 

methods assume a linear combination of trial functions, 

which are determined by beam or plate boundary conditions, 

and by minimizing the system energy functional, the 

unknown coefficients of the trial functions can be 

determined. The trial functions including for example, beam 

characteristic functions [6],[7] , boundary characteristic 

orthogonal polynomials [8], [9],[10], orthogonal plate 

functions [11], [12], [13], [14], hierarchical trigonometric 

functions [15], combination of trigonometric function and 

lower-order polynomials [16],[17], [18], [19], [20] 

trigonometric and hyperbolic functions [21], [22],[23],[24], 

[25]. The other type of solutions, called the strong-form 

based methods [26], take into account the motion differential 

equation and the boundary conditions, for example, the 

superposition method [27], [28], [29] generalized 

Koialovich’s theory based on superposition method [30], 

Fourier series based on the analytical method [31],[32] and 

the dynamic stiffness method [33]. The rectangular plates 

resting on elastically restrained edges have been studied in 

the literature in the last forty decades, as reviewed by Leissa 

in his famous monograph [34], which remains a good 

reference, and in 1973 he studied the 21 classical boundary 

conditions [6]. P. Laura has made his research on the 

frequency parameters in transverse vibration of rectangular 

plates with an elastic edge by RRM exploiting polynomial 

coordinate function, which only respects the beam boundary 

condition [35],[36]. This solution was improved by Zhou by 

putting sine series and third-order polynomial as the set of 

static beam functions [16],[37], W.L.Li had dealt with these 

vibrations, by RRM using Fourier series methods, in his 

solution, the plate boundary conditions are respected 

[17],[31],[38]. Guo in 2010 had improved the Fourier series 

method for applying the RRM respecting the plate boundary 

conditions. Gorman had developed the superposition method 

[27],[28] witch respected the motion differential equation 

(1980,2005). The classical dynamic stiffness method was 

used by X.Liu [26]; it is an improved method of the 

superposition method. When Li [17] made his research on 

vibration analysis of rectangular plates with general elastic 

boundary supports [17], he claimed that " Although beam 

functions can be generally obtained as a linear combination 

of trigonometric and hyperbolic functions, they include 

some unknown parameters that have to be determined from 

the boundary conditions. Consequently, each boundary 

condition basically leads to a different set of beam functions. 

In real applications, this is clearly inconvenient, not to 
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mention the tediousness of determining the characteristic 

functions for a generally supported beam ". and X.Liu [26] 

has claimed that the RRM may become numerically 

unstable.  In this paper, vibrations of rectangular plates with 

elastic four edges were studied with the RRM. The 

deflection function was expressed as a product of 

trigonometric and hyperbolic beam functions in the x and y-

direction. This method does not satisfy the boundary 

conditions of the plate elastically restrained, but it satisfies 

the end conditions of appropriate beams. Contrary to what Li 

thought [17], there are no difficulties associated with 

numerical instability, and the trial functions form a complete 

set, the accuracy and convergence of the corresponding 

solution are easily estimated, this is thanks to the symbolic 

calculation of Matlab. In addition to that, this solution 

allows easily to deal with rather a difficult problem such as 

nonlinear vibration of rectangular plate resting on elastic 

supports at all edges, and it can be readily extended to other 

more complicated boundary conditions such as concentrated 

masses, partial supports, point support, orthotropic plates, 

FGM and sandwich plates. In the next section, the semi-

analytical method formulation is exposed to a detailed 

general approach of the transversal vibrations of the plates 

with elastically restrained edges in order to find linear 

frequency parameters and their mode shapes. Linear 

frequency parameters of the plate were calculated for 

different plate parameters and compared with available 

known results. The paper ends with a discussion of the 

novelty of the solution and its extensions. 

II. General formulation  

The aim of the present section is to find the linear 

frequency parameters using the Rayleigh-Ritz method 

(RRM) for various values of the plate aspect ratio, 

translational and rotational stiffness of elastic support. The 

deflection magnitude W is supposed to have the same order 

as the thickness 𝐻 of the plate, and all strain components are 

supposed small. The plate trial function used in the RRM is 

assumed as a product of the trial beam function in x-and y-

direction while respecting the plate boundary conditions. 

First; the trial beam functions are investigated in the fellow's 

subsection 

A. Trial beam functions for beams connected at their ends 

to translational and rotational stiffness 

 
Fig 1: The investigated beam 

Consider a beam shown in Fig. (1), and it is connected at its 

ends to translational and rotational stiffness. The 

translational stiffness is K1 and K2 at the left and the right 

ends, respectively, the rotational stiffness is C1 and C2 at the 

left and the right ends, respectively. The differential equation 

which governs the equation of the beam transverse vibration 

is given by Igora [39]:  
d4Z(x)

dx4 + βZ(x) = 0 (1) 

 In witch Z is the transverse displacement, x is the abscissa of 

a current point P, β is the frequency parameters such as β4 =

ωb
2 μS

EI
, ωb being the natural beam frequencies, EI is the beam 

flexural rigidity, S is the cross-section area, and μ is the mass 

per unit length of the beam. The general solution of Eq. (1) is 

expressed by  [39]:  

Zi(x) = c1sin(βix) + c2cos(βix) + c3sinh(βix) +
c4cosh(βix) (2) 

 The beam frequency parameters βi and the integration 

constants c1 to c4 are to be determined by the end conditions. 

The transverse shearing forces 𝒯 and the bending moment 

ℳ of the beam are given by [40] :  

𝒯 = −EI
∂3Z(x)

∂x3     ℳ = EI
∂2Z(x)

∂x2  (3) 

 The end conditions are expressed at x = 0 and x = 𝑙 by [39], 

[40] : - 

 

 At  x = 0     𝒯 = K1Z(x)    and    ℳ = −C1
∂Z(x)

∂x

 At  x = 𝑙     𝒯 = −K2Z(y)    and    ℳy = C2
∂Z(x)

∂x

 (4) 

 𝑙 being the beam length. By substituting Eq.(2) into the 

boundary conditions (4), at x = 0, l  
∂3Z

∂x3 = ε
K1

EI
Z

∂2Z

∂x2 = ε
C1

EI

∂Z

∂x

 (5) 

 ε = −1 when x = 0 and ε = l when x = 0. In order to give a 

dimensionless written to Eel (5), the dimensionless abscissa 

x∗ and the dimensionless deflection Z∗ are defined by x∗ =
x

l
 

and Z∗ =
Z

H
, at x = 0, l Eq (5) becomes  

∂3Z∗

∂x∗3 = εK∗Z∗

∂2Z∗

∂x∗2 = εC∗ ∂Z∗

∂x∗

 (6) 

 it leads to dimensionless rotational and translational stiffness 

at both ends:  

C1,2
∗ =

C1,2l

EI
    K1,2

∗ =
K1,2l3

EI
 (7) 

 As mentioned above, ε = −1 when x = 0 and ε = l when 

x = 0. Eq (6) can be expressed by a matrix writing:  
[𝔹]{c} = {0} (8) 

 where {c} is an unknown vector such as {c}T =
{c1, c2, c3, c4} and [𝔹] is a 4 × 4 square matrix, expressed by:  
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[𝔹] =

[
 
 
 
 
−𝜆3 𝐾1

∗ 𝜆3 𝐾1
∗

−𝐶1
∗ −𝜆 −𝐶1

∗ 𝜆

−𝐾2
∗sin(𝜆) − 𝜆3cos(𝜆) −𝐾2

∗cos(𝜆) + 𝜆3sin(𝜆) −𝐾2
∗sinh(𝜆) + 𝜆3cosh(𝜆) −𝐾2

∗cosh(𝜆) + 𝜆3sinh(𝜆)

𝐶2
∗cos(𝜆) − 𝜆sin(𝜆) −𝐶2

∗sin(𝜆) − 𝜆3cos(𝜆) 𝐶2
∗cosh(𝜆) + 𝜆sinh(𝜆) 𝐶2

∗sinh(𝜆) + 𝜆cosh(𝜆)
]
 
 
 
 

             (9) 

 

This matrix contains four dimensionless rotational C1,2
∗  and 

translational K1,2
∗  Parameters at both ends, and also it 

contains the unknown beam frequency parameter λ = 𝑙. β.    

By Matlab code; a symbolic calculation allowed to easily 

create the matrix [𝔹]. The non-trivial solutions for vector 

component {𝑐1, 𝑐2, 𝑐3, 𝑐4} Exist if the determinant of this 

matrix is equal to zero. A symbolic calculate used to find the 

determinant expression, and a numerical calculate allowed to 

solve the roots (𝜆)𝑖 of the obtained frequency equation, 

corresponding to various modes 𝐙𝑖
∗ and to different values of 

the dimensionless translational and rotational  stiffness, 𝐊1,2
∗  

and 𝐂1,2
∗  Respectively.  

As an illustration, Table (1) lists and compare with the 

fundamental frequency parameters 𝜆1
2 =

𝜔𝑏𝑙2

𝜋
√

𝜇.𝑆

𝐸𝐼
 of beams 

clamped (C) at end 𝑥 = 0 and elastically restrained at end  

𝑥 = 𝑙, the rotational stiffness 𝐶2
∗ takes three values, 0,100 

and 1000, and the translational stiffness 𝐾2
∗ takes four values 

0,100,1000 and 10000. The results found here are identical 

to those given by Igora [20]. 

 

Table 1:  Fundamental frequency parameter 𝛌𝟏
𝟐 =

𝛚𝐛𝐥𝟐

𝛑
√

𝛒.𝐒

𝐄𝐈
 For a CE beam with different combinations of 

the translational and rotational stiffness at 𝐱 = 𝐥.  
  𝑪𝟐

∗ = 𝟎 𝑪𝟐
∗

= 𝟏𝟎𝟐 

𝑪𝟐
∗

= 𝟏𝟎𝟒 

𝑲𝟐
∗ = 𝟎 

Present 1.8751 2.3564 2.3649 

Ref 

[39] 
1.8751 2.3564 2.365 

𝑲𝟐
∗ = 𝟏𝟎𝟐 

Present 3.6405 3.8403 3.8482 

Ref 

[39] 
3.6454 3.8403 3.8482 

𝑲𝟐
∗ = 𝟏𝟎𝟑 

Present 3.8978 4.5845 4.6243 

Ref 

[39] 
3.8978 4.5845 4.6243 

𝑲𝟐
∗ = 𝟏𝟎𝟒 

Present 3.9237 4.6754 4.7193 

Ref 

[39] 
3.9237 4.6754 4.7193 

 

 
First mode Second mode Third mode Fourth mode 

Fig 2: First four normalized modes of CE beam, with 𝐊∗ = ∞ and with several values of rotational stiffness 𝐂𝟐
∗

 
First mode Second mode Third mode Fourth mode 

Fig 3: First four normalized modes of CE beam, with 𝐊∗ = ∞ and with several values of rotational stiffness 𝐂𝟐
∗

As illustration also, Figs. (2-3) show the rotational and 

translational stiffness influence on the first four normalized 

modes of CE beam. For Fig.(2), the translational stiffness K2
∗  

tends toward infinity, and the rotational stiffness C2
∗ takes 

four values = 0,5,50,1010. For Fig.(3), the rotational 

stiffness C2
∗ tends toward infinity, and the translational 

stiffness K2
∗  takes four values = 0,100,1000,1010. 
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B. General formulation 

The thin rectangular plate shown in Fig (4) is resting on 

translational and rotational supports at its all edges, for 

clarity, translational spring is the only one drawn at the edge 

𝑥 = 𝑎, and rotational spring is drawn at 𝑥 = 𝑏.  It has a   

length 𝑎, and a width 𝑏. 

 
Fig 4: The investigated rectangular plate resting on 

translational and rotational supports at all edges. 

The translational stiffnesses per unit length of the edges x =
0, y = 0, x = a and y = b, are K1, K2, K3, K4 respectively, 

and the rotational stiffnesses at the edges x = 0, y = 0, x =
a, and y = b, are C1, C2, C3, C4 respectively. 𝑾(𝑥, 𝑦, 𝑡) 

denotes the transverse displacement of the current point 

M(x, y) of the middle plane. Under the assumption of 

neglected the rotary inertia, the plate kinetic energy T is 

expressed as in [21], [44]:  

   T =
1

2
ρH ∫

S
(

𝝏𝑾

𝝏𝒕
)

2

dS (10) 

In which  H is the plate thickness and ρ  is the mass density 

per unit area of the beam.  The plate total strain energy VT is 

the sum of the strain energy due to the bending VbAnd the 

strain energy stored by the elastic edge restraints VEdg : 

(VT = Vb + VEdg) are given by [7], [21], [23], [41].  

Vb =
D

2
∫
S

(
∂2𝑾

∂x2 +
∂2𝑾

∂y2 )
2

+ 2(1 − ν) ((
𝝏𝟐𝑾

𝝏𝒙𝝏𝒚
)

2

−

∂2𝑾

∂x2

∂2𝑾

∂y2 ) dS          (11) 

in which D =
EH3

12(1−ν2)
 Is the plate flexural rigidity, 𝐸 being  

Young’s modulus and ν being  Poisson’s ratio ( in all follows 

ν = 0.3). The strain energy stored by the elastic edge 

restraints VEdg is the sum of the translational and rotational 

elastic edge restraints VEdg
Tra and VEdg

Rot respectively [34].  

 • The strain energy VEdg
Tra stored by the translational elastic 

edge restraints at all edges is: 

VEdg
Tra =

1

2
∫

b

0
(K1. (𝑾

2)x=0 + K3(𝑾
𝟐)x=a)dy +

1

2
∫

a

0
(K2(𝑾

2)y=0 + K4(𝑾
2)y=b)dx       (12) 

• The strain energy VEdg
Rot stored by the rotational elastic edge 

restraints at  all edges  is: 

 VEdg
Rot =

1

2
∫

b

0
(C1 (

∂𝐖

∂x
)

x=0

2

+ C3 (
∂𝐖

∂x
)

x=a

2

) dy +

1

2
∫

a

0
(C2 (

∂𝑾

∂y
)

y=0

2

+ C4 (
∂𝑾

∂y
)

y=b

2

) dx       (13) 

The plate displacement functions 𝐖(x, y, t); calculated 

under the assumptions of harmonic motion and the spectral 

expansion is expressed by [21] :  

 𝐖(x, y, t) = akwksin(ω. t)       (14) 

 where  

 wk(x, y) = Xi(x)Yj(y)    k = n(i − 1) + j     (15) 

 in which  t is the time, ω is the angulaire frequency, Xi(x) 

and Yj(y) are the trial beam functions that have the same 

boundary conditions in the x-and y-direction, respectively. If 

the number of functions Xi(x) and Yj(y) are m and n 

respectively, the number of the plate functions is N = n × m, 

i = 1. . . m, j = 1. . . n. Xi and Yj have to verify the beam end 

conditions cited above. ak being the contribution coefficient 

of the function spatial wk.  The discretized expressions of the 

kinetic and strain energy expressed in Eqs. ((10)-(13) are:  

T =
1

2
ω2. ai. aj. mij cos2(ωt)

Vb =
1

2
 ai aj kij

b sin2(ωt)

VEdg =
1

2
. ai. aj. kij

Edg
. sin2(ωt)

             (16) 

In which mij and kij
b are the mass and bending tensors, 

respectively. These tensors are given by [21] [42]:  

 mij = ρH ∫
S

wiwjdS        (17)  

 kij
b = D∫

S
(

∂2wi

∂x2 +
∂2wi

∂y2 ) (
∂2wj

∂x2 +
∂2wj

∂y2 ) +

2(1 − ν). (
∂2wi

∂x∂y
.
∂2wj

∂x∂y
−

∂2wi

∂x2 .
∂2wj

∂y2 ) dS                    (18) 

and kij
Edg

 represent the rigidity tensor associated with the 

energy stored in the elastic edge restraints, and it is the sum 

of the rigidity tensor due to the translational kij
Tra and 

rotational kij
Rot elastic edge restraints: kij

Edg
= kij

Tra + kij
Rot:  

 

𝑘𝑖𝑗
𝑇𝑟𝑎 = ∫

𝑏

0
((𝐾1. 𝑤𝑖𝑤𝑗)𝑥=0

+ (𝐾3𝑤𝑖𝑤𝑗)𝑥=𝑎
) 𝑑𝑦

+ ∫
𝑎

0
((𝐾2. 𝑤𝑖𝑤𝑗)𝑦=0

+ (𝐾4𝑤𝑖𝑤𝑗)𝑦=𝑏
) 𝑑𝑥

𝑘𝑖𝑗
𝑅𝑜𝑡 = ∫

𝑏

0
((𝐶1

∂𝑤𝑖

∂𝑥

∂𝑤𝑗

∂𝑥
)

𝑥=0
+ (𝐶3

∂𝑤𝑖

∂𝑥

∂𝑤𝑗

∂𝑥
)

𝑥=𝑎
) 𝑑𝑦

+ ∫
𝑎

0
((𝐶2

∂𝑤𝑖

∂𝑦

∂𝑤𝑗

∂𝑦
)

𝑦=0
+ (𝐶4

∂𝑤𝑖

∂𝑦

∂𝑤𝑗

∂𝑦
)

𝑦=𝑏
)𝑑𝑥

      (1) 

One put kij the total rigidity tensor:  

 kij = kij
b + kij

Edg
         (20) 

Hamilton’s principle  governs the linear  plate vibration  

[21]:  

 δ ∫
2π

ω
0

(VT − T)dt = 0        (21) 

After calculations the one gets a linear eigen value problem, 

written in a matrix form as [21], [23].  
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 2[K]{A} − 2ω2[M]{A} = {0}       (22) 

[K] and [M] are the matrices associated with the tensors 

defined above?   {A} is the column vector of the basic 

function contribution coefficients. These parameters have 

been calculated  numerically by a cod Matlab program. Eq. 

(22) is the classical eigenvalue problem corresponding to the 

RRM of linear vibrations. If one defines, as in Ref [41], the 

non-dimensional parameters:  

x∗ =
x

a
, y∗ =

y

b
: dimensionless abscissa and ordinate, 

respectively. 

w∗ =
w

H
∶ dimensionless deflection. 

Ki
∗ = Ki

a3

D
: dimensionless translational stiffness at edge  x =

0, a  (i = 1,3) 

Ki
∗ = Ki

b3

D
 : dimensionless translational stiffness at edge  y =

0, b  (i = 2,4) 

Ci
∗ = Ci

a

D
 : dimensionless rotational stiffness at edge  x = 0, a  

(i = 1,3)  

𝐶𝑖
∗ = 𝐶𝑖

𝑏

𝐷
 : dimensionless rotational stiffness at edge  y =

0, b  (𝑖 = 2,4) 

 it leads to the frequency parameter Ω to be determined in the 

next subsection:  

Ω = a2√
ρH

D
ω       (23) 

 Eq.(24) becomes :  

2[K∗]{A} − 2Ω2[M∗]{A} = {0} (24) 

 The general terms of the dimensionless mass [M∗] and the 

linear rigidity [K∗] matrices are expressed by:  

 

mij
∗ = ∫

S
wi

∗. wj
∗dxdy

kij
∗ = ∫

S

∂2wi
∗

∂x∗2

∂2wj
∗

∂x∗2 + α2 (
∂2wi

∗

∂x∗2

∂2wj
∗

∂y∗2 +
∂2wi

∗

∂y∗2

∂2wj
∗

∂x∗2 ) + α4 ∂2wi
∗

∂y∗2

∂2wj
∗

∂y∗2

+2(1 − μ)α2 (
∂2wi

∗

∂x∗ ∂y∗

∂2wj
∗

∂x∗ ∂y∗ −
∂2wi

∗

∂x∗2

∂2wj
∗

∂y∗2 ) dxdy

(25) 

where α =
a

b
 is the plate aspect ratio. Eq.(24) represents the 

dimensionless Rayleigh-Ritz formulation of the linear 

vibration problem. Its solution yields the ith frequency 

parameters are given by Eq.(23) together with the ith mode 

shapes wi(x, y) expressed by Eq (15).  

 

III. NUMERICAL RESULTS AND DISCUSSIONS  

Eq. (24) allows finding the frequency parameters and 

associated mode shapes using the Matlab program for several 

examples dealing with various aspect ratio α =
a

b
 and 

different value of the eight dimensionless translational and 

rotational stiffness K∗ and C∗, (i = 1 to 4). In order to have a 

concise presentation, only selective and representative results 

are presented. The classical edge boundary conditions are 

obtained by giving appropriate values to parameters K∗ and 

C∗, for clamped edge (C) K∗ and C∗ tend toward infinity, for 

simply supported edge (S) K∗ tends toward infinity and C∗ =
0, for guided edge (G) K∗ = 0 and C∗ Tends toward infinity, 

and for free edge, these stiffnesses are void. The letter (E) 

designates edges with finite and non-zero stiffness. Four 

capital letters designate the plate boundary conditions; the 

first and the third letters designate the edge types at x = 0 

and at x = a, respectively, and the second and the fourth 

letters designate the edge types at y = 0 and at y = b, 
respectively.  

 

A. Convergence study 

To examine the solution convergence of the RRM described 

by Eq. (24) for a rectangular CCCC plate, in particular, the 

three lowest frequency parameter Ωi, i = 1 to 3. The relative 

difference is defined by:  

Δi% =
Ωi−Ωrefi

Ωrefi

× 100 (26) 

 
    

Fig 5: The three relative differences 𝚫𝐢 versus numbers of the trial beam functions 𝐦 = 𝐧 with several aspect ratio 𝛂 for 

CCCC plates.

In which ΩRefi
, i = 1 to 3, are the first four frequency 

parameters given as references (Leissa [6]). Fig (5) gives the 

curves of the relative difference Δi versus the number m=n 

with several values of aspect ratio α=a/b, m and n are the 
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numbers of beam functions used in RRM in x-and y-

direction, respectively. For the first mode, one trial function 

in each direction can be safely used to obtain accurate 

results; for the second and third modes, 3 trial beam 

functions give excellent results with a relative difference of 

less than 0.3%. Fortunately, the results of the convergence 

study of the other boundary conditions are fastest than the  

CCCC case, and the value m = n = 5 is correct for all 

boundary conditions and modes carried out in this work.  

 

B. Frequency parameters 

Table (2) shows five sets of results for square plates with 

different boundary conditions CCCC, CCSC, CCCG, CSGF, 

and CGCG. The results are presented by the first eight 

frequency parameters Ωk = ωk. a
2√ρ. H/D, They are 

compared with those given by X.Liu Ref [26] and obtained 

by spectral-dynamic stiffness method (S-DSM) and finite 

element method (FEM).

Table  2:  First eight frequency parameters 𝛀𝐤 = 𝛚𝐤. 𝐚
𝟐√𝛒.𝐇/𝐃 of square plates with several boundary conditions 

  𝛀𝟏 𝛀𝟐 𝛀𝟑 𝛀𝟒 𝛀𝟓 𝛀𝟔 𝛀𝟕 𝛀𝟖 

CCCC  Present 35.9874 73.4002 73.4002 108.228 131.600 132.220 165.044 165.044 

Ref [26] S-DSM 35.9852 73.3938 73.3938 108.217 131.581 132.205 165 165 

Ref [26]  FEM 35.985 73.4 73.4 108.22 131.59 132.22 165.01 165.01 

CCSC  Present 28.9512 54.7470 69.3274 94.5890 102.229 129.096 140.218 154.794 

Ref [26] S-DSM 28.9509 54.7431 69.327 94.5853 102.216 129.096 140.205 154.776 

Ref [26]  FEM 28.951 54.744 69.33 94.588 102.22 129.11 140.21 154.79 

Exact 28.9509 54.7431 69.327 94.5853 102.216 129.096 140.205 154.776 

CSGF  Present 6.619 19.958 31.782 47.087 53.633 76.262 80.104 92.871 

Ref [43] RRM 6.601 19.954 31.677 47.034 53.632 76.003   

CCGG  Present 8.996 32.895 33.051 55.010 77.226 77.292 98.197 98.480 

Ref [43] RRM 8.996 32.895 33.051 55.008 77.226 77.291   

 

   The frequency parameters calculated for a square CCSC 

and SCSC plates were made with m = n = 10, (for more 

accurate) the comparison with the results given by X.Liu [26] 

is very good. The results for CCCG, CSGF, and CGCG are 

compared with those given by Monterrbio [43]; the 

calculated frequencies show an excellent agreement with 

those given in Ref [26].  In order to study the finite stiffness 

values, several examples were treated. The first example 

deals with a square SSSS plate with a uniform elastic 

restraint against rotation 

 

Table  3:  Six first frequency parameters, 𝛀𝐤 of a square 

SSSS plate elastically restrained against rotation at all 

edges, with various values of 𝐂𝐣
∗ = 𝐂∗, 𝐣 = 𝟏, 𝟐, 𝟑, 𝟒. 

𝑪∗ 𝛀𝟏 𝛀𝟐 𝛀𝟑 𝛀𝟒 𝛀𝟓 𝛀𝟔 

1 21.50 51.19 51.19 80.82 100.58 100.59 

21.50 a 51.18 51.18 80.82 100.58 100.58 

10 28.50 60.22 60.22 90.82 111.19 111.41 

28.49 a 60.20 60.20 90.79 111.16 111.39 

100 34.59 70.64 70.64 104.25 126.82 127.40 

34.67 a 70.77 70.77 104.44 127.01 127.59 

100

0 

35.82 73.06 73.06 107.70 130.98 131.60 

35.84 a 73.10 73.10 107.78 131.06 131.68 
a Results are given by Li Ref [31] 

      

along all edges, which tack various values of the rotational 

stiffnessC∗ = 1,10,100,1000. The lowest six frequency 

parameters Ωi = ωi. a
2√

ρ.H

D
, i = 1 to 6 are summarized in 

Table (3) and compared with those found via an analytical  

 

method developed by W.L.Li [31], both results match very 

well with each other. The weak difference percentage 

between the two result sets indicates the precision of the 

RRM carried out here.  The second example deals with the 

influence of the translational and rotational stiffness on the 

frequency parameters, and the study plate is a square CSES 

plate with various combinations of the rotational and 

translational stiffness at x = a, C3
∗ = 0,10,100,∞ and K3

∗ =
0,10,100,∞.  

 

Table  4:  Fundamental frequency parameters, 𝛀𝟏 for a 

CSES square plate with various combinations of the 

rotational and translational stiffness at 𝐱 = 𝐚. 

𝑪𝟑
∗  𝑲𝟑

∗ = 𝟎 10 100 ∞ 

0 
12.7152 13.9533 19.1946 23.6204 

12.6874 a 13.9315 19.2195 23.6463 

10 
13.4182 14.3526 19.3950 26.5219 

13.4098 a 14.346 19.3982 26.5556 

100 
13.6407 14.4823 19.4745 28.5358 

13.6491 a 14.4891 19.4782 28.5523 

∞ 
13.6407 14.4823 19.4745 28.5358 

13.6491 a 14.4891 19.4782 28.5523 
a Results are given by Li Ref [38] 

 

 Given by Li [38] using a Fourier series method for plates 

having two opposite edges simply supported, the difference 

percentage doesn’t exceed 0.22%.  
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Table  5:  Fundamental frequency parameters, 𝛀𝟏 of 

rectangular plate CCCE with 𝐊𝟒
∗ = 𝟏𝟎𝟏𝟎 and for various 

values of 𝐂𝟒
∗With different aspect ratios. 

𝑪𝟒
∗  �̅� = 𝟎. 𝟒 0.66 1 1.5 2.5 

CCCC 

0 17.13 21.41 31.83 58.18 146.50 

17.18 21.44 31.87 58.34 147.08 

0.001 17.13 21.41 31.83 58.18 146.50 

17.19 21.44 31.87 58.35 147.08 

1 17.95 22.05 32.25 58.40 146.57 

18.00 22.08 32.28 58.53 147.11 

3.2 19.19 23.06 32.93 58.77 146.72 

19.24 23.09 32.95 58.88 147.21 

10 20.99 24.59 34.04 59.43 147.01 

21.05 24.62 34.05 59.51 147.46 

32 22.50 25.94 35.10 60.12 147.37 

22.59 25.99 35.13 60.24 147.93 

100 23.23 26.62 35.65 60.51 147.61 

23.31 26.66 35.67 60.61 148.13 

∞ 23.65 27.01 35.99 60.76 147.78 

23.73 27.04  36.00 60.85 148.28 

SESS 

0 11.45 14.26 19.74 32.08 71.55 

11.46 a 14.26 19.75 32.09 71.60 

0.001 11.53 14.32 19.79 32.11 71.57 

11.54 a 14.33 19.80 32.12 71.61 

1 12.19 14.86 20.18 32.36 71.68 

12.20 a 14.87 20.19 32.37 71.73 

3.2 13.25 15.76 20.88 32.82 71.91 

13.26 a 15.77 20.89 32.86 72.01 

10 14.69 17.05 21.95 33.60 72.35 

14.70 a 17.06 21.97 33.68 72.58 

32 15.81 18.11 22.89 34.37 72.88 

15.83 a 18.12 22.93 34.49 73.23 

100 16.34  18.61 23.37 34.79 73.22 

16.36 a 18.63 23.40 34.92 73.61 

1000 16.60  18.87 23.62 35.02 73.42 

16.62 a 18.88 23.65 35.15 73.81 

∞ 16.63 18.90 23.65 35.05 73.44 

16.65 a 18.91 23.68 35.18 73.84 
a Results are given by Li Ref [35] 

  

The frequency parameters are not very sensible to  the 

rotational stiffness: for 𝐾3
∗ = 100 it varies from Ω = 19.19 

for 𝐶3
∗ = 0 to Ω = 19.49 for 𝐶3

∗ = ∞ but they are influenced 

by the translational stiffness: for 𝐶3
∗ = 100 it varies 

from Ω = 13.6 for 𝐾3
∗ = 0to Ω = 28.5 for 𝐾3

∗ = ∞.  The 

following example deals with the influence of the aspect 

ratio �̅� =
𝑏

𝑎
 on the frequency parameters. Rectangular CCCE 

and SESS plates are investigated. The first plate is clamped 

at the edges 𝑥 = 0, 𝑎, 𝑦 = 0, while the edge 𝑦 = 𝑏 is 

elastically restrained against rotation with several stiffness 

levels 𝐶4
∗ = 0,0.001,1,3.2,10,32,100,∞, and it has zero 

deflection i.e. the translational stiffness 𝐾4
∗ is token equal to a 

very big value 1𝑒10. The second plate is simply supported at 

all edges in more the edge 𝑦 = 0 is elastically restrained 

against rotation with several stiffness levels 𝐶4
∗ =

0,0.1,1,3.2,10,32,100,104, ∞.The corresponding 

fundamental frequency parameters Ω̅1 = ω1. b
2√

ρ.H

D
 Are 

summarized in Table (5), and compared with those given by 

Ref [35], the differences remain less than 0.62%. As may be 

expected, the frequency parameter is very influenced by the 

aspect ratio.  The last example gives the five lowest 

frequency parameters for a CCCS plate for different value of 

the aspect ratio α̅ = 0.4,1,2.5, moreover the edge y = b is 

retained in rotation. the rotational stiffness tacks several 

values C4
∗ = 0.001,1,100. Table (6) lists and compares the 

present results with those given by Ref [39]. The comparison 

is very good just for the first four frequency parameters, but 

for the fifth mode, this difference becomes acceptable; this 

can be justified by the fact that the results in tables (5) and 

(7) of this reference do not respect the bounds given in the 

same table of their two last columns. 

 

Table  6:  Five lowest frequency parameters of 

rectangular plate CCCE with and 𝐊𝟒
∗ = 𝟏𝟎𝟏𝟎 , 𝐂𝟒

∗ =
𝟎. 𝟎𝟏, 𝟏, 𝟏𝟎𝟎 with different aspect ratios. 

 𝑪𝟒
∗ = 𝟎. 𝟎𝟏 𝑪𝟒

∗ = 𝟏 𝑪𝟒
∗ = 𝟏𝟎𝟎 

�̅� Present Ref[39] Present Ref[39] Present Ref[39] 

1 31.83 31.51 32.23 31.94 35.63 35.43 

 (31.87)  (32.28)  (35.67) 

63.35 63.10 64.08 63.83 72.35 71.65 

71.08 69.33 71.26 69.52 73.16 72.16 

100.83 99.42 101.29 99.87 107.32 106.08 

116.40 116.71 117.25 116.94 129.80 126.57 

2.5 107.08 106.91 112.19 112.05 145.20 145.25 

 (107.41)  (112.52)  (146.24) 

139.67 138.50 143.48 142.42 171.40 170.98 

194.42 190.11 197.05 192.95 219.29 216.53 

270.48 259.49 272.30 261.58 289.86 281.25 

322.57 322.66 328.18 328.27 382.86 362.57 

353.44 343.99 358.56 345.61 387.36 389.69 

0.4 23.44 22.25 23.45 22.27 23.62 22.45 

 (23.53)  (23.55)  (23.70) 

27.02 25.85 27.06 25.89 27.70 26.57 

33.80 32.69 33.87 32.77 35.18 34.14 

44.13 43.12 44.23 43.22 46.22 45.27 

58.03 56.86 58.15 56.86 60.82 56.99 

62.97 60.96 62.98 60.98 63.07 61.39 
a Results are given by Li Ref [44], values within parenthese are 

from Ref  [35] 
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C. Mode shapes 

 

 

  
First normalized mode Second normalized mode 

 
 

Third normalized mode Fourth normalized mode 

Fig 6:  First four mode shapes of a rectangular CSSE with 𝐂𝟒
∗ = ∞, 𝐊𝟒

∗ = 𝟐𝟎𝟎 and 𝛂 =
𝟐

𝟑
.

    This subsection studies the influence of the aspect ratio, 

the translational, and the rotational stiffness on the four 

lowest mode shapes. Fig (6) shows the first four mode shapes 

of a rectangular CSSE with a rotational stiffness tending to 

infinity and a translational stiffness, K4
∗ = 200 at the edge 

y = b. The aspect ratio is α =
a

b
=

2

3
. The normalized cross-

sections of these four modes are plotted in Fig (7): the 

normalized cross-sections in x-direction y =
b

2
 are plotted in 

Fig (7.a), and the normalized cross-sections in y-direction 

x =
a

2
 are plotted in Fig (7.b).  

As might be expected, the deflections at the edges x∗ = 0,1 

shown in Fig (7.a) and at edge y∗ = 0 shown in Fig (7.b) are 

zero because of the boundary condition natures, i.e., clamped 

at x∗ = 0 and simply supported at x∗ = y∗ = 1. Moreover, 

the slopes at edges x∗ = y∗ = 1 are null since the edge x = 0 

is clamped and the edge y∗ = 1 is totally retained in rotation 

(C4
∗ = tends toward infinity).  The influence of the aspect 

ratio on the mode shapes is illustrated by Fig (8); this figure 

plots the normalized cross-sections of four modes 

corresponding to the middle plate in x-direction y =
b

2
 in 

(8.a)

  

(a): middle plate in x-direction y=b/2, (b) middle plate in y-direction x=a/2 

Fig 7:  Normalized cross-sections of the four modes corresponding to a rectangular CSSE plate with 𝑪𝟒
∗ = ∞, 𝑲𝟒

∗ = 𝟐𝟎𝟎 

𝜶 =
𝟐

𝟑
. 
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Normatized first mode Normatized second mode Normatized third mode 

Fig 8:  Normalized cross-sections of three modes corresponding to, (a): middle plate in x-direction 𝒚 =
𝒃

𝟐
 , (b) middle 

plate in y-direction 𝒙 =
𝒂

𝟐
  for a rectangular CSSE plate with 𝐂𝟒

∗ = ∞, 𝐊𝟒
∗ = 𝟐𝟎𝟎 and three value of aspect ratio 𝛂 =

𝐚

𝐛
.  

Blue curve 𝛂 = 𝟎. 𝟒, green curve 𝛂 =
𝟐

𝟑
, red curve 𝛂 = 𝟏. 
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Figure  9: Normalized cross-sections of three modes corresponding to, (a): middle plate in x-direction 𝒚 =
𝒃

𝟐
 , (b) middle 

plate in y-direction 𝒙 =
𝒂

𝟐
  for a rectangular CSSE plate with, 𝑲𝟒

∗=200 and three value of rotational stiffness 𝑪𝟒
∗ , the 

aspect ratio is α=2/3. Blue curve 𝑪𝟒
∗ = 𝟎, green curve 𝑪𝟒

∗ = 𝟓, red curve 𝑪𝟒
∗ = ∞. 
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Normatized first mode Normatized second mode Normatized third mode 

Figure  10: Normalized cross-sections of three modes corresponding to, (a): middle plate in x-direction 𝒚 =
𝒃

𝟐
, (b) middle 

plate in y-direction 𝒙 =
𝒂

𝟐
 for a rectangular CCSE plate with, 𝑪𝟒

∗ = 𝟎 and four values of translational stiffness 𝑲𝟒
∗ , the 

aspect ratio is 𝜶 =
𝟐

𝟑
. Marine blue curve 𝑲𝟒

∗ = 𝟎, green curve 𝑲𝟒
∗ = 𝟐𝟎𝟎𝟎, red curve 𝑲𝟒

∗ = 𝟑𝟎𝟎𝟎, sky blue curve 𝑲𝟒
∗ =

∞. 

and to the middle plate in y-direction x =
a

2
 in (8.b) for a 

rectangular CSSE plate with a rotational stiffness C4
∗ = ∞, a 

translational stiffness K4
∗ = 200 at the edge y = b and three 

value of aspect ratio α =
a

b
.  Blue curve α = 0.4, green curve 

α =
2

3
, red curve α = 1. The first mode is not very sensitive 

to the aspect ratio, however from the second one, all modes 

are influenced by the aspect ratio in x- and y-direction. 

The normalized cross-sections of four modes corresponding 

to the middle plate in x-direction y =
b

2
 and to the middle 

plate in y-direction x =
a

2
 for a rectangular CCSE plate are 

plotted in Fig (10). The rotational stiffness is token C4
∗ = 0 

and the translational stiffness K4
∗  takes four values 

0,100,1000 and a very big value (1010), the aspect ratio is 

α =
2

3
. The translational stiffness acts a lot on the modes.  

 

IV. CONCLUSION 

   A Rayleigh-Ritz method is proposed for the transversal 

vibration analysis of a rectangular plate with elastically 

restrained edges. The defection trial functions are assumed as 

products of beam functions witch are the exact solution of 

differential motion equation of beam with appropriate end 

conditions, i.e., trigonometric and hyperbolic terms, and the  

unknown coefficients of these terms are determined from the 

end conditions. The results show that the influence of 

translational stiffness on the frequency parameters is greater 

than that of the rotational stiffness. Even if the trial functions 

do not verify the boundary condition of the plate, the current 

method is applicable to the various boundary conditions, 

including almost all classical cases, thanks to the good 

accuracy and reliability of its results, which have been 

proven by several comparisons with the bibliography. It is 

pointed out that the current method errs considerably if the 

plates have two opposite edges having small stiffness values 

of the translational stiffness, in particular two opposite free 

edges, this remark agrees with the theses. This remark is in 

agreement with that what has been written by Zhou in his 

conclusion of the Ref [42]. However, the current method is 

simple, straightforward, allows to obtain numerical solutions 

of a rather difficult problem, and it can be readily extended to 

other more complicated boundary conditions such as non-

uniform elastic restraints, concentrated masses, partial 

supports, orthotropic plates, FGM, and sandwich plates. 
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