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Abstract:  The natural frequencies and mode shapes of in-

plane vibration of thin circular arches elastically restrained 

against rotation at their ends are determined using the 

Rayleigh-Ritz method; the trial functions obtained is taken 

as particular solutions of the sixth order differential 

equation of arch vibrations corresponding to an opening 

angle equal to 1 𝑟𝑎𝑑. The arch axis is assumed to be 
inextensible, and the dimensions of the cross-section are 

supposed constant and small in comparison with the radius.  

The first frequency parameters of arches with different 

opening angles and torsional spring stiffnesses are 

determined and shown to compare well with the available 

literature.   The effect of the rotational stiffness on the 

frequency parameter and mode shapes are determined and 

illustrated in the joint plots. The accuracy and relative 

simplicity of the RRM applied in a systematic way to such 

complicated problems is established, making it ready to use 

in more complex situations, such as those of arches with one 
or more added masses, with non-uniform cross-section, with 

variable radius  or with  point supports  

Keywords - In-plane linear vibration, circular arches, 

Rayleigh-Ritz method, elastically restrained, frequency 

parameters, mode shapes. 

I. INTRODUCTION  
Arches are among the basic structural elements encountered 

in various real-world applications, such as aerospace 

structures, bridges, tunnels, and roof structures. Recently, 

deployable antennas have evolved in aerospace engineering 

using arches to support the reflector surface [1]. In-plane 

vibrations of circular arches elastically restrained against 

rotation at the two ends have not been studied enough in 

literature. Wasserman [2] has found the lowest natural 

frequencies of in-plane vibrations of arches with flexibly 
supported ends by an exact and an approximate formula. De 

Rosa [3], [4] studied the free vibration of an arch with a 

varying cross-section resting on flexible supports by a simple 

method in which the arch is replaced by a set of rigid bars 

connected together by means of elastic cells. Karami [5] 

investigated this type of arch with varying cross-sections by 

the accurate general differential quadrature method 

(GDQM). This paper investigates in-plane vibrations of 

inextensible thin circular arches having a constant cross-

section and elastically restrained against rotation at their two 

ends using the Rayleigh-Ritz method (RRM). The new 

choice of trial functions used here constitutes an interesting 

novelty of this work because it allows treating easily many 
practical situations, such as those of arches with one or more 

added masses, with non-uniform cross-sections, or having a 

variable radius or one or more point supports. This is 

expected to give designers a useful tool for an innovative and 

flexible design. The trial functions are taken as particular 

analytical solutions of the sixth-degree differential motion 

equation of inextensible arches. Consequently, the results of 

deep arches are given for the first time by RRM in these 

papers. The rest of this paper is organized as follows: In 

Section (2), the procedure adopted for finding the particular 

solutions verifying the end conditions for an arch with an 

opening angle θ = 1 rad is exposed. Section (3) is dedicated 

to the RRM general formulation. In Section (4), numerical 

results corresponding to different opening angles and to 

different values of the end support elastic stiffnesses given 

and compared with the bibliography. Finally, new numerical 

results are provided to be used as benchmarks for future 

quantitative comparisons. 
 

II. TRIAL FUNCTIONS OF ARCHES SIMPLY 

SUPPORTED IN ADDITION TO ROTATIONAL SPRING AT 

IT BOTH ENDS 

A. presentation of the problem 

The thin circular arch studied shown in Fig. (1) is simply 

supported and elastically restrained against rotation at its 

both ends, it has a constant radius R, an opening angle θ, 

Young’s modulus E, a mass per unit length of ring segment 

ρ, and the second moment of inertia with respect to the 

neutral line of the cross-sectional area I. The neural line is 

supposed inextensible. The stiffnesses of the left and right 

elastically restrained ends are Ki and Kr respectively. The 

effect of shear deformation is assumed to be neglected, and 

the constant cross-section is supposed to be small in 

comparison with the radius. In these conditions, the radial 
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Fig. 1: The simply supported circular arch elastically 

restrained in rotation at its both ends 

 

and tangential displacements u and v are related by [4], [6]: 

𝑢 =
𝜕𝑣

𝜕𝛼
          (1) 

The purpose of this section is to determine the shape of the 

arch vibration solution. 

 

B. Determination of the trial function for the RRM 

The sixth order differential equation of the arch motion in 

terms of the in-plane displacement of a current point P 

defined by the curvilinear abscissa  [4], [7]:  

 

v(6)(α) + 2v(4)(α) + (1 − Ω2)v(2)(α) + Ω2v(α) = 0     (2) 

 

where v(n)(α) indicates the nth the derivative of v(α), with 

respect to α, Ω is the non-dimensional frequency parameter 

such as Ω2 =
ρR4

EI
ω2And ω is the natural frequency. The 

sixth-degree characteristic polynomial associated with Eq (2) 

is:  

X3 + 2X2 + (1 − Ω2)X + Ω2 = 0            (3) 

 

The general solution of the differential Eq. (2) is [8]:  

v(α) = C1sinh(λ1α) + C2cosh(λ1α) + C3sin(λ2α) +
C4cos(λ2α) + C5sin(λ3α) + C6cos(λ3α)         (4) 

in which p =
1

3
+ Ω2, q =

2

27
−

5

3
Ω2 and  

λ1 = √Z1 −
2

3
Z1 = 2√

p

3
cos (

1

3
arccos (√

27q2

4p3
))

 

λ2 = √−Z2 +
2

3
Z2 = 2√

p

3
cos (

2π

3
−

1

3
arccos (√

27q2

4p3
))

λ3 = √−Z3 +
2

3
Z3 = 2√

p

3
cos (

2π

3
+

1

3
arccos (√

27q2

4p3
))

 

 

The integration constants C1 to C6 are determined by the end 

conditions. The arch is supposed to be restrained against 

vertical and horizontal displacements and elastically 

restrained against rotations at both ends. This leads to [4], 
[9]:  

at the end    

 α = −α0    v = v(1) = 0,    M = −KlΨ         (5) 

and at the end 

     α = α0    v = v(1) = 0,    M = KrΨ           (6) 

in which M(α) is the bending moment given by [4]:  

M(α) = −
EI

R2
(v(3)(α) + v(1)(α))             (7) 

and Ψ(α) is the angle of rotation of the cross-section at the 

slope α due to the bending given by [4] :  

 Ψ(α) =
1

R
(v(2)(α) + v(α)          (8) 

Eqs. (5)-(8) can be summarized at the left end (α = −α0) by 

[4]:  

 v = 0,    v(1) = 0,    v(2) − Kl
∗v(3) = 0        (9) 

and at right end (α = α0) [5]:  

 v = 0,    v(1) = 0,    v(2) + Kr
∗v(3) = 0      (10) 

in which Kl
∗ =

Kl .R

EI
 and Kr

∗ =
Kr.R

EI
 are the dimensionless 

rotational stiffness at the left and right ends? The end 

condition calculations are very tedious because of  the 

multiplicity of parameters involved, i.e., the seven unknowns 

C1 to C6, the frequency parameter Ω, and the arch 

geometrical and mechanical parameters such as the opening 

angle θ and the dimensionless rotational stiffnesses Kl
∗ and 

Kr
∗. Symbolic calculations by a Matlab code made it possible 

to easily obtain a system of seven unknowns and six 

equations, written as : 

 [S]. {C} = [0]         (11) 

in which {C}T = (C1, C2; C3, C4, C5, C6) and [S] is a 6 × 6 

square Matrix. The solutions for Ω are deduced by stating the 

nullity of the matrix determinant. This leads to a 

transcendental equation solved numerically by the Matlab 

software to get the series of frequency parameters of the arch 

considered. Table (1) gives the first eight values of Ωi found 

for arches with an opening angle θ = 1rad and different 

values of the dimensionless rotational stiffness Kr
∗ =

Kr .R

EI
 at 

right end and Kl
∗ =

Kl .R

EI
 at the left end. The corresponding 

normalized tangential and radial modes v(α∗), u(α∗), (α∗ =
α

θ
 

varying from -0.5 to 0.5), are plotted in Fig. (2), for CS arch  

Kl
∗ = ∞ and Kr

∗ = 0 as an illustration of the series of basic 

functions used in the RRM applied below to various values 

of θ, Kl
∗ and Kr

∗.   
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Table 1:  Values of the first eight frequency parameters 𝛀𝐢 obtained for circular arches with an opening angle 𝛉 = 𝟏𝐫𝐚𝐝 and various 

values of dimensionless rotational stiffness 𝐊∗ Supposed equal at both ends. 

𝑲∗ 𝛀𝟏 𝛀𝟐 𝛀𝟑 𝛀𝟒 𝛀𝟓 𝛀𝟔 𝛀𝟕 𝛀𝟕 

0 42,415 85,394 160,88 243,51 358,31 480,45 634,67 796,31 

6 50,839 92,528 171,11 252,35 369,16 490,11 645,84 806,49 

12 54,794 96,708 177,62 258,54 377,10 497,53 654,64 814,80 

24 58,595 101,38 185,30 266,53 387,72 508,04 667,40 827,12 

∞ 65,724 112,46 204,69 291,05 422,16 548,03 718,44 883,44 

 

 
 

Fig. 2: First four tangential 𝒗 and radial  𝒖 displacements of CS arch with an opening angle = 𝟏𝐫𝐚𝐝 . 

III. APPLICATION of the RRM to simply supported arches in 

addition to rotational restrains at both ends 

The Rayleigh-Ritz method is a numerical method of finding 

approximations to eigenvalue equations that are difficult to 

solve analytically, particularly in the context of solving 

physical boundary value problems that can be expressed as 

matrix differential equations. It is used in mechanical 

engineering to approximate the eigenmodes of a physical 

system and the resonant frequencies of a structure.  

3.1 General theory 

Upon assuming harmonic motion, the tangential 

displacement v(α, t) of the current point of the arc axis P(α) 

can be expended in the form of a finite series:  

v(α, t) = aivi(α)sin(ω. t)          (12) 

 Repeated indexes are summed according to Einstein’s 

convention, vi is the ith the trial function is given by :  

vi(α) = C1sinh(λiα) + C2cosh(λiα) + C3sin(γiα) +
C4cos(γiα) + C5sin(κiα) + C6cos(κiα)                           (13) 

corresponding to the frequency parameter Ωi and ai its 

contribution coefficient. The arch kinetic energy T is given 

by [10]:  

 T =
1

2
ρ ∫

0.5l

−0.5l
((

∂v

∂t
)

2

+ (
∂u

∂t
)

2

) ds       (14) 

 The arch strain energy V which is the sum of the bending 

strain energy and the elastic energies stored in the torsional 

spring at the ends α = −α0 and α = α0. It is given by [10]:  

V =
1

2
E. I ∫

0.5l

−0.5l
(

∂2u

∂s2 +
∂

∂s

v

R
)

2

ds +
1

2
Kl (

∂2v

∂α2
)

α=−α0

2

+

1

2
Kr (

∂2v

∂α2
)

α=α0

2

                                                  (15) 

 in which ds = Rdα is the elementary length, l = Rθ is total 

length and u =
∂v

∂α
= v(1). Equations. (14)-(15) become: 

 T =
ρR

2
∫

α0

−α0
(

∂v

∂t
)

2

+ (
∂v(1)

∂t
)

2

dα       (16) 

V =
E.I

2R3 ∫
α0

−α0
(v(3) + v(1))

2
dα +

Kl

2
(v(2))

α=−α0

2
+

Kr

2
(v(2))

α=α0

2
          (17) 

 Taking into account Eq.(12), the kinetic and the strain 

energies are discretized as follows:  

T =
1

2
ω2aiajmijcos2(ωt)              (18)  

V =
1

2
aiajkijsin2(ωt)           (19) 

 mij , kijAre the mass and the linear rigidity tensors, 

respectively. There are given by :  

mij = ρR  ∫
α0

−α0
(vivj + vi

(1)
vj

(1)) dα          (20) 

kij =
E.I

R3 ∫
α0

−α0
(vi

(3)
+ vi

(1)
) (vj

(3)
+ vj

(1)
) dα +
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Kl (vi
(2)

vj
(2)

)
α=−α0

+ Kr (vi
(2)

vj
(2)

)
α=α0

                  (21) 

The vibration problem is governed by Hamilton’s principle 

[11]:  

 δ ∫
2π

ω
0

(V − T)dt = 0        (22) 

After the integration of the time functions over the range 

[0,
2π

ω
]And the calculation of the derivatives with respect to 

the ai’s, one gets a linear eigenvalue problem, written in a 

matrix form as [11]:  

2[K]. {A} − 2ω2[M]{A} = {0}        (23) 

{A}T = [a1, a2, . . . , an] is the column vector of the basic 

function contribution coefficients. We must find [M] , [K] are 

the matrices associated with the tensors defined above. In 

order to facilitate the calculations, we define, as in Ref [11], 

the non-dimensional parameters α∗ , mij
∗ , kij

∗  by:  

α∗ =
α

θ
 the dimensionless angular abscissa. 

vi
∗ =

vi

R
 the ith dimensionless trial arch modes. 

mij
∗   =

mij

ρR3 The dimensionless general term of the mass 

tensor. 

kij
∗   =

kij

ρR3 The dimensionless general term of the rigidity 

tensor. 

The frequency parameter Ω defined above is given by:  

  Ω2 =
ρR4

EI
ω2         (24) 

Has to be determined in what follows. The expressions for 

the dimensionless mass and rigidity tensors are:  

mij
∗ = θ ∫

0.5

−0.5
vi

∗vj
∗dα∗ +

1

θ
∫

0.5

−0.5
vi

∗(1)
vj

∗(1)
dα∗      (25) 

 

kij
∗ =

1

θ
∫

0.5

−0.5
vi

∗(1)
vj

∗(1)
dα∗ +

1

θ3 ∫
0.5

−0.5
(vi

∗(1)
vj

∗(3)
+ vj

∗(1)
vi

∗(3)) dα∗ +
1

θ5 ∫
0.5

−0.5
vi

∗(3)
vj

∗(3)
dα∗ +

1

θ4
(Kl

∗vi
∗(2)

vj
∗(2))

(α∗=−0.5)

       +
1

θ4
(Kr

∗vi
∗(2)

vj
∗(2))

(α∗=0.5)

(26) 

The dimensionless form of Eq.(23) is expressed by:  

[K∗]{A} − Ω2[M∗]{A} = {0}        (27) 

Eq(27) represents the Rayleigh-Ritz formulation of the linear 

vibration problem. It is a linear algebraic system that has to 

be solved numerically to get the eigenvalues Ωi = ωi√
ρ

EI
R2 

and the eigenvectors {A}. 

 
IV. NUMERICAL RESULTS AND DISCUSSION 

  A computer program has been written, based on the 

RRM presented above, to calculate the results of the linear 

arch vibration Eq numerically (27), corresponding to thin 

circular arches elastically restrained against rotation at their 

two ends. It is a linear Eigenvalue issue that has been solved 

numerically using the Matlab software, leading to the 

eigenvalues Ωi = √
ρ

EI
R2ωi (i = 1. . N) and their associated 

eigenvectors. To check the convergence of the solution, in 

particular for the fundamental and second frequency 

parameters Ω1 and Ω2 of a CC circular arch, the relative 

difference is defined by:  

 Δi% =
Ωi−Ωref

Ωref
× 100    i = 1,2       (28) 

in which ΩRef, taken as references, is the fundamental and 

second frequency parameters given by the exact method of  

de Rosa [7]. N is the number of the trial arch function. Fig. 

(3) gives the curves of the relative difference Δ1 and Δ2 

versus N for a CC circular arch with the variable value of the 

opening angle θ = 20∘, 80∘, 160∘, 180∘. One can notice the 

rapid convergence. If only one trial arch function is used (the 

Rayleigh method), the error does not exceed 0.12%. The 

quick convergence is one of the strong points of the trial arch 

function choice in this work.  

 

    

  
 Fig. 3: Convergence study of CS circular arc  
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This convergence study can be investigated by the 

coefficient contributions ai, when N = 10 trial arch functions 

are used to calculate the frequency parameters for an 180∘ 
Clamped-clamped arch. The contribution coefficient 

corresponding to different modes are listed in Table (2). The  

results show that the only significant contributions are  

those corresponding to the lowest modes. A second 

calculation made with N = 3 arch functions leads to the 

same coefficient contributions calculated before, which are 
summarized in Table (3).  

 
Table 2:  The contribution coefficient 𝐚𝐢 for the CS circular arch with 𝛉 = 𝟏𝟖𝟎∘ with 𝐍 = 𝟏𝟎 trial arch functions 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

𝐚𝟏 1,0000 4,E-06 -4,E-01 -1,E-04 -3,E-01 -7,E-04 -3,E-01 -1,E-01 2,E-01 -2,E-01 

𝐚𝟐 -1,E-06 1,0000 -2,E-05 -9,E-02 -1,E-04 -8,E-02 -4,E-04 -6,E-02 -1,E-02 4,E-02 

𝐚𝟑 8,E-03 -2,E-07 0,9336 -1,E-04 -2,E-01 -4,E-04 -1,E-01 -6,E-02 8,E-02 -1,E-01 

𝐚𝟒 -2,E-07 2,E-03 -2,E-07 0,9956 -9,E-05 -5,E-02 -2,E-04 -3,E-02 -6,E-03 2,E-02 

𝐚𝟓 8,E-04 -9,E-09 2,E-02 2,E-05 0,9426 -4,E-04 -1,E-01 -4,E-02 5,E-02 -6,E-02 

𝐚𝟔 -2,E-07 1,E-04 -2,E-06 6,E-03 1,E-05 0,9952 -2,E-04 -2,E-02 -3,E-03 1,E-02 

𝐚𝟕 1,E-04 -5,E-06 3,E-03 -5,E-05 2,E-02 -3,E-04 0,9508 -5,E-02 4,E-02 -4,E-02 

𝐚𝟖 2,E-05 -7,E-06 3,E-04 8,E-04 2,E-03 5,E-03 7,E-03 0,7878 2,E-01 -1,E-03 

𝐚𝟗 1,E-05 -4,E-06 3,E-04 6,E-04 2,E-03 4,E-03 1,E-02 6,E-01 -0,9100 -7,E-02 

𝐚𝟏𝟎 1,E-06 4,E-07 2,E-05 4,E-05 1,E-04 2,E-04 1,E-03 4,E-02 -3,E-01 -0,9626 

 

Table 3:  The contribution coefficient 𝐚𝐢 for the CS circular 

arch with 𝛉 = 𝟏𝟖𝟎∘ with 𝐍 = 𝟑 trial arch functions 

 Mode 1 Mode 2 Mode 3 

𝐚𝟏 1,0000 7,E-11 4,E-01 

𝐚𝟐 3,E-12 -1,0000 9,E-11 

𝐚𝟑 8,E-03 -1,E-10 -0,9363 

The fundamental frequency parameters Ω for a circular arch 

elastically restrained against rotation with opening angles 

θ = 40∘, 80∘, 120∘, 180∘ are summarized in table (4), the 

dimensionless rotational stiffness is supposed to be identical 

at both ends Kr
∗ = Kl

∗ = K∗. The present results are compared 

with those obtained by several methods such as the 

generalized differential quadrature rule (GDQR) developed 

by Karami [5], the cell discretization method (CDM) applied 

by De Rosa [4], and the Galerkin method [4]. In general, the 

comparison is excellent. The percentage difference with the 

CDM, which gives lower bounds to the exact results, remains 

small; the present results are slightly less than those given by 

the Galerkin method. One can see that the advantage of the 

RRM applied here is that it leads to the frequency parameters 

with good precision for all opening angles. The first six 

mode shapes for SS, CC, and CS 90∘ This is illustrated in 

Fig (4).  Table (5) lists the values of the fundamental 

frequency parameters Ω1 for elastically restrained circular 

arches for a wide range of opening angles from θ = 20∘ to 

140∘And for various values of the dimensionless rotational 

stiffness parameters supposed to be identical at both 

ends K∗ = Kl
∗ = Kr

∗. The results are compared with those 

given by De Rosa [3] and Wasserman [7]. In all cases, the 

percentage difference  remains less than 3.22%; this value is 

noticed for a very big value of the rotational stiffness K∗. It is 
clear that the present results are very accurate because of 

their excellent comparison with the results given by the 

DQM [7] and those given by Ref[4].
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SS arch CS arch CC arch 

 

Fig. 4: The first fourth mode shapes of the 𝟗𝟎∘ circular arches with variable rotational stiffness 𝐊𝐫
∗ = 𝐊𝐥

∗ = 𝐊∗. 

 

 

Table 4:  Fundamental frequency parameters 𝛀𝟏 = 𝛚𝟏√
𝛒

𝐄𝐈
𝐑𝟐 for elastically restrained arches against rotation with identical 

dimensionless rotational stiffness at both ends 𝐊𝐥
∗ = 𝐊𝐫

∗ = 𝐊∗ . 

 
 𝑲∗ = 𝟎 𝑲∗ = 𝟔 

𝜽 Present GDQR CDM Galerkin Present GDQR CDM Galerkin 

40 78,5581 78,558 78,558 78,396 91,0774 90,954 90,692 91,972 

80 17,9640 17,964 17,964 17,932 22,8178 22,788 22,713 23,345 

120 6,9267 6,9268 6,9268 6,9168 9,6148 9,5407 9,5073 9,8534 

 𝐾∗ = 12 𝑲∗ = 𝟐𝟒 

𝜽 Present GDQR CDM Galerkin Present GDQR CDM Galerkin 

40 98,2578 98,014 97,676 100,17 106,2148 105,79 105,36 108,83 

80 24,7671 24,711 24,612 25,489 26,4761 26,399 26,275 27,283 

120 10,4635 10,337 10,293 10,719 11,1130 10,954 10,9 11,356 

 𝑲∗ = 𝟏𝟎𝟎 𝑲∗ = ∞ 

𝜽 Present GDQR CDM Galerkin Present GDQR CDM Galerkin 

40 118,0861 117,71 117,09 121,23 123,9769 123,98 123,24 127,26 

80 28,4494 28,383 28,225 29,268 29,2177 29,218 29,045 30,061 

120 11,7382 11,599 11,534 11,778 11,8476 11,848 11,778 12,225 

 

Fig. (5) displays the first four frequency parameters Ωi, i = 1 

to 4, as a function of the dimensionless rotational stiffness K∗ 

Supposed to be identical at both ends, and this for several 

values of the opening angle θ. It may be noticed that the  

The frequency parameter decreased when the arch was 

opening angle increases, but the rate of decrease is higher for 

small opening angles and very small for large opening 

angles. Also, the fundamental frequency increases with the  

 

 

 

torsional stiffness K∗ but this growth is very small for large 

values of K∗. The first four mode shapes of 90∘ circular 

arches are plotted in Fig. (6) with an identical rotational 

stiffness K∗ At both ends, taking the values 0,6,12, ∞. The 

marine blue curve corresponds to SS circular arches, and the 

red curve corresponds to CC circular arches. One can 

conclude that the rotational stiffness affects the mode shapes 

slightly; in particular, the slop at the ends changes. 
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Fundamental frequency parameter 𝛀𝟏 second frequency parameter 𝛀𝟐 

Fig. 5: The frequency curve as a function of the torsional stiffness assumed the same at the two ends for several values of opening 

angle 𝜽. 

Table 5:  Fundamental frequency parameters 𝛀𝟏 = 𝛚𝟏√
𝛒

𝐄𝐈
𝐑𝟐 for elastically restrained arches against rotation with identical 

dimensionless rotational stiffness at both ends 𝐊𝐥
∗ = 𝐊𝐫

∗ = 𝐊∗.  

𝐊∗  20 40 60 80 100 120 140 

0 

Present 321,521 78,560 33,627 17,965 10,777 6,927 4,654 

Ref [12] 321,520 78,556 33,615 17,967 10,780 6,928 4,655 

Ref [3] 320,827 78,396 33,560 17,932 10,759 6,917 4,647 

6 

Present 355,776 91,222 40,869 22,842 14,353 9,691 6,867 

Ref [12] 352,197 92,118 41,652 23,345 14,653 9,853 6,939 

Ref [3] 349,428 90,692 40,741 22,713 14,192 9,507 6,674 

12 

Present 382,947 98,523 44,268 24,808 15,630 10,580 7,517 

Ref [12] 375,762 100,170 45,491 25,489 15,969 10,719 7,534 

Ref [3] 370,109 97,677 44,099 24,612 15,374 10,293 7,221 

18 

Present 402,846 103,224 46,248 25,866 16,272 11,004 7,812 

Ref [12] 393,860 105,304 47,659 26,604 16,615 11,122 7,802 

Ref [3] 385,797 102,191 46,051 25,635 15,976 10,675 7,477 

24 

Present 417,560 106,487 47,545 26,522 16,653 11,244 7,973 

Ref [12] 408,028 108,826 49,044 27,283 16,997 11,356 7,954 

Ref [3] 398,116 105,357 47,329 26,275 16,340 10,900 7,625 

∞ 

Present 503,578 123,984 53,744 29,220 17,928 11,849 8,232 

Ref [12] 516,561 127,260 55,218 30,061 18,470 12,225 8,505 

Ref [3] 500,560 123,240 53,423 29,045 17,821 11,778 8,184 

 

   

   

Fig. 6. The first six mode shapes of the 𝟗𝟎∘  circular arches with variable rotational stiffness 𝑲𝒓
∗ = 𝑲𝒍

∗ = 𝑲∗. Dashed line: arch 

before deformation, blue line: arch with 𝑲∗ = 𝟎, green line: arch with 𝑲∗ = 𝟏𝟐, red line: arch with 𝑲∗ = ∞, 

 

The aim of this study was not only to present new trial arch 

functions used in the RRM. The purpose was also to provide 

new numerical results to be used as benchmarks for future 

quantitative comparisons. Table (6) gives the first five 

frequency parameters of elastically restrained arches with left 

ends having several values of the rotational stiffness 𝐾𝑙
∗  and 

the  right ends are only simply supported (kr
∗ = 0) for several 

values of the opening angle θ. The results of the first lines 

correspond to SS arches, and the results of the last lines 

correspond to CS arches. Table (7)  lists the same results for 

various values of the rotational stiffness at the left end 𝑘𝑙
∗ and 

for a rotational stiffness at the right end 𝑘𝑟
∗ Having a very big 

value. 
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Table 6:  First five frequency parameters 𝛀𝐢 for arches with various values of the left dimensionless rotational stiffness 𝐊𝐥
∗ and right 

rotational stiffness 𝐊𝐫
∗ = 𝟎. 

 First frequency parameter 𝛀𝟏 
𝐊𝒍

∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ 𝛉 = 𝟏𝟐𝟎∘ 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 321,515 78,558 33,626 17,964 10,776 6,927 3,218 2,267 

6 337,196 84,763 37,202 20,351 12,501 8,239 4,056 2,962 

12 349,441 88,235 38,815 21,261 13,073 8,623 4,253 3,108 

18 358,775 90,436 39,725 21,736 13,354 8,804 4,340 3,172 

24 365,656 91,930 40,309 22,027 13,521 8,907 4,387 3,205 

100 392,969 97,158 42,139 22,853 13,948 9,148 4,475 3,261 

∞ 405,756 99,582 42,940 23,178 14,091 9,210 4,478 3,254 

 Second frequency parameter 𝛀𝟐 
𝐊𝒍

∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ 𝛉 = 𝟏𝟐𝟎∘ 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 690,011 171,150 75,077 41,465 25,923 17,495 9,154 6,923 

6 703,312 176,694 78,421 43,791 27,667 18,867 10,084 7,713 

12 715,268 180,484 80,348 44,964 28,454 19,429 10,404 7,964 

18 724,717 183,075 81,550 45,651 28,893 19,730 10,568 8,090 

24 733,852 185,218 82,433 46,108 29,163 19,902 10,649 8,149 

100 773,742 193,377 85,435 47,518 29,919 20,342 10,819 8,258 

∞ 796,969 197,896 86,969 48,158 30,209 20,474 10,833 8,251 

 Third frequency parameter 𝛀𝟑 
𝐊𝒍

∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ 𝛉 = 𝟏𝟐𝟎∘ 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 1293,512 321,540 141,584 78,640 49,545 33,773 18,160 13,976 

6 1310,900 328,812 145,974 81,685 51,818 35,550 19,350 14,981 

12 1327,230 334,130 148,737 83,399 52,984 36,393 19,841 15,370 

18 1341,929 338,146 150,606 84,473 53,677 36,874 20,108 15,579 

24 1353,763 341,186 151,951 85,212 54,133 37,177 20,262 15,695 

100 1417,629 354,619 156,960 87,545 55,338 37,820 20,413 15,734 

∞ 1458,743 362,676 159,748 88,772 55,967 38,187 20,593 15,881 

 Fourth frequency parameter 𝛀𝟒 

𝐊∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ 𝛉 = 𝟏𝟐𝟎∘ 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 1987,738 495,553 219,229 122,522 77,767 53,464 29,317 22,811 

6 2003,429 502,266 223,384 125,480 80,034 55,280 30,587 23,904 

12 2018,683 507,509 226,249 127,341 81,356 56,273 31,206 24,409 

18 2029,482 511,012 228,085 128,494 82,152 56,855 31,553 24,688 

24 2045,664 515,096 229,883 129,483 82,764 57,264 31,763 24,846 

100 2120,142 531,386 236,150 132,478 84,342 58,115 31,937 24,848 

∞ 2177,741 543,017 240,296 134,352 85,324 58,700 32,249 25,122 

 Fifth frequency parameter 𝛀𝟓 
𝐊𝒍

∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ 𝛉 = 𝟏𝟐𝟎∘ 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 2913,521 726,539 321,578 179,878 114,325 78,745 43,425 33,918 

6 2931,666 734,273 326,350 183,261 116,905 80,804 44,855 35,146 

12 2949,839 740,541 329,794 185,512 118,512 82,016 45,617 35,771 

18 2967,529 745,700 332,362 187,087 119,593 82,810 46,104 36,168 

24 2982,091 749,863 334,369 188,269 120,365 83,349 46,401 36,399 

100 3079,124 771,396 342,488 191,761 121,646 83,312 44,800 34,350 

∞ 3159,699 787,861 348,679 195,015 123,936 85,364 47,090 36,793 

The results of the first lines correspond to SS arches, and the 
results of the last lines correspond to CC arches. Finally, 

Table (8) gives the same results for the variable value of the 

rotational stiffness supposed equal at both ends, the results of 

the first lines correspond to SS arches, and the results of the 
last lines correspond to CC arches. 
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Table 7:  First five frequency parameters 𝛀𝐢 for arches with various values of the left dimensionless rotational stiffness 𝐊𝐥
∗ and right 

rotational stiffness  𝐊𝐫
∗ = ∞. 

 First frequency parameter 𝛀𝟏 
𝐊𝐥

∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ 𝜽 = 𝟏𝟐𝟎∘ 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 

0 405,756 99,582 42,940 23,178 14,091 9,210 4,478 3,254 

6 422,978 106,407 46,892 25,826 16,010 10,672 5,413 4,027 

12 436,723 110,360 48,752 26,888 16,684 11,129 5,650 4,205 

18 446,630 112,807 49,801 27,452 17,028 11,357 5,766 4,292 

24 455,715 114,705 50,500 27,771 17,189 11,440 5,785 4,298 

100 480,795 119,970 52,473 28,720 17,718 11,766 5,938 4,411 

∞ 503,551 123,977 53,740 29,218 17,926 11,848 5,927 4,384 

 Second frequency parameter 𝛀𝟐 
𝑲𝒍

∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ 𝜽 = 𝟏𝟐𝟎∘ 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 796,981 197,899 86,970 48,159 30,210 20,475 10,833 8,251 

6 809,954 203,316 90,260 50,464 31,951 21,854 11,778 9,057 

12 821,925 207,145 92,233 51,682 32,780 22,451 12,125 9,331 

18 831,975 209,908 93,525 52,429 33,263 22,788 12,314 9,479 

24 840,715 212,052 94,432 52,902 33,538 22,957 12,382 9,522 

100 879,948 220,677 97,755 54,517 34,434 23,501 12,622 9,694 

∞ 909,146 225,963 99,458 55,195 34,721 23,613 12,604 9,652 

 Third frequency parameter 𝛀𝟑 
𝑲𝒍

∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ 𝜽 = 𝟏𝟐𝟎∘ 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 1458,748 362,677 159,749 88,773 55,967 38,188 20,594 15,881 

6 1477,052 370,280 164,334 91,954 58,343 40,046 21,836 16,929 

12 1493,774 375,795 167,222 93,755 59,574 40,937 22,357 17,343 

18 1505,114 379,200 168,895 94,746 60,222 41,386 22,597 17,526 

24 1523,167 383,261 170,441 95,435 60,526 41,491 22,523 17,413 

100 1496,720 378,618 167,838 93,102 58,173 39,099 20,265 15,318 

∞ 1637,277 407,117 179,364 99,708 62,893 42,943 23,207 17,923 

 Fourth frequency parameter 𝛀𝟒 
𝑲𝒍

∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ 𝜽 = 𝟏𝟐𝟎∘ 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 2177,831 543,038 240,306 134,358 85,328 58,703 32,251 25,124 

6 2193,182 549,597 244,380 137,271 87,571 60,509 33,523 26,222 

12 2208,554 554,851 247,262 139,157 88,921 61,529 34,167 26,750 

18 2222,025 558,949 249,357 140,466 89,831 62,206 34,590 27,098 

24 2235,295 562,517 250,966 141,332 90,326 62,483 34,628 27,065 

100 2099,053 520,826 224,050 120,612 73,836 49,283 26,018 20,011 

∞ 2373,799 592,019 262,066 146,590 93,149 64,128 35,294 27,524 

 Fifth frequency parameter 𝛀𝟓 
𝑲𝒍

∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ 𝜽 = 𝟏𝟐𝟎∘ 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 3159,724 787,868 348,684 195,019 123,939 85,367 47,093 36,796 

6 3178,747 795,855 353,584 198,480 126,570 87,459 48,532 38,026 

12 3195,068 801,835 356,911 200,656 128,117 88,616 49,244 38,602 

18 3194,317 802,240 357,094 200,559 127,760 88,011 48,143 37,260 

24 3229,471 810,274 360,222 201,974 128,384 88,229 48,099 37,242 

100 2329,716 581,084 257,981 144,892 92,444 63,883 35,399 27,693 

∞ 3419,198 852,493 377,236 210,958 134,051 92,324 50,933 39,803 

V. CONCLUSIONS 

This paper treats a semi-analytical solution for free in-

plane vibrations of inextensible circular arches with a 

uniform cross-section. The ends of the arch are axially and 

vertically stationary and elastically restrained in rotation. The 

Rayleigh-Ritz method is applied using trial functions 
obtained from the solution of the sixth order differential 

equation governing the inextensible in-plane vibrations of the 

arch corresponding to an opening angle = 1 rad. Among the 

end conditions considered, the (SS), (CS), (CC) are 

examined, and a large interval of variation of the 

dimensionless rotational stiffness is investigated. The 

integration constants of the differential equation are 

determined in each case via an iterative numerical solution, 
based on the Newton-Raphson method of the transcendental 

frequency equation. The RRM used in this work with its test 
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functions has an advantage compared to the one developed 

by Laura since it gives excellent results even for deep arches. 

The frequency parameter increases strongly for small 

opening angles but decreases slightly for large opening 

angles. Also, it increases with the rigidity of the arch but 

from a value of the dimensionless rotational stiffness K∗ =

200, it becomes insensitive to this stiffness, which allows us 

to conclude that moderate or energetic tightening at the arch 

clamped ends does not change its mode shapes and 

frequencies significantly. The rotational stiffness affects the 
mode shapes slightly. 

Table 8:  First five frequency parameters 𝛀𝐢 for arches with various values of the dimensionless rotational stiffness 𝐊𝐥
∗ =  𝐊𝐫

∗ = 𝐊∗. 

 First frequency parameter 𝛀𝟏 

𝐊∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ = 𝟏𝟐𝟎∘𝜽 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 

0 321,515 78,558 33,626 17,964 10,776 6,927 3,218 2,267 

6 353,156 91,077 40,868 22,818 14,298 9,615 4,944 3,699 

12 378,106 98,258 44,261 24,767 15,543 10,464 5,391 4,037 

18 397,231 102,914 46,238 25,819 16,176 10,876 5,593 4,185 

24 412,261 106,215 47,542 26,476 16,555 11,113 5,702 4,263 

100 472,807 118,086 51,797 28,449 17,614 11,738 5,963 4,443 

∞ 503,551 123,977 53,740 29,218 17,926 11,848 5,927 4,384 

 second frequency parameter 𝛀𝟐 

𝐊∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ = 𝟏𝟐𝟎∘𝜽 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 690,011 171,150 75,077 41,465 25,923 17,495 9,154 6,923 

6 715,844 182,042 81,669 46,057 29,372 20,214 11,003 8,495 

12 739,506 189,542 85,483 48,383 30,936 21,329 11,638 8,993 

18 757,805 194,725 87,937 49,807 31,857 21,969 11,991 9,267 

24 774,148 198,733 89,665 50,745 32,437 22,359 12,198 9,427 

100 855,839 215,678 96,048 53,844 34,175 23,430 12,688 9,781 

∞ 909,146 225,963 99,458 55,195 34,721 23,613 12,604 9,652 

 Third frequency parameter 𝛀𝟑 

𝐊∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ = 𝟏𝟐𝟎∘𝜽 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 1293,512 321,540 141,584 78,640 49,545 33,773 18,160 13,976 

6 1328,503 336,115 150,380 84,745 54,106 37,343 20,552 15,997 

12 1360,719 346,664 155,901 88,195 56,473 39,064 21,569 16,810 

18 1389,165 354,655 159,694 90,405 57,911 40,069 22,130 17,248 

24 1415,493 361,233 162,554 91,953 58,851 40,679 22,419 17,454 

100 1546,840 389,334 173,335 97,235 61,821 42,506 23,242 18,040 

∞ 1637,277 407,117 179,364 99,708 62,893 42,943 23,207 17,923 

 Fourth frequency parameter 𝛀𝟒 

𝐊∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ = 𝟏𝟐𝟎∘𝜽 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 1987,738 495,553 219,229 122,522 77,767 53,464 29,317 22,811 

6 2017,245 508,595 227,393 128,366 82,261 57,076 31,855 25,000 

12 2048,572 519,212 233,129 132,053 84,851 58,995 33,012 25,926 

18 2071,586 526,756 237,115 134,579 86,614 60,303 33,823 26,591 

24 2095,529 533,293 240,181 136,366 87,787 61,135 34,311 26,986 

100 2243,713 566,317 253,353 143,061 91,686 63,614 35,501 27,861 

∞ 2373,799 592,019 262,066 146,590 93,149 64,128 35,294 27,524 

 Fifth frequency parameter 𝛀𝟓 

𝐊∗ 𝜽 = 𝟐𝟎∘ 𝜽 = 𝟒𝟎∘ 𝜽 = 𝟔𝟎∘ 𝜽 = 𝟖𝟎∘ 𝜽 = 𝟏𝟎𝟎∘ = 𝟏𝟐𝟎∘𝜽 𝜽 = 𝟏𝟔𝟎∘ 𝜽 = 𝟏𝟖𝟎∘ 
0 2913,521 726,539 321,578 179,878 114,325 78,745 43,425 33,918 

6 2950,038 742,019 331,111 186,626 119,462 82,834 46,244 36,328 

12 2983,855 753,869 337,672 190,928 122,538 85,152 47,697 37,516 

18 3016,025 763,715 342,725 194,094 124,742 86,793 48,730 38,374 

24 3052,298 773,412 347,180 196,594 126,278 87,771 49,102 38,567 

100 3246,333 817,520 364,936 205,600 131,434 90,929 50,357 39,315 

∞ 3419,198 852,493 377,236 210,958 134,051 92,324 50,933 39,803 
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