
International Journal of Engineering Trends and Technology Volume 69 Issue 2, 144-159, February 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I2P221 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

A Real And Accurate Semantic Search Indexing

Approach Using Asvm Machine In Big Data

Analytics

1Y.Krishna Bhargavi, 2Dr. Yelisetty Ssr Murthy,
3
Dr.O.Srinivasa Rao,

1Gokaraju Rangaraju Institute of Engineering and Technology, Computer Science and Engineering, Hyderabad.

2SRKR Engineering College, Information Technology, Bhimavaram.
3University College of Engineering, JNTU Kakinada, Computer Science and Engineering, Kakinada.

1kittu.bhargavi@gmail.com,2yssrmurthy@gmail.com,3osr_phd@yahoo.com

Abstract
Big data is a receiver of information to give

accurate search and relevant content for better work

efficiency-experience. In earlier days, many semantic

algorithms have been designed to improve effective content

searching, but these are facing limitations. The

information being retrieved and content filtering help

future applications to get comfortable with operations.

Web browsing and its recommendation systems are

currently facing inaccurate content tracking, and hence

the users cannot acquire the required information. In this

research work, an adaptive SVM-based semantic search

technique has been designed for big data applications. The
method is calculating the performance measures like query

time, building time, accuracy, average precision, stdError,

SSR. Here, the presented KVASIR-ASVM architectural

design encounters the existing systems and finally

enhancing the accuracy to 99.72% and recalling at a rate

of 0.997%. These experimental results outperform the

methodology and compete with current technology.

Keywords: semantic search, ASVM, bigdata, Internet,

query time.

I. Introduction

The semantic search technique is improving the traffic

of websites and is simplifying the search engine

functionality with relevant information. Search engines

like Google, Yahoo, Opera Mini, Firefox, and Microsoft

Edge are facing many ambiguities. The current technology

is majorly working on the Internet and big data platforms.

Bigdata offers much excessive information for advanced

future applications. The smart content recommendation

system is necessary to extract the needful articles from the

web(Yahoo, Facebook, and BBC News). Many typical
applications concentrate on semantic article search

techniques for avoiding complex content filtering. From

2011, Google and other browsers started to move towards

artificial intelligence and machine learning techniques for

understanding the query and response from big data. A big

data drive consists of a smart file handling system

mechanism like Hadoop. In this, small and big sizes of the

content can be differentiated by entity types. The semantic

search continuously analyses the web pages and creates

data

Relevant to entity type and properties. Using this
concept, files can be easily handled in the big data

platform. In this investigation, web and serves semantic

search has been examined based on machine learning

algorithms for big data analytics. Various search engines

have many background links and include keywords.

Because of this relevant keyword information, users do not

attain the exact search keyword. The current technology is

going rapidly, but today search engines are unable to

identify the correct keyword relevant to the search

keyword. The recognition of the keyword is no longer

enough but also needs to provide rich information that

contextualizes the semantic search keyword. This research
mainly concentrates on the semantic search engine model

to perform exact and accurate identification in big data.

II. Literature Survey

In this section, various bigdata related semantic

search optimization models have been discussed—

semantic Web information tracking and content filtration

are essential topics for future generations. The relationship

between IT resources and users can be established by using

artificial intelligence and machine learning models.

Exploring web-based content is a critical and challenging
task in the big data environment. The computing

methodologies, artificial intelligence, and knowledge-

based learning mechanisms can handle big data analytics

[1]. The singular value decomposition is a concept to

extract the scientific database depending on priority lexical

matching. The latent semantic search is a critical study

associated with massive records and significant data

analytics documents. The automatic content retrieval

mechanism is necessary for the users to extract the

information from advanced browsers. The computational

comprehensive-textual searching encoding model is
presenting many answers to the user queries. The fold-in

and fold-out mathematical computations are giving the

solutions to significant data updating processes through

SVD[2]. They are describing the hidden information

collection, document classification, and summarization.

The tree classification and estimation process belonging to

machine learning technology is attaining a low probability

of errors [3]. According to a survey of J. Bobadilla[4],

recommended a parallel web searching model. This

content-based filtering mechanism has been incorporated

https://ijettjournal.org/archive/ijett-v69i2p221
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

145

through the Internet of things; this method provides a

better content classification for the development of future

applications. In the past, this type of methodology has not

been presented. This collaborative filtering and massive

prediction can be performed through the social Internet of
things mechanism. The knowledge-based recommendation

system provides human expert suggestions and data

science techniques to differentiate the automatic content

verification in big data analytics. The content-based,

collaborative, knowledge, and hypothesis recommendation

model is very useful for semantic search in the big data

platform. In [5], it has been mentioned that the degree of

document indexing and record balancing is very
complicated, and the N-semantic recommendation system

is introduced.

S no Author Technique Keypoint

1 J. S. Breese et al. [6] Predictive Collaborative

Algorithm for Content

Analysis

In this work, an empirical study of predictive

collaboration algorithm is proposed to

differentiate the big data's content, but this is

taking more delay to extract the information.

2 L. Breslau et al. [7] Web Catching Distributive

Algorithm

The big data-based web request and searching

methodologies artifact is the information. In

this Zipf, a distribution mechanism has been

incorporated for semantic significant data

observations. This model is facing short-term

delays and complex operations.

3 R. Burke et al. [8] User Modeling and

Adaptive Interactions

In this work, an advanced user interaction

model has been designed. It is the largest big

data model to extract the verification from

websites, but it is taking more response time.

4 M. Cha et al. [9] User Search File Priority

Model

In this work, YouTube-related semantic

search work is analyzed through fundamental

keyword concepts. It is a high latency time

process to extract the information.

5 M. Cha et.al[10] Large Scale Big Data

Integration

A semantic search optimization model is

implemented, but it has more complex

operations. It is unable to extract high-end big

data content and does not work for colossal

record analysis.

6 C. L. Clarke et al. [11] Information Filtering with

Hypothesis Model

In this work, a useful high dense content

model has been designed with a filtration

approach. It is a significantly less accurate

process to get bigdata information.

7 P. Cremonesi et.al [12] Cross-Domain

Recommender System

In data mining, colossal data is present. It

cannot be easily recognized by the users. So

in this research work, an adaptive SEO
method is used to identify the records

available in bigdata.

8 P. Cremonesi et.al [13] Low Dimension based

Random Projection

Mechanism

In this work, an adaptive random projection-

based content searching mechanism has been

implemented for big data applications.

Browsers cannot handle clustering data. It can

be possible only with the semantic search

optimization model.

9 S. Dasgupta et, al [14] Random partition KNN

technique

The randomizing KNN model is a high

dimensional mechanism; Here, records’

overlapping has been controlled through the

probability query point technique. It is a very

complex process to retrieve information from

big data.

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

146

10 C. M. De Vries et al. [15] The Parallel Streaming

Mechanism for Web-Scale

Applications

A web-scale application has been working on

the content differentiation and recognition

process. In this work, because of parallelism,

high area information tracking is necessary,

so much delay is happening.

11 S. Deerwester et al. [16] LSA indexing model The latent semantic search analysis is a very

complex process to get the information from

indeed documents. If indexing and Id are
missing, then content segmentation and

filtering are not possible.

12 W. B. Frakes et.al [17] Information Data Structure

Algorithm

The data-structured optimization models are

very complex to implement in HTML

language. The delay and complex operation

can limit data structure techniques. It is a

significant drawback of retrieval in

information data structured modeling.

13 D. Glowacka et al. [18] Open source Web Content

Scientific Analysis

A scientific keyword manipulation and its

digital information retrieval system is

introduced for the semantic database model

14 D. Goldberg et al. [19] Collaborative Wave
Filtering Technique

In this work, an effective wave filtering
model identifies a group database in big data

analytics.

15 K. Hajebi et al. [20] K Nearest Neighbor

Algorithm

In an offline step, the algorithm produces a

nearest neighbor graph and performs to start

from a randomly sampled node of the map

when asked for a central topic. It provided

security with precision and high

computational efficacy quantitatively.

16 N. Halkoet al. [21] Matrix Decomposition In this work, the low-rank factorization

method identifies the semantic keywords

from the bigdata framework.

17 M. Hall et al. [22] Weka20114 database The Weka is a bigdata platform to search

content from the browser. In this model, the

latent time is more compared to the usual
searching.

18 J. He et al. [23] Kernel Hashing Technique A scalable optimized kernel hashing

mechanism is a useful data technique to

evaluate the information from servers. In this,

due to low correlation, waiting time is

increasing exponentially.

19 D. Huynh et al. [24] Web Semantic Browser Flexible information has been attained from a

bigdata platform. In this, users are continually

getting a response from the server related to

queries.

20 V. Hyv¨onen et al. [25] Semantic Web Browser In this Semantic web browser, the keyword

searching mechanism helps the record

analysis to the user query.

 The above literature survey concentrates on
various significant data methods and their limitations.

Many conventional, machine and deep learning models

have been implemented, but that functionality is facing

high latency.

III. Methodology

 In this section, KVASIR, effective data web

content is taken as the data set. A scalable, adaptive

support vector machine (ASVM) method identifies the

semantic keywords with an accurate search. The Internet

consists of huge and excessive information; if the user
wants any content from the above database, an effective

filtering process is required; otherwise, high latency and

mismatched content are faced. To improve the user

experience, an effective content identification algorithm is

necessary. A latent semantic search analysis has been

proposed with the ASVM mechanism. A KVASIR

semantic search system with ASVM provides an integrated

system with proactive web service. Using Spark and

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

147

Hadoop, the practical applications are working effectively.

An SVM is a Randomized machine support indexing

system that analyzes millions of records. In this section,

KVASIR architecture is designed with an ASVM as the

core algorithm. Here, all semantic search solutions have

been presented and challenged the earlier methods.

Fig 1. Proposed KVASIR with ASVM

Fig 1 clearly explains about proposed ASVM technique for

future web browsers and big data analytics. The above

architecture has been divided into two sections; in the first

section, front-end tools are discussed, like PANNS, DLSA,

CLEANER, CRAWLER, and K-Server. These five

modules are operated in the front-end design. Coming to
the second section, an extension browser is attached for

searching content on the web page. The browser retrieves

URLs to pages, the K-Server extension is running with the

browser and simplifying the searching functionality.

Table 1. Database

database #of

entry

Raw_documents

size

DocumentSize

Wiki

Records

4.9 ×

106

50.0 GB AVG. 785

words

Flash

News

5.6 ×

105

1.8 GB AVG. 650

words

Table 1 clearly explains the database of

Wikipedia records and flash news from various
international news channels. In this, 4.9 lakh entries and of

size 50GBraw data has been collected for Wikipedia

records. Moreover, 0.56 lakh entries with 1.8GB data and

650 average word length has been compiled for flash

applications. Web servers and clouds consist of vast active

and inactive information; therefore, content-based dynamic

filtering is necessary for refining original data. In this

work, a new semantic search mechanism has been

implemented based on the adaptive SVM Machine

Learning technique. Technologically advanced search

methods like KVASIR for bigdata analytics give accurate
results, but semantics search options, accuracy, recall, and

F1-score parameters need improvement. This research

work using ASVM-KVASIR architecture has been

designed to improve the significant text content provision

for big data sources (Internet). In ASVM, V-cross

nonlinear randomization mechanism can differentiate the

small margins and extensive margins of records with

various scenarios such as date-year, area, and current

application. This proposed architecture improves the V-

cross classic randomized screen to maintain efficient
searching and indexing for huge documents.

𝐷 = {(𝑗, 𝑑𝑗)|𝑑𝑗 =
∑ 𝑑𝑖,𝑗∀𝐷𝑖

(∑ .∀𝐷𝑖
‖(𝑗,𝐷𝑖))

3 , ∀(𝑗, .) ∈ ⋃ 𝐷𝑖∀𝐷𝑖
} ----- (1)

Equation 1 explains about document indexing mechanism;

here, D represents that indexing score j,d are indexing id

and score, respectively. Using this expression, we are

allocating the d score to KVASIR web browser content.

Table:2 Spark Database

No of

CPU's

Time of

cleaner

Time

of

DLSA

Time of

PANNA's

Sum

5 1.62 21.26 14.21 37.09

10 0.34 6.79 2.91 10.04

15 0.21 4.52 1.23 5.96

20 0.23 3.23 0.97 4.43

25 0.42 2.42 0.83 3.67

Fig 2 Sparkvs Hadoop

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

148

The Spark has used in KVASIR adaptive SVM

system. It is a fast-unified analytic engine. The Spark

system can be useful for large-scale data records

processing in big data analytics. Hadoop and Spark are two

running big data keyword searching builders. Compared to
Hadoop, Spark systems are giving low response time,

which is more useful in the big data platform. From the

speed point of view, it is 100 times faster. Moreover, due

to high-performance, batch and live streaming data have

been scheduled with execution and query optimization.

The spark system consists of three main blocks; PANNS,

DLSA, CLEANER.

A. PANNS

 This class builds up the index for the given data

set. Two metrics are supported: Euclidean and Angular

(cosine). The data set should be a matrix consisting of row

vectors. For cosine, the data set has been assumed to be

normalized where data has length 1. Load data set from an

HDFS file. Proper care has to be considered for the

performance of building up index as this may significantly
degrade due to HDFS lookup overheads. Convert mtx and

prj to map file to save memory space. It is very useful

when dealing with a large dataset and parallel mode is

activated. Skip if the data has already mapped

Z = spark.Panns.json("#logs.json#")

dZ.where("document > 2015")

select("name.first").disp()

Fig 3. PANNS Block Diagram

Fig 3 clearly explains the PANNS operational process; according to the data set, it builds and provides the matrix

normalization index. This PANNS offers dimensions for data according to Euclidean theory, and the data type is also

assigned by using Euclidean angle theory. In the second step, vectors are listed out and load the query file to PANNS

Hadoop block. The complete database is now loaded and transfer to the map-core block. This block saves the memory and

deals with the parallel mode on available records using skip and unskip modeling. After this, the complete model has to be

built using the random index multi-process mechanism. The PANNS model accepts the last query with an approximate

vector score identifying the Browser's relevant data. It is saved in the tensor window until the calling function is

inactive;finally the clean and save block performs the storage functionality with the f-frame self index mechanism.

B. DLSA

 The distributive least-squares approximate (DLSA) is a local server for estimating the quadratic functions with

global communication. It can easily approximate the 52GB data in 26ms using the conventional approach.

Fig 4. DLSA Block

Local object

Approximation

Distributive

layer
Regression

Estimator DLSA

Time Estimation

PANNS

CLASS

Build index

Load

database

Map core

data

ADD

vector data

Load

Hadoop

data

Save and

clean
Query

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

149

setup(name='dlsa',

 use_scm_version=True,

 setup_requires=['setuptools_scm'],

 version='0.1.1',

 description='Distributed Least Squares

Approximations',

 keywords='spark, spark-ml, pyspark, mapreduce',

 long_description=read('README.md'),

 long_description_content_type='text/markdown',

 url='https://wiki.com/feng-li/dlsa',

 Data example author='Feng Li',

Fig 4 clearly explains VLSI functionality. In this, local

objects and approximations collect the requirement from

the map-reduce block. According to keyword search,

distributive layers collect the information and send the

response to the estimator block; in the final step, the time

estimation function calculates the record uploading date.

C. Cleaner

The cleaner is an effective interaction block that

allows directory directions according to the file location.

Here file reading, file destination directories are cleaned by

cleaner package and reducing the destination space.

The cleaner is a small entity function that can

point out the irrelevant columns and convert the

unstructured data into structured data. The structured data

has been transformed into a TF-IDF vector format; it is a

Speed operated inbuilt logging operation in the

spark block. The main functions of the cleaner are

illustrating below.

 Alphanumeric and space score analysis with the

linear function

 Read the multiple spaces and underscore

characters

 Converting the whole paragraph into lower cases

 Removing the white spaces and leading to bugs

The above all functionalities have been maintained by a

cleaner module in python software, and this facility does
not identify in the Hadoop system.

D. Crawler

 The crawler is dealing with a web package in

which complete packages have been maintained by HTML

and XML documents. The extracted data is easily analyzed

through crawler block and providing the web decision. The

Spark architecture crawler supports essential functions like

removing the cheat records and restricting open-source

files, and these can be extracted through web decision-

making function.

Fig. 5 Crawler Functional Block

 The web Crawler is known as a spider bot, and it

offers Internet service to browsers effectively. The

browsers are utilized for crawling software to update the

database continuously. Search engines, via crawler, copies
the content and provides the indexes to selected records.

The crawler's main blocks are scheduler, queue, multi-

thread downloader, web page, text, and URL's. The

following blocks help the content classification for big

data analytics. It includes the scheduler block, multi-thread

block, queue, and storage unit.

Web Scrap

Application

Request

Response

Web Browser

Save the Data

Data base
Parse &

Extracts Data

from Response

1

3

2

4

Source

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

150

Fig 6. Crawler Flow Diagram

To stop crawling a specific resource more than once,

crawlers typically perform some URL normalization.

URL normalization, also called canonicalization

of URLs, refers to consistent updation and optimization of

URL. Many forms of normalization can be done, including

transformation to lowercase URLs, elimination of

segments "." and ".." and adding trailing slashes to the

non-empty path portion Fig6.

Above all, Spark and Hadoop blocks simplified

the document differentiation and provided the indexing.
This process has been performed in front-end design. In

the next stage, the adaptive SVM model predicts and

classifies the semantic data quickly.

E. Adaptive SVM Based Semantic Content Classification

 In the back end-stage, an adaptive support vector

machine has been applied for semantic content extraction.

The earlier models, like PSO, GA, and KNN models,

cannot classify the latest content through the selected

browser. Therefore, to cross over the above limitations, a
multi-class adaptive SVM model is proposed.

Algorithm: ASVM for content classification

Step 1: Adaptive multi-class SVM model is more useful in

content classification with a decision function

𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝑥 ≡ 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,…,𝑐(𝑤1
𝑇𝜑(𝑥) + 𝑏𝑖) ------- (1)

 The above equation 1is used to classify the data

records and assign the class values according to regions'

features. Here w is the weight of the form, b is the

decision. If we apply the argument in the above functions,

the class of semantic search can be obtained.

Step 2:

This c(c-1)/2 is a binary SVM process, which can

differentiate two classes using score and accuracy. For the

evaluation process, c-1 times the SVM classifier has been
applied to extract the record score. Here k & j are classes

using for training purposes, and (x,t) is known as a

constraint for testing purposes.

(𝑤𝑘𝑗
𝑇 𝜑(𝑥𝑖) + 𝑏𝑘𝑗) ≥ 1 − 𝜉𝑘𝑗

𝑡 , 𝑓𝑜𝑟𝑦𝑡 = 𝑘, ------- (2)

(𝑤𝑘𝑗
𝑇 𝜑(𝑥𝑖) + 𝑏𝑘𝑗) ≤ −1 + 𝜉𝑘𝑗

𝑡 , 𝑓𝑜𝑟𝑦𝑡 = 𝑗, -------- (3)

𝜉𝑘𝑗
𝑡 ≥ 0.---------- (4)

𝑤𝑦𝑖
𝑇 𝜑(𝑥𝑖) + 𝑏𝑦𝑖

≥ 𝑤𝑚
𝑇 𝜑(𝑥𝑖) + 𝑏𝑚 + 2 − 𝜉𝑖

𝑚 , 𝜉𝑗
𝑚 ≥ 0.

Here k, j classes are assigned for training purposes, and

(x,y) are used for testing purposes. The multi-class SVM

identifies the objective function and optimizes the decision

by using equations 2,3&4.

4(𝑐 − 1)𝑁3/𝑐2------------- (5)

Fig 7: Confusion matrix

Equation 5 demonstrates the normalization of class
according to adaptive SVM extraction. cN3 represents the

learning data that has been acquired from labeling and

segmentation. Here various types are assigned for input to

adaptive multi-class SVM technique. According to the

weight balancing process and priority index, ID-based

classes are differentiated. The following method can help

the semantic search contents from a big data platform.

Step 3:

𝑥, ∑ 𝑃(𝑐𝑖/𝑥) = 1,𝑀
𝑖=1 -------------------- (6)

𝑃𝑐 = ∑ 𝑃(𝑥 ∈ 𝑅𝑖 , 𝑐𝑖) = ∑ 𝑃(𝑐𝑖) ∫ 𝑝(𝑥 𝑐𝑖⁄)𝑑𝑥,
𝑅𝑖

𝑀
𝑖=1

𝑀
𝑖=1 -- (7)

 Equation 6 & 7 clearly explains about multi-class

SVM vector analysis using statistical information. If

added, all classes are available in the data set; it can give

the one as output. Here P(Ci/X)>m, then only it is
considered as a perfect class. If this value is less than one,

the probability of classification gets false errors.

𝑃𝑐 = ∑ ∫ 𝑝(𝑥 𝑐𝑖⁄)𝑝(𝑥)𝑑𝑥 ≥
1

𝑀
∑ ∫ 𝑝(𝑥)𝑑𝑥,

𝑅𝑖

𝑀
𝑖=1𝑅𝑖

𝑀
𝑖=1 ----

(8)

⇒ 𝑃𝑐 ≥
1

𝑀
; ------(9)

 In equation 7, Pcrepresents the probability of

correct classification; in this, Ri represents the region with

feature decision in favor of Ci. Eq 8&9 is used to classify

the records with statistical values. If the condition of

equations is not satisfied, then the multi-class error is

verified. Eq 10 briefly explains multi-class probability

error with fault matching records.

𝑃𝑒 = 1 − 𝑃𝑐 ≤ 1 −
1

𝑀
=

𝑀−1

𝑀
 ------- (10)

 For a multiclassification flat formulation, Pe
increases with the number of categories M increases. The

multiclassification task for a hierarchical model has

simplified to discrete ones at each point, with Pe =
1

2

Therefore, the total error has been predicted to converge

asymptotically to a lesser value for the clustered task than

for a flat multiclassification method. In this step, any

classification error is more than 0.5, then automatically,

step 1 & step 2 have been performed for better semantic

content classification

Step 4:

 In this step, the performance measures are
calculated using the confusion matrix. It is a probabilistic

Scheduler

World Wide

Web

Multi-

threaded

downloader

Queue Storage

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

151

methodology used to identify unsupervised learning

content. The adaptive SVM mainly concentrates on

imbalanced data, imbalanced class, and non-synthetic data.

The following data is known as unstructured data; these

cannot be easily identified by previous semantic
algorithms like KNN, PSO, and GA classification

techniques. This is a significant challenge, and the risk of

semantic content is very high. The unstructured data with

earlier models are providing a higher lossy class index. So

the classification and index allocation are not possible to

generate the TF-IDF operation.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 ------- (11)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ------- (12)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 ------- (13)

S.No Query True

Positive

True Negative False Positive False Negative

1 Ireland Votes To Repeal

Abortion Amendment dad shot

9.01 0.43 5.75 0.23

2 Singapore country business

information

2.90 0.22 7.88 0.15

3 gold rates are varying

continuously, reasons

3.51 0.48 3.16 0.14

4 world famous cricket batsman

and his score

9.18 0.41 0.27 0.20

5 World wise best marketing

country in consumer goods

3.31 0.28 5.73 0.14

When dealing with unstructured data, earlier

semantic algorithms have been generating less accuracy. So

the confusion matrix is generating a low-grade real positive

rate, false-positive rate results. In this step, an adaptive

feature extraction and classification SVM has been applied to
improve the classification performance. The main objective

of this work is illustrated using the following parameters:

1. Searcher intent from bigdata

2. Query context.

3. Keyword relationship.

The above three goals are designed by using python, HTML,

and JAVA platforms.

Table 3 demonstrates that spark functionality, in this cleaner, DLSA, and PANNS tools are discussed briefly. This

extension is verified on various CPUs starting from 5 to 40.

(c,t) (20,16)
(20,

15)
(20,68) (20,125) (20,259) (80,16) (80,38) (80,72) (80,132) (80,262)

Index_(MB)

exactness(%)

371

88.5

735

95.2

1451

94.7

28955

99.4

5791

94.9

262

89.3

521

93.6

1035

97.2

2072

98.6

4152

99.8

α1=1.0 ms 2.4 3.5 4.2 5.7 6.5 4.2 7.6 11.0 13.3 15.8

α2=0.1 ms 3.3 4.2 5.8 6.5 7.4 6.7 9.2 14.6 15.0 16.7

α3=0.9 ms 4.2 4.5 6.5 7.6 8.1 8.8 11.5 14.9 17.1 17.5

α3=0.7 ms 5.4 6.1 7.1 8.2 9.0 11.4 13.1 15.8 16.8 18.3

α4=0.6 ms 6.0 6.3 7.5 8.6 9.4 13.5 15.7 18.2 19.5 20.8

α5=0.3 ms 6.5 7.1 8.0 8.7 10.0 16.2 17.6 19.7 20.2 22.8

 Above table 3 clearly explains document indexing

and their scores using front-end and back-end modules. Now

using the various CPUs with the ASVM RP-tree technique, we

can generate the TF-IDF frames. After an extensive and in-

depth classification process, we get the index ID and score.

According to this, we classify the semantic content from the

big data efficiently. In some instances, like as

20*64=80*16=1280. In this case, (20,64) accuracy is higher
than (80, 16), i.e., 94.8 vs. 75.6. The following process is

performed continuously until the proper classification cluster

has been attained with more score and accuracy.

Table 4: Database for the experiment.

Rank Page name Source

#01 Cricket dataset Wikipedia

#02 Corona update Wikipedia

#03 Gold rate websites CNN

#4 Marketing techniques Wikipedia

#5 IT services Wikipedia

#6 Online products Thomson

Reuters

#7 Fashion CNN

#8 Country developments BBC

#9 New technology Markets

Media

#10 University Markets

Media

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

152

 Table 4 clearly explains various databases collected

from popular websites. Using these records, we can handle the

semantic data using the KVASIR ASVM methodology.

IV. Experimental Setup

 In this research work, a semantic web content
browser extension is designed for big data analysis for this

experiment; drive HQ cloud is selected for CPU assignment.

The dataset consists of 5 lakh clusters; each cluster size is 1kb.

The drive HQ cloud economy is moderate for 100GB. In this

cloud, we are dividing the clusters according to CPU

assignment. For example, for 1CPU, 1 lakh clusters are

assigned, and the process is going on.

V. Experimental Results

Kvasir: Scalable Provision of Semantically Relevant Web

Content on Big Data Framework
 On the internet, lots of information data gather and

get relevant data for the recommendation. The author

describes the semantic recommendation system based on

latent semantic analysis (LSA means data will be retrieved

based on semantic meaning). To search huge data author is

using the below components to implement the KVASIR

technique.

1) Crawler: we can crawl data from the internet or can

upload a dataset to the application, and in this

application, we are using NEWS dataset

2) Cleaning: This module accepts unstructured text data

as input and then cleans it, and then converts input

data into TF_IDF vector.

3) DLSA: This module converts the TF-IDF vector into
the latent semantic analysis, and the author is using a

stochastic SVD SPARK based algorithm to convert

TF-IDF into an LSA vector.

4) PANNS: This module builds the search index from

the DLSA vector, and to minimize memory usage, it

will convert the search index into RP-tree, and this

search index can be efficiently scanned using the

KNN algorithm. This RP-tree will be created using

SPARK parallel processing.

5) Query Search: This module accepts a query from the

user and then performs a search operation using
PANNS and KNN algorithm to obtained relevant

data from RP-tree.

6) Adaptive SVM: This algorithm combines PANNS

and SVM that accept input query and then find only

top related relevant documents to query. Thus, the

superior maximum appropriate document accuracy of

this algorithm will be higher than PANNS.

Table 5: Comparison of results

KvasirKNN[31] ENN [30] Kernel Hashing Proposed Kvasir

ASVM

 50GB 100GB 1TB 50GB 100GB 1TB 50GB 100GB 1TB 50GB 100GB 1TB

Accuracy 80.1 81.32 87.56 91.23 92.54 96.32 93.23 94.56 89.91 99.32 99.56 99.72

Precision 72.23 72.26 81.53 89.12 90.13 91.54 91.32 93.46 97.42 98.54 99.82 99.13

Recall 85.12 83.42 88.92 85.26 85.52 86.22 85.52 89.92 91.52 96.53 97.52 98.53

Throughput 85.52 87.12 89.13 77.54 72.56 89.13 91.23 92.54 97.52 99.53 99.72 99.67

Scalability 89.52 91.23 87.53 82.52 87.32 89.71 72.53 91.34 93.72 99.54 97.23 99.16

Fig 20. Comparison of Results

0

20

40

60

80

100

120

5
0

G
B

1
00

G
B

1T
B

5
0

G
B

1
00

G
B

1T
B

5
0

G
B

1
00

G
B

1T
B

5
0

G
B

1
00

G
B

1T
B

Kvasir KNN[31] ENN [30] Kernel hasing Proposed Kvasir
ASVM

Accuracy

Precision

Recall

Throughput

Scalability

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

153

Table 5 and fig 20 clearly explain various models and

their comparisons. In this, the proposed KVASIR

adaptive SVM model attains more improvement

compared to earlier methods.

VI. Conclusion

 An advanced semantic search content

classification application is designed for future big data

analytics in this research work. The current technology is

working on cloud and big data platforms, so users

searching for these technologies' information is a

complicated task. Due to robust data analysis, it requires

an extension application for browsers. Therefore, an

SVM machine with adaptive multi-level classification is

provided as the solution for the above limitations. This

work attains 0.97 average precision and 0.042 StdError.

This means that the proposed methodology outperforms
the experimental results and competes with the present

models.

REFERENCES

[1] T. Berners-Lee, J. Hendler, O. Lassila, et al. The semantic web.

Scientific American, 284(5)(2001) 28–37.

[2] M. Berry, S. Dumais, and G. O'Brien. Using linear algebra for

intelligent information retrieval. SIAM Review, 37(4)(1995)

573–595.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet

allocation. J. Mach. Learn. Res., (2003) 3:993–1022.

[4] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutirrez.

Recommender systems survey. Knowledge-Based Systems,

(2013).

[5] M. Brand. Fast low-rank modifications of the thin singular value

decomposition. Linear Algebra and its Applications, (2006).

[6] J. S. Breese, D. Heckerman, and C. Kadie. The empirical analysis

of predictive algorithms for collaborative filtering. In Proceedings

of the 14th Conference on Uncertainty in Artificial Intelligence,

(1998).

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web

caching and Zipf-like distributions: evidence and implications. In

INFOCOM '99, IEEE, 1(1999) 126–134.

[8] R. Burke. Hybrid recommender systems: Survey and

experiments. User modeling and user-adapted interaction,

12(4)(2002) 331–370.

[9] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn and S. Moon. I tube,

you tube, everybody tubes: Analyzing the world's largest user-

generated content video system. In ACM IMC'07, (2007).

[10] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn and S. Moon.

Analyzing the video popularity characteristics of large-scale user-

generated content systems. IEEE/ACM Trans. Netw., (2009).

[11] C. L. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A.

Ashkan, S. B¨ uttcher, and I. MacKinnon. Novelty and diversity

in information retrieval evaluation. In ACM SIGIR'08, (2008).

[12] P. Cremonesi, A. Tripodi, and R. Turrin. Cross-domain

recommender systems. In Data Mining Workshops (ICDMW),

IEEE, (2011).

[13] S. Dasgupta and Y. Freund. Random projection trees and low

dimensional manifolds. In ACM Theory of Computing, (2008).

[14] S. Dasgupta and K. Sinha. Randomized partition trees for exact

nearest neighbor search. CoRR, abs/1302.1948 (2013).

[15] C. M. De Vries, L. De Vine, S. Geva, and R. Nayak. Parallel

streaming signature em-tree: A clustering algorithm for web-scale

applications. In International Conference on World Wide Web,

(2015).

[16] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and

R. Harshman. Indexing by latent semantic analysis. Journal of the

American Society for information science, 41(6) (1990) 391.

[17] W. B. Frakes and R. Baeza-Yates, editors. Information Retrieval:

Data Structures and Algorithms. Prentice-Hall, Inc., USA,

(1992).

[18] D. Glowacka, T. Ruotsalo, K. Konyushkova, K. Athukorala, S.

Kaski, and G. Jacucci. Scent: A system for browsing scientific

literature through keyword manipulation. In ACM International

Conference on Intelligent User Interfaces Companion, (2013).

[19] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using

collaborative filtering to weave an information tapestry.

Commun. ACM, 35(12)(1992) 61–70.

[20] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang. Fast

approximate nearest-neighbor search with the k-nearest neighbor

graph. In International Joint Conference on Artificial Intelligence,

IJCAI'11 1312–1317. AAAI Press, (2011).

[21] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure

with randomness: Probabilistic algorithms for constructing

approximate matrix decompositions. SIAM, Rev., (2011).

[22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and

I. H. Witten. The weka data mining software: An update. ACM

SIGKDD Explor. Newsl., 11(1)(2009) 10–18.

[23] J. He, W. Liu, and S.-F. Chang. Scalable similarity search with

optimized kernel hashing. In ACM SIGKDD, (2010).

[24] D. Huynh, S. Mazzocchi, and D. Karger. Piggybank: Experience

the semantic web inside your web browser. In Y. Gil, E. Motta,

V. Benjamins, and M. Musen, editors, The Semantic Web,

(2005).

[25] V. Hyv¨onen, T. Pitk¨anen, S. Tasoulis, L. Wang, T. Roos, and J.

Corander. Technical report: Fast k-nn search. arXiv preprint

arXiv:1509.06957, (2015).

[26] Joseph George, Dr. M.K Jeyakumar A Comparative Analysis of

Data Integration and Business Intelligence Tools with an

Emphasis on Healthcare Data International Journal of

Engineering Trends and Technology 68.9(2020):5-9.

[27] Y. Jia, J. Wang, G. Zeng, H. Zha, and X.-S. Hua. Optimizing

KD-trees for scalable visual descriptor indexing. In IEEE

Computer Vision and Pattern Recognition (CVPR), (2010) 3392–

3399.

[28] Y. Koren and R. Bell. Advances in collaborative filtering. In F.

Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors,

Recommender Systems Handbook, (2011) 145–186. Springer

US,

[29] B. Li, Q. Yang, and X. Xue. Can movies and books collaborate?:

Cross-domain collaborative filtering for sparsity reduction. In

International Joint Conference on Artificial Intelligence, (2009).

[30] T. Liu, A. W. Moore, A. Gray, and K. Yang. An investigation of

practical approximate nearest neighbor algorithms. In Advances

in Neural Information Processing Systems, MIT Press, (2004).

[31] Wang, L., Tasoulis, S., Roos, T., &Kangasharju, J.., Kvasir:

Scalable provision of semantically relevant web content on big

data framework. IEEE Transactions on Big Data, 2(3)(2016) 219-

233.

[32] H. Jegou, M. Douze, and C. Schmid. Product quantization for

nearest neighbor search. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 33(1)(2011) 117–128.

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

154

Figures

Figure 8: Data analysis using 20&40 CPU's.

Fig 8 clearly explains about various CPU numbers taken

for building the records with the browser. It has been

observed that compared to 20CPU's, 40 CPUs easily
search the data with less time, and this is a good

achievement.

Figure 9: DLSA operation.

In below figure showing code to clean the dataset and to

perform TF-IDF operation

Figure 10: TF-IDF operation

In below fig showing how to read the query from the

user and then executing PANNS and Adaptive SVM

algorithm to perform search operations and to get top 10
results with accuracy and recall

Figure 11: PANNS adaptive SVM process

Now in the below figure, executing the above code as a

console application. To run code, double click on the

'run.bat' file to get below output screen

0

5

10

15

4 6 8 10 12 14

To
ta

l b
u

ild
in

g
ti

m
e

(h
o

u
rs

)

(a) Data size (million entries)

Analysis

20 CPUs 40 CPUs

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

155

Figure 12: Index and score allocation

In the above figure executing test.py and then application read all dataset and then convert into TF-IDF vector, and then

TF-IDF convert to DLSA array and then will get below the screen to enter the query

Figure 12: Query

In the above fig enter query and then press enter key to get a result

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

156

Figure 13: Query and response

In the above fig, I entered query as 'Ireland Votes To Repeal Abortion Amendment dad shot' and then press the enter

button to get the below result

Figure 14: Response

In the above fig query converted to DLSA TF-IDF vector and then will get below result

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

157

Figure 15: Semantic output

In the above figure in the selected text, we can see a binary RP tree loaded

Figure 16: Response with a semantic score

In the above figure, we can see the output of the top 10 search documents as a tuple; for example, in the above screen 74,

the document id and 0.75 are the similarity value. In that array, we can see all 10 document search results. After that, we

can see KVASIR accuracy as 0.60%. Then, we can see the search result of Adaptive SVM in the same tuple form; for

example, 25 is the top document, and 0.63 is the cosine similarity searched by adaptive SVM. Then we can see SVM

accuracy at 0.80%. Now below screen will show the accuracy of both algorithm in graph format

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

158

Figure 17: Accuracy

In the above figure, the x-axis represents the algorithm name, and the y-axis represents the accuracy of those algorithms.

Sometimes for some queries, we may get accuracy as 100% also

Figure 18: Accuracy and recall

Y.Krishna Bhargavi et al / IJETT, 69(2), 144-159, 2021

159

Figure 19: Performance measures

Similarly, you can enter any query and get the result of the query is found in the RP tree.

Figure 20: Comparison of results.

Table 6 and fig 20 clearly explain various models and their comparisons; in this, the proposed kvasir adaptive SVM models

attain more improvement compared to earlier methods.

0

20

40

60

80

100

120

50GB 100GB 1TB 50GB 100GB 1TB 50GB 100GB 1TB 50GB 100GB 1TB

Kvasir KNN[31] ENN [30] Kernel hasing Proposed Kvasir
ASVM

Accuracy

Precision

Recall

Throughput

Scalability

