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Abstract- In this paper, we have designed and analyzed 

different MEMS structures suitable for series DC contact 

RF MEMS switches. To validate the proposed switch, we 

have extracted the multiple parameters at the simulation 

level. Overall, we have analyzed three structures, i.e., fixed-

fixed, crab leg, and folded. Compared to other structures, 

the folded structure is offering a good performance. So, the 

folded structure-based series DC contact RF MEMS switch 

requires an actuation voltage of 4.5 V, eigenfrequency 6640 
Hz, isolation loss - 40 dB, and insertion loss - 0.2 dB. The 

switch performance is analyzed within frequency band 0.2-

20 GHz; after observing the behavior of the switch, it is 

clear that the switch is suitable for low-frequency wireless 

communication applications like Bluetooth, Wi-Fi, and 

WiMax.  

  

Index Terms- Series switch, MEMS, actuation voltage, 

material science, perforation, micromechanical structures, 

electrostatic actuation. 

I. Introduction 

 Now a day's MEMS is the trending technology that is 

offering many miniaturized devices like switches, varactors, 

and filters in radio frequency communication applications. 

Many researchers already demonstrated that MEMS 

technology-based RF MEMS switches play a vital role in 

offering high performance in terms of high isolation and low 

power consumption. Because of their great potential, RF 

MEMS switches have become significant in future wireless 
communication applications like reconfigurable antennas and 

microwave testing equipment. Based on the circuit 

configuration, RF MEMS switches are classified as series 

and shunt. In this paper, we have demonstrated the design 

and performance analysis aspects in electrostatically actuated 

series DC contact  RF MEMS switches. Achieving low 

actuation voltage,  high switching speed, and low switch 

resistance are the major research challenges in series DC 

contact RF MEMS switches[1-3]. Low spring constant 

offering mechanical membranes offer low actuation voltage 

[4]. Incorporation of the holes into the membrane helps to 

improve the switching time [5-6]. By using low sheet 

resistance metal thin film as contact material, we can reduce 

the RF losses [7-9]. 

This paper is organized as follows: in Section II, we have 

reviewed the previous work related to series DC contact RF 

MEMS switches. In Section III, we have described the 

problem statement. Series RF MEMS switches performance 

analysis, and parametric extraction is discussed in Section 

IV. A performance improved RF MEMS switch with folded 

flexure is presented in Section V and followed by 
Conclusions in Section VI. 

II. Related Work 

RF MEMS technology has great potential, and it is already 

proved in terms of linearity, power consumption, and 

reliability when compared with solid-state technologies. And 

RF MEMS switches are essential for future wireless 

communication applications. This is one of the major 

motivating points for many researchers to choose RF MEMS 
switches as a major research domain.  

The paper [10] discusses the bidirectional actuated ohmic 

RF MEMS switches with dual contact. The authors primarily 

concentrated on the reliability of the switch. The proposed 

switch is offering a very low contact resistance of 0.3 Ω.  

The paper [11] presents a study of broadband Cryogenic 

DC-Contact RF MEMS Switches. The switch is offering an 

isolation loss of -20 dB and insertion loss of -0.6 dB. The 

authors additionally described the temperature effects on RF 

MEMS switches reliability. 

The authors in [12] demonstrated multiple timescales in 
cantilever-based DC contact RF MEMS switches. A 

parametric study was performed to investigate the effect of 

system parameters on switch bounce. 

The paper [13] presents a low actuation voltage RF MEMS 

switch that can integrate with CMOS technologies. 

Experimental measurement results indicate a pull-in voltage 

of 0.5 V for 1.5 μm displacement. The measured return loss 

is -20 dB and insertion loss   - 0.1 dB over the frequency 

range of 3 kHz to 3 GHz. The switching time is  0.22 ms. 

The paper [14] demonstrated a comprehensive study on 

contact material selection for DC contact RF MEMS 

switches. The authors concluded that gold as a contact 
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material helps to reduce contact resistance by 16%. Ashby's 

material selection approach is incorporated in the process of 

material selection. HfO2 is used as a dielectric material.  

After a close review of series DC contact RF MEMS 

switches, we have noticed few research gaps and identified 
the scope of research. The major research challenges in DC 

contact RF MEMS switches are reducing the actuation 

voltage, reducing the switching time, and improving the 

radio frequency properties.  

III. Problem Statement 

 Series DC contact RF MEMS are suitable for low-

frequency communication applications. So many researchers 

are advanced the related work and improved the performance, 
but because of the demand for the low power consumed, RF 

switches are creating new research challenges on DC contact 

RF MEMS switches. In this paper, primarily, we have 

concentrated on the reduction of spring constant,  reducing 

the actuation voltage, improving the switching time and RF 

properties.  

A. Reduction of spring constant  

 Low spring constant helps to reduce the required 

actuation voltage. Doing prior structural and material 

analysis helps to identify the low spring constant 

micromechanical structure.  

B. Reduction of the actuation voltage 

 Electrostatically actuated RF MEMS switches 

performance depends on the required actuation voltage. 

Achieving low actuation voltage is the major research 

challenge in RF MEMS switches.  

C. Improving reliability 

 Compared with solid-state technology-based RF 

switches, MEMS technology-based RF switches reliability is 

very low. Improving the reliability of RF-MEMS also 

switches a major research challenge in RF MEMS 

technology.  

 

D. Improving radio frequency (RF) performance 

 DC contact RF MEMS switches, radio frequency 
properties like isolation losses and insertion losses depend on 

the gap in the transmission line and the contact material, 

respectively.  

IV. Performance Analysis and Parametric Extraction 

 In this paper, we have analyzed the performance of 

electrostatically actuated series DC contact RF MEMS 

switches.  In the process of the performance analysis, we 

have considered criteria like structure, perforation,  material, 
and thickness. To validate the switch, we have extracted 

most of the performance deciding parameters in the electrical, 

mechanical, and RF category.  

A. structural analysis 

Reliability is one of the research challenges in RF MEMS 

switches, so doing the prior structural analysis helps to 

improve the reliability of the switch.  Overall we have 

analyzed the three micromechanical structures, i.e., fixed-

fixed, crab-leg, and folded structures, as shown in Figure 1.  

The three structures are actuated electrostatically by using 

the FEM tool. In the primary analysis, we have simulated the 
structures with gold material of 1 µm thickness.  

 

        
              (a)                                  (b)                                  (c) 

Figure 1. Micro mechanical structures, a) fixed-fixed, b) 

crab leg, c) folded. 

 

              
                            (a)                                                                              (b)                                                                       (c) 

Figure 2. Electrostatic Actuation, a) fixed-fixed, b) crab leg, c) folded. 
 

B. Perforation analysis 

 Holes or perforation to the membrane helps to reduce the 
required actuation voltage, as well as it helps load uniform 

distribution. Because of the uniform distribution of loading, 

the reliability of the switch will improve. Here, we have 

perforated the membranes with 15 µm x 15 µm size holes. 

Because of this perforation, the pull-in voltage is reduced 

significantly as shown in Table 1. From the structural and 
perforation analysis, it is clear that the folded flexure-based 

micromechanical structure is offering low actuation voltage 

when compared with fixed-fixed flexure and crab leg flexure. 

 

 

200 µm 

200 µm 

100 µm 

45  µm 

100 µm 

70 µm 

65  µm 

15  µm 

15 µm 
400 µm 

200 µm 



K Rajasekhar & S.Sunithamani / IJETT, 69(2), 194-200, 2021 

 

196 

Table 1. MEMS structure Perforation analysis 

Structure 

Actuation 

voltage (V) 

 

Displacement (µm) 

Without 

perforation 

With 

perforation 

fixed-fixed 7.5 1.04 1.06 

crab leg 5 0.93 1.03 

folded 4.5 0.83 0.98 

 From the above analysis, it is clear that because of the 

incorporation of perforation, the pull-in voltage is reduced 

significantly.  The folded flexure-based micromechanical 

structure is offering a 1 µm displacement for 4.5 V. 

 

 
         Figure 3. Analysis on actuation voltage (vs) displacement. 

 

           
                                   (a)                                                                         (b)                                                                          (c) 

Figure 4. Micro mechanical structures with perforation, a) fixed-fixed, b) crab leg, c) folded. 
 

C. Eigen frequencies 

The eigenfrequency (or) natural frequency (or) resonance 

frequency of micromechanical structure helps to analyze the 

switching time of the switch. If the eigenfrequency is very 

high, it means the micromechanical structure will take more  

 

 

Time to settle after applying the actuation voltage. In an 

eigenfrequency analysis, as shown in Figure 5, we have 

observed that compared to other structures, folded structure 

eigenfrequency is very low it indicating that the folded 

structure will offer low settling time and squeeze thin-film 

damping. 

 
Figure 5. Eigen Frequency-based MEMS structural analysis
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V. Proposed series RF MEMS switch 

 From the analysis in Section IV, it is clear that folded 

flexure-based micromechanical structure is offering good 

performance when compared with fixed-fixed and crab leg 

flexures.  
 So, here we have designed a series DC contact RF 

MEMS switch with folded flexure-based micromechanical 

structure. A CPW transmission line with G/S/G values 50 

µm/ 60 µm/50 µm is used to micromachine the switch. 

 
 

 
(a) 

 
(b) 

Figure 6.  Series DC contact RF MEMS switch (a) top view, (b) 

side view. 
 

Table 2. Series DC contact RF MEMS switch parameters 

Parameter Values (μm) / material 

Silicon substrate size  700×500×800 

Oxide thickness 1 

Membrane material  Gold  

Membrane thickness  1 

The gap between the membrane 

and bottom electrodes 
1 

 

A. Mathematics behind folded flexure  

 The performance of the RF MEMS switch can be 

analyzed by extracting the parameters like mass, spring 

constant, switching time, and RF losses [15-19]. 

 The mass (m) of the membrane will depend on the 

membrane material whose density (ρ) and the membrane 

dimensions like length (l), width (w), and thickness (t). 

 

         
twlmmassmembrane ***)( 

                (1) 

 

 Gold (Au) material, the density (ρ) is 19300 kg/m3. 

If l = 200 µm, w = 200 µm, t = 1 µm the then the mass of the 

membrane is 772 x 10-12 Kg. 

 The spring constant (K) of the micromechanical 
structure depends on the length, width, and thickness. The 

actuation voltage of the membrane depends on the spring 

constant. For folded flexure, the spring constant can be 

expressed as, 
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 Gold (Au) material the young's modulus (E) is 70 GPa. 

If l = 100 µm, w = 15 µm, t = 1 µm the then the mass of the 

membrane is 2.1 N/m. 

 The settling time of the RF MEMS switch is the primary 

performance deciding parameter. The eigenfrequency(ωo) of 

the micromechanical structure decides the settling time of the 

switch, and it can be expressed as, 
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 If the micromechanical structure spring constant is 2.1 

N/m and the mass is 772 x 10-12 Kg, then the eigenfrequency 

is 8305 Hz.   

 The voltage required to displace the membrane 2/3 of 

the gap is known as pull-in voltage. The pull-in voltage of 

the micromechanical structure can be expressed as,  
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 Where A is the cross-sectional area between membrane 

and bottom electrodes, g is the gap between the bottom 

electrode and the membrane. If the membrane spring 

constant (K) is 2.1 N/m, cross-sectional area (A) is 200 µm x 

200 µm = 40000 µm2, air gap (g) is 1 µm, and the free space 
relative permittivity (ε0) is 8.854187817 10-12 C2/(N m2) then 

the pull-in voltage (Vp) is 1.32 V. 

 The switching time of the micromechanical structure 

depends on the pull-in voltage, supply voltage, and the 

natural or eigenfrequency, and it can be expressed as, 
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 The upstate capacitance of the switch depends on the 

cross-sectional area between the CPW transmission line strip 
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and the membrane, air gap (g), and the free space relative 

permittivity (ε0). And it can be expressed as, 
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  If the free space relative permittivity (ε0) is 

8.854187817 10-12 C2/(N m2), CPW line strip width (w) 60 

µm, membrane width (W) is 200 µm, and the air gap (g) is 1 

µm then the upstate capacitance is 106.2 fF. 

 In series DC contact RF MEMS switches, if the 

membrane is in upstate, the switch is in OFF state, and the 

input RF signal is getting isolate. Under this condition, the 

switch isolation losses can be expressed as, 
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 If the actuation voltage is applied, then the membrane 

will come to the downstate, and the switch is turned into an 

ON state, then the input RF signal is allowed to the output. 

Under this condition, the switch insertion losses can be 

expressed as, 
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Where ‘Rs’ is the switch resistance which includes 

DC contact resistance and membrane resistance, in general, 

the switch resistance (Rs) is in the range of 1-3 Ω. 
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With the help of insertion losses (S21), we can write the 

expression for the return losses of the switch when the switch 
is ON, i.e., 

                                       

2

21

2

11 1 SS 
                     (10) 

B. Results and discussions  

 The series DC contact RF MEMS switch is 

micromachined on a CPW transmission line. Silicon is used 

as a substrate.SiO2 is used as an insulating layer. CPW and 

membrane are micromachined by using gold (Au) material. 
The air gap (g) between the membrane and the bottom 

electrode is 1 µm. The folded flexure with perforation is used 

as a membrane.  
 

 
Figure 7. Spring constant. 

 

 
Figure 8. Switching time. 

 

 
           Figure 9. Isolation losses. 

 

 
     Figure 10. Return losses. 
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Figure 11. Insertion losses. 

     

 

 

 

Table 3. Folded flexure RF MEMS switch parametric analysis. 

Parameter Theoretical value Simulation value 

Mass 772 x 10-12 Kg 772 x 10-12 Kg 

Spring constant 2.1 N/m 1.34  N/m 

Actuation voltage 1.848 V 4.5 V 

Eigenfrequency  8305 Hz 6640 Hz 

Switching time 44 µs 40 µs 

Isolation losses - 65 dB - 68 dB 

Insertion losses - 0.18 dB - 0.2 dB 

 

Table 4. Comparison of present work with existing.  

Parameter Ref. [20] Ref. [21] Ref. [22] Prosed work 

Substrate material Borofloat glass Silicon Sapphire Silicon 

Transmission line CPW CPW CPW CPW 

G-S-G 110 µm/ 18 µm/110 µm --- --- 100-70-100 

Membrane material (thickness) Gold (1 µm) Gold (1 µm)  Gold(1 µm) 

Perforation to membrane No No Yes Yes 

Membrane height 1-5 µm --- 1 µm 1 µm 

Membrane mass (Kg) --- --- --- 772 x 10-12 Kg 

Spring constant (N/m) --- --- --- 1.34  N/m 

Actuation voltage (V) 24 V 3.75 V 7 V 4.5 V 

Eigen frequency (Hz) --- --- --- 6640 Hz 

Switching time (µs) --- 69.4 µs --- 40 µs 

Isolation losses (dB) - 20 dB - 70 dB - 45 dB - 68 dB 

Return Losses (dB) --- --- --- -38 dB 

Insertion Losses (dB) - 0.71 dB  - 0.06 dB - 0.5 dB - 0.2 dB 

VI. Conclusion 

 Overall, we have analyzed three structures, i.e., fixed-

fixed, crab leg, and folded. Compared to other structures, the 

folded structure is offering a good performance. So, the 

folded structure with a spring constant of 1.34 N/m, based 

series DC contact RF MEMS switch requires an actuation 
voltage 4.5 V, eigenfrequency 6640 Hz, isolation loss - 65 

dB, and insertion loss - 0.2 dB. The switch performance is 

analyzed within frequency band 0.2-20 GHz. 
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