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Abstract - Efficient software testing depends on the quality 

of test cases that are capable of catching defects from every 

corner of the software and achieving higher coverage. In 

this article, a hybrid artificial bee colony optimization-based 
technique is proposed. The proposed approach defines the 

scout bee phase for abandoned solutions and incorporates 

features of a genetic algorithm for diversification. The 

proposed approach selects a minimal test suite with 

equivalent or better efficiency of its superset. It offers time 

and money-saving and contributes towards early product 

delivery. The proposed technique is assessed using five 

widely used programming problems and their mutants. 

When compared with similar existing techniques (i.e., 

Particle Swarm Optimization, Ant Colony Optimization, and 

Original Artificial Bee Colony) over various fitness ranges, 

the performance of the proposed approach shows better 
results and outperforms in terms of overall execution time 

and coverage. 

Keywords —Artificial bee colony, Genetic Algorithm, 

Software testing, Swarm intelligence, Test case selection. 

 
I. INTRODUCTION 

Software engineering applies to myriad fields of 

industry like decision making, maintenance scheme, security 

services, education, health care, system dynamics, and many 
more. With the emergence of smart devices, the need for 

robust software is growing exponentially. There are 

remarkable welfares offered through technology for both 

business and society, but there are key questions around 

safety, privacy, sustainability, and trust. Software has 

become an inevitable part of life since its inception. The 

software comprises the programs, libraries, and concerned 

non-executable information, like digitized media that are 

used to accomplish various system activities. The ever-

growing expectations of users place big challenges in front of 

the practitioners. One such challenge is to deliver highly 
available and robust software that meets the user’s 

expectation and rightly match to the requirements. The 

software industry is emerging at a very fast pace with 

revolutionary coding styles and development paradigms. 

Machine learning and artificial intelligence have changed the 

traditional software engineering practices [1]. 

The majority of the software programs are written in 
high-level programming languages nowadays, which is 

simpler and more consistent for the programmers because it 

is nearer to human language than machine language [2]. The 

software can be written in more than one programming 

language, and each comprises a set of program development 

tools. Software quality is significant for system software and 

overall performance, including user satisfaction. The quality 

of software largely depends on the coding style of the 

programmer, the algorithm complexity, system 

compatibility, and the list go on [3]. To enhance the overall 

quality, the concept of software testing comes into the 

picture.  
Testing itself is a challenging, costly, but important 

activity. However, the key issues in software testing are the 

generation, selection, and execution of the test cases. 

Effective testing largely depends on the quality of test cases. 

Various factors that determine test case quality include tester 

knowledge, clarity in requirements, coverage, manageability, 

etc. [4].  The other issue is that the dimension of the selected 

test cases may be very large. Thus, the large size of the test 

cases may affect the performance and delivery time of the 

software development life cycle. The dimensionality of test 

cases makes testing an expensive task. Several efforts have 
been made in lowering the cost of testing by using automated 

tools. Automated software testing employs optimization 

techniques for the generation, selection, and prioritization of 

test cases. The automated testing process is easy to repeat 

and is flexible. Various researches are being carried out using 

machine learning and soft computing approaches in the field 

of automated software testing [5][6]. 

This article presents a hybrid approach for test 

automation by selecting an efficient set of test cases by 

employing concepts of nature-inspired optimization 

techniques. Our proposed approach utilizes the efficiency of 
“Artificial Bee Colony (ABC) Optimizer” [D. Karaboga, 

2007] by hybridizing it with Genetic Algorithm (GA) 
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operators. 

An efficient algorithm inspired by the social behavior 

of bees in search of food was given by Dervis Karaboga et al. 

[7] named “Artificial Bee Colony (ABC)” Optimization. 

They considered three types of bees and converted their 
behavior to a mathematical model. Initially, half of the bees 

in the beehive are termed “Employed Bees.” They search for 

the food randomly near the hive and come back to the hive. 

They dance in front of the second set of the bees called 

“Onlooker Bees.” This dance serves as the probability 

function for comparison and selection of the better food 

source. If the food source of any Employed Bee is exhausted, 

then it becomes the scout and serves as the stopping criteria 

for the algorithm. Due to its lightweight deployment with 

very small amounts of controller factors, numerous hard 

works have been done to discover ABC research. Originally 

the ABC technique employs three types of bees: Employed, 
Onlooker, and Scout bees [7].  The employed bees are linked 

to a definite food source. Initially, one employed bee is 

assigned to a food source. They transmit vital information 

such as navigation information, location, and the profitability 

of the food source and carry the data with the rest of the bees 

at the beehive. The onlooker bees are accountable for food 

source detection exploiting the information delivered by 

employed bees. The scout bees dispensed randomly to hunt 

the new food source whenever there is no further improved 

solution is found by either employed or onlooker bees [D. 

Karaboga, 2007]. The assumption is that the employed bees 
whose food source is exhausted are transformed into “scout 

bees'' and commence a new exploration for the food source. 

The parallel conduct of these three bees speeds up the 

generation of feasible independent paths and software test 

suite optimization. ABC performs competitively to other 

conventional soft computing techniques and has gained 

popularity over the last decade due to its easy 

implementation. 

The rest of the article is organized as follows: section 

2 gives a brief summary of the related work and literature 

survey of various ongoing researches on hybrid ABC. The 

hybrid proposed approach is given in section 3. The 
proposed technique is evaluated and compared to various 

well-known existing techniques, and the results are given in 

section IV. Finally, we will conclude the research findings in 

section V. 

II. LITERATURE REVIEW 

This section presents available knowledge in the field 

of related research work present in the form of vast literature 

over the past few decades. Several efforts have been made in 

this area, covering many application areas, including the 

software industry, numerical optimization, data mining, 

networking, and many more [8].  Swarm Intelligence (SI) is a 
popular field of research that is motivated by the natural 

phenomenon of the population (group) of various living 

organisms in their natural habitat for the search of food, 

shelter, and security. The community behavior of real living 

organisms dwelling in nature to protect and feed their 

community is the real inspiration behind SI [9]. 

Being a powerful yet simple technique, ABC is 

employed by researchers for optimization of the testing 

process and also for automation.  Artificial bee colony 

(ABC) is well explored in the field of software testing over 
the past decade by augmenting it with other techniques to 

enhance its performance. To make the best use of it and to 

achieve the highest efficiency, several hybrid methods have 

been proposed over the years, which resulted in vast 

literature available online and offline.  

Cuckoo search has been applied to a wide range of 

applications, including software testing. The same is applied 

along with bee colony on model-based testing for automated 

test case generation and selection [10]. L. P. et al.  utilized 

the benefits of both optimizers for software testing using 

statecharts and sequence diagrams of the system under test. 

They considered ATM machine authentication and 
withdrawal functionality for evaluating the performance of 

their proposed hybrid technique. The “Levy flight” from the 

cuckoo search method is exploited to search for the best nest 

and abandon the others. Various modifications in the original 

ABC is carried out over the years. One such example is 

“Scout less ABC with modified onlooker bees,” proposed by 

K. Hussain et al. It was argued by the authors that scout bees 

are counterproductive. To reach more diversity among the 

population, onlooker bees are modified, and the performance 

is evaluated using well-known classification problems by 

training a fuzzy neural network [11]. This methodology 
provides a lightweight optimizer for test case optimization. 

State table-based testing is also gaining importance day by 

day. A “comprehensive improved ACO” is proposed on the 

state table that is generated from the state graph. ACO is 

applied to achieve high coverage and efficiency [12].  The 

native exploration of the ABC algorithm lacks an 

information-based procedure [13]. So, to improve the global 

information-based solution, a memory element is added to 

employed bees that remember the global best solution so far. 

This provides a hybrid ABC approach that is based on PSO’s 

gbest and pbest parameters [14]. Hu Peng et al. also 

proposed a similar approach for optimization that is based on 
“best neighbor guided ABC.” They argued that it is risky to 

merely abandon the exhausted food source at the scout bee 

phase because the discarded one may have more beneficial 

information. The authors compared the results of their 

proposed technique with several other variants of ABC and 

achieved higher efficiency. S. Sheoran et al. focused more on 

data flow testing, which is a white box testing technique and 

utilized the concept of memory based ABC for path saving 

and achieved overall test suite saving [15]. Thus, it can be 

clinched that hybrid ABC with memory element for saving 

the global best solution has gained more popularity and 
shown effective results. A. P. Agrawal et al. compared 

various swarm intelligence techniques for regression test 

case selection over benchmark problems. Through 

experimental results, they concluded that hybrid PSO 

outperforms ACO with 0.7 % test case selection [16]. F. 
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Hamad employed ABC for path coverage by finding optimal 

fitness value among a range of values [17]. Researchers are 

still interested in well established Genetic Algorithm (GA) 

approach for the automated generation of test cases. The 

authors presented various encoding techniques for the same 
using GA [18]. The two main operators, i.e., crossover and 

mutation, are very powerful for producing new generations 

of solutions and can be amalgamated with other techniques 

to achieve hybrid properties. GA is also exploited in various 

areas of engineering such as machine learning [19], 

numerical optimization, image processing, etc. Several other 

techniques for prioritizing test cases have evolved over the 

years. Omdev et al. have proposed a hybrid cuckoo and 

neural network-based technique for the same [20]. 

The study of vast literature gave us insights into the 

importance of swarm intelligence-based techniques for 

optimizing the search problems. It is also clinched that 
researchers are interested in utilizing the best out of the 

various techniques by augmenting one with the other keeping 

the tradeoff balanced. ABC also has the potential to discover 

more faults with lesser execution time and a shorter test 

suite.  

 

III. THE PROPOSED APPROACH 
Artificial bee colony optimization is a lightweight 

technique for optimizing search problems. It has a very 

smaller number of control parameters that provide both local 

and global search. In this article enhanced version of scout-
less ABC is proposed to select a minimal test suite with the 

efficiency of higher fault coverage. The flowchart of the 

proposed approach is given below in Fig 1. The proposed 

approach starts with the initialization of parameters such as 

initial population size (i.e., No. of test cases in our case) TN. 

Each test case is represented by Ti, where i = 1, 2, . . ., TN. 

Before applying the proposed technique, the selected 

programs are injected with mutants. Each mutant creates a 

point of error in the program which the test cases need to 

detect. A mutant can also change the flow of control of the 

program for a given set of input values. Based on these 

mutants, the initial fault matrix is created. Each solution (test 
case) is related to D dimensional parameter vector that 

defines a particular solution based on fault matrix i.e.  

Xi = {𝑥𝑖
1, 𝑥𝑖

2 , . . ., 𝑥𝑖
𝐷}, i = 1, 2, . . ., TN. 

For a fault j in fault matrix for the ith test case, the 

initial value 𝑥𝑖
𝑗
is generated by 

𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛

𝑗
+ rand(0, 1) × (𝑥𝑚𝑎𝑥

𝑗
− 𝑥𝑚𝑖𝑛

𝑗
),   (1) 

where, i = 1, 2, . . ., TN and j = 1, 2, . . ., D. rand(0, 1)  

is a random number whose value belongs to [0, 1], max and 

min are the maximum and minimum value in case of each 

parameter respectively. Each employed bee maintains 

individual solutions, so their number is equal to the total 
number of test cases, that is, TN. For each test case i, 

employed bees to generate a new vector, Yi.  

The neighbor search is performed by modifying the jth 

parameter of Yi where j ∈ {1, 2, . . ., D}. The following 

equation is used for updates done by employed bees 

(Karaboga and Basturk 2007): 

𝑦𝑖
𝑗
= 𝑥𝑖

𝑗
+ 𝛷𝑖

𝑗
×( 𝑥𝑖

𝑗
− 𝑥𝑘

𝑗
).   (2) 

Here k is randomly selected, and i ≠ k. Xi will be 

replaced by Yi in the population greedily if Yi is better. 𝛷𝑖
𝑗
 is 

for randomness ranging in [−1, 1]. The probability of 

selecting a test case “i” by an onlooker bee is denoted by pi, 

which is calculated by 

𝑝𝑖 =  
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑗
𝑇𝑁
𝑗=1

     (3) 

where fiti denotes the fitness value of ith test case, 

which is calculated on the basis of the probability of test 

cases to find a given set of errors. The onlooker bee also 

generates a new solution Yi using equation (2) similar to the 

employed bee. 

 
Figure 1: Flowchart of Hybrid Scout Less ABC 

Technique 

 

The employed bee and onlooker bee in the proposed 

technique works similar to the basic ABC optimizer, but the 

scout bees are compromised here. Instead of the scout bees, 

whenever an abandoned solution is detected (i.e., a solution 
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with no further improvement), we took advantage of 

hybridization with GA. Instead of random search by scout 

bees for a new solution, it is preferred to use the genetic 

crossover operator of GA to produce new solutions. The 

crossover operator is similar to the biological crossover of 
DNA in which a new child population is created by crossing 

parts of the parent population. Thus, the abandoned solution 

is crossed with the best solution so far to produce new 

offspring. The new offspring is then evaluated using fitness 

fiti, and the process goes on until the stopping criteria are 

met. 

 

IV. RESULTS AND DISCUSSION 

In this section, implementation setup and performance 

evaluation of the proposed approach are given along with the 

graphical results. The proposed methodology is implemented 

by taking some well-known programming problems into 
consideration. 

 

A. Implementation Setup 

The proposed hybrid ABC approach is implemented in 

Visual Studio C# 2010 on Microsoft Windows 10 (64 bits), 

Intel Core i5 @2.40 GHz, and 8 GB memory. The 

performance of the proposed technique is assessed by taking 

five well-known programming problems into consideration. 

The details of the programs take into consideration are given 

below, consisting of the number of inputs, input domain, line 

of code (LOC), total number of possible paths, and 
description. These programs are written in C#.Net 2010. 

 

Table 1. Program Details for Evaluation of Proposed 

Approach 
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B. Performance Evaluation 

Branch coverage and execution time have remained the 

most critical and worthy performance evaluation criteria for 

any test case selection technique. The proposed technique is 

assessed on the basis of the following three performance 

evaluation criteria, namely “Average Coverage,” “Execution 

Time,” “Percentage of test case selected.” The obtained 

values of the following metrices are also used to compare the 

proposed technique with other competitive approaches.  

Description of these criteria is given below:  
 

a) Average coverage 

The percentage of branches covered is calculated 

against the total number of branches as given in eq. 4. Then, 

the average is calculated for all the repeated runs [19]. 

 

Average coverage =
∑ 𝐵𝑟𝐶𝑖

𝑛
𝑖=1

𝑛
 * 100  (4) 

 

Where BrCi is the Branch coverage in ith run and n is the 
total number of runs. 

The experimental results are given in Table 2 for 100 runs. 

The proposed technique is compared with ACO, PSO, 

original ABC. It is hereby depicted from the following 

experimental data that the proposed hybrid approach shows 

significant improvement in average coverage and provides 

near-optimum results (Fig. 2). 
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Table 2: Average Coverage 
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Fig 2: Comparison of Average Coverage 

 

b) Execution Time 

Execution time to run the proposed technique is 
measured in milliseconds for all the runs individually, and 

then their average is calculated. The results are given in 

Table 3. The experimental results of 100 runs show that the 

proposed approach significantly reduces the execution time 

and outperforms all its competitors with great margins Fig 3. 
 

Table 3.  Execution Time in millisecond(ms) 

S
r
 N

o
. 

P
r
o
g
r
a
m

 

A
C

O
 

P
S

O
 

A
B

C
 

P
r
o
p

o
se

d
 

H
y
b

ri
d

 A
B

C
 

1 BinarySearch 5.34 1.18 0.88 0.298 

2 QuadraticEquatio

n 

6.44 3.52 1.12 0.302 

3 TriangleType 5.43 2.34 0.87 0.256 

4 MergeSort 8.55 3.78 0.67 0.483 

5 MatrixMultiplica

tion 

9.87 4.36 0.97 0.504 

      

      
Fig 3: Comparison of Execution Time (ms) 

 

c) Percentage of selected test cases 

Table 4 shows the experimental data regarding the 

percentage of selected test cases over 100 runs over various 

fitness ranges. Fitness range is divided into two groups i.e., 0 

≤ f(x) < 0.5 and 0.5≤ f(x) < 1.0. It can be argued that the 
proposed technique is capable of selecting a shorter subset of 

efficient test cases with lower execution time over a given 

fitness range (Fig 4). 

 

Table 4. Percentage of test case selected over various 

fitness range 
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Fig 4: Comparison of Percentage of test cases selected 

  

It is hereby depicted from the graphical comparison between 

various competitive techniques and the proposed 

methodology that the later one is much more economic and 

efficient. The comparison is made over various fitness 

ranges, and from the experimental results, it is argued that 

the proposed technique provides a shorter test suite with 

equivalent efficiency.  

 

V. CONCLUSION 

Swarm-based search techniques are very helpful in 
optimizing the test case selection process. The same is 

exploited in this research work. A hybrid ABC technique for 

optimizing overall branch coverage in minimum time is 

proposed. The proposed approach uses the concept of scout-

less bees with a Genetic crossover operator. The proposed 

technique is compared with its competitors, i.e., ACO, PSO, 

and original ABC, by considering five well-known 

programming problems. Initially, the programs under 

consideration are injected with mutants for better control and 

assessment. Three performance evaluation criteria are 

considered, namely “Average Coverage,” “Execution Time,” 
“Percentage of test case selected.” The results verify the 

better performance of the proposed technique in comparison 

to other swarm intelligence techniques at a various fitness 

value range. The proposed model is capable of providing 

higher branch coverage and lesser execution time with a 

comparatively lower percentage of selected test cases. In the 

future, the proposed technique will be evaluated by taking 

more complex problems into consideration. 
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