
International Journal of Engineering Trends and Technology Volume 69 Issue 3, 39-45, March 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I3P208 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Optimized Test Case Selection using Scout-less

Hybrid Artificial Bee Colony Approach and

Crossover Operator

Palak 1*, Preeti Gulia2, Nasib Singh Gill3

1Department of Computer Science and Applications, Maharshi Dayanand University, India
2Department of Computer Science and Applications, Maharshi Dayanand University, India
3Department of Computer Science and Applications, Maharshi Dayanand University, India

1palak.aug6@gmail.com, 2preeti.gulia81@gmail.com, 3nasibsgill@gmail.com

Abstract - Efficient software testing depends on the quality

of test cases that are capable of catching defects from every

corner of the software and achieving higher coverage. In

this article, a hybrid artificial bee colony optimization-based
technique is proposed. The proposed approach defines the

scout bee phase for abandoned solutions and incorporates

features of a genetic algorithm for diversification. The

proposed approach selects a minimal test suite with

equivalent or better efficiency of its superset. It offers time

and money-saving and contributes towards early product

delivery. The proposed technique is assessed using five

widely used programming problems and their mutants.

When compared with similar existing techniques (i.e.,

Particle Swarm Optimization, Ant Colony Optimization, and

Original Artificial Bee Colony) over various fitness ranges,

the performance of the proposed approach shows better
results and outperforms in terms of overall execution time

and coverage.

Keywords —Artificial bee colony, Genetic Algorithm,

Software testing, Swarm intelligence, Test case selection.

I. INTRODUCTION

Software engineering applies to myriad fields of

industry like decision making, maintenance scheme, security

services, education, health care, system dynamics, and many
more. With the emergence of smart devices, the need for

robust software is growing exponentially. There are

remarkable welfares offered through technology for both

business and society, but there are key questions around

safety, privacy, sustainability, and trust. Software has

become an inevitable part of life since its inception. The

software comprises the programs, libraries, and concerned

non-executable information, like digitized media that are

used to accomplish various system activities. The ever-

growing expectations of users place big challenges in front of

the practitioners. One such challenge is to deliver highly
available and robust software that meets the user’s

expectation and rightly match to the requirements. The

software industry is emerging at a very fast pace with

revolutionary coding styles and development paradigms.

Machine learning and artificial intelligence have changed the

traditional software engineering practices [1].

The majority of the software programs are written in
high-level programming languages nowadays, which is

simpler and more consistent for the programmers because it

is nearer to human language than machine language [2]. The

software can be written in more than one programming

language, and each comprises a set of program development

tools. Software quality is significant for system software and

overall performance, including user satisfaction. The quality

of software largely depends on the coding style of the

programmer, the algorithm complexity, system

compatibility, and the list go on [3]. To enhance the overall

quality, the concept of software testing comes into the

picture.
Testing itself is a challenging, costly, but important

activity. However, the key issues in software testing are the

generation, selection, and execution of the test cases.

Effective testing largely depends on the quality of test cases.

Various factors that determine test case quality include tester

knowledge, clarity in requirements, coverage, manageability,

etc. [4]. The other issue is that the dimension of the selected

test cases may be very large. Thus, the large size of the test

cases may affect the performance and delivery time of the

software development life cycle. The dimensionality of test

cases makes testing an expensive task. Several efforts have
been made in lowering the cost of testing by using automated

tools. Automated software testing employs optimization

techniques for the generation, selection, and prioritization of

test cases. The automated testing process is easy to repeat

and is flexible. Various researches are being carried out using

machine learning and soft computing approaches in the field

of automated software testing [5][6].

This article presents a hybrid approach for test

automation by selecting an efficient set of test cases by

employing concepts of nature-inspired optimization

techniques. Our proposed approach utilizes the efficiency of
“Artificial Bee Colony (ABC) Optimizer” [D. Karaboga,

2007] by hybridizing it with Genetic Algorithm (GA)

https://ijettjournal.org/archive/ijett-v69i3p208
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Palak et al. / IJETT, 69(3), 39-45, 2021

40

operators.

An efficient algorithm inspired by the social behavior

of bees in search of food was given by Dervis Karaboga et al.

[7] named “Artificial Bee Colony (ABC)” Optimization.

They considered three types of bees and converted their
behavior to a mathematical model. Initially, half of the bees

in the beehive are termed “Employed Bees.” They search for

the food randomly near the hive and come back to the hive.

They dance in front of the second set of the bees called

“Onlooker Bees.” This dance serves as the probability

function for comparison and selection of the better food

source. If the food source of any Employed Bee is exhausted,

then it becomes the scout and serves as the stopping criteria

for the algorithm. Due to its lightweight deployment with

very small amounts of controller factors, numerous hard

works have been done to discover ABC research. Originally

the ABC technique employs three types of bees: Employed,
Onlooker, and Scout bees [7]. The employed bees are linked

to a definite food source. Initially, one employed bee is

assigned to a food source. They transmit vital information

such as navigation information, location, and the profitability

of the food source and carry the data with the rest of the bees

at the beehive. The onlooker bees are accountable for food

source detection exploiting the information delivered by

employed bees. The scout bees dispensed randomly to hunt

the new food source whenever there is no further improved

solution is found by either employed or onlooker bees [D.

Karaboga, 2007]. The assumption is that the employed bees
whose food source is exhausted are transformed into “scout

bees'' and commence a new exploration for the food source.

The parallel conduct of these three bees speeds up the

generation of feasible independent paths and software test

suite optimization. ABC performs competitively to other

conventional soft computing techniques and has gained

popularity over the last decade due to its easy

implementation.

The rest of the article is organized as follows: section

2 gives a brief summary of the related work and literature

survey of various ongoing researches on hybrid ABC. The

hybrid proposed approach is given in section 3. The
proposed technique is evaluated and compared to various

well-known existing techniques, and the results are given in

section IV. Finally, we will conclude the research findings in

section V.

II. LITERATURE REVIEW

This section presents available knowledge in the field

of related research work present in the form of vast literature

over the past few decades. Several efforts have been made in

this area, covering many application areas, including the

software industry, numerical optimization, data mining,

networking, and many more [8]. Swarm Intelligence (SI) is a
popular field of research that is motivated by the natural

phenomenon of the population (group) of various living

organisms in their natural habitat for the search of food,

shelter, and security. The community behavior of real living

organisms dwelling in nature to protect and feed their

community is the real inspiration behind SI [9].

Being a powerful yet simple technique, ABC is

employed by researchers for optimization of the testing

process and also for automation. Artificial bee colony

(ABC) is well explored in the field of software testing over
the past decade by augmenting it with other techniques to

enhance its performance. To make the best use of it and to

achieve the highest efficiency, several hybrid methods have

been proposed over the years, which resulted in vast

literature available online and offline.

Cuckoo search has been applied to a wide range of

applications, including software testing. The same is applied

along with bee colony on model-based testing for automated

test case generation and selection [10]. L. P. et al. utilized

the benefits of both optimizers for software testing using

statecharts and sequence diagrams of the system under test.

They considered ATM machine authentication and
withdrawal functionality for evaluating the performance of

their proposed hybrid technique. The “Levy flight” from the

cuckoo search method is exploited to search for the best nest

and abandon the others. Various modifications in the original

ABC is carried out over the years. One such example is

“Scout less ABC with modified onlooker bees,” proposed by

K. Hussain et al. It was argued by the authors that scout bees

are counterproductive. To reach more diversity among the

population, onlooker bees are modified, and the performance

is evaluated using well-known classification problems by

training a fuzzy neural network [11]. This methodology
provides a lightweight optimizer for test case optimization.

State table-based testing is also gaining importance day by

day. A “comprehensive improved ACO” is proposed on the

state table that is generated from the state graph. ACO is

applied to achieve high coverage and efficiency [12]. The

native exploration of the ABC algorithm lacks an

information-based procedure [13]. So, to improve the global

information-based solution, a memory element is added to

employed bees that remember the global best solution so far.

This provides a hybrid ABC approach that is based on PSO’s

gbest and pbest parameters [14]. Hu Peng et al. also

proposed a similar approach for optimization that is based on
“best neighbor guided ABC.” They argued that it is risky to

merely abandon the exhausted food source at the scout bee

phase because the discarded one may have more beneficial

information. The authors compared the results of their

proposed technique with several other variants of ABC and

achieved higher efficiency. S. Sheoran et al. focused more on

data flow testing, which is a white box testing technique and

utilized the concept of memory based ABC for path saving

and achieved overall test suite saving [15]. Thus, it can be

clinched that hybrid ABC with memory element for saving

the global best solution has gained more popularity and
shown effective results. A. P. Agrawal et al. compared

various swarm intelligence techniques for regression test

case selection over benchmark problems. Through

experimental results, they concluded that hybrid PSO

outperforms ACO with 0.7 % test case selection [16]. F.

Palak et al. / IJETT, 69(3), 39-45, 2021

41

Hamad employed ABC for path coverage by finding optimal

fitness value among a range of values [17]. Researchers are

still interested in well established Genetic Algorithm (GA)

approach for the automated generation of test cases. The

authors presented various encoding techniques for the same
using GA [18]. The two main operators, i.e., crossover and

mutation, are very powerful for producing new generations

of solutions and can be amalgamated with other techniques

to achieve hybrid properties. GA is also exploited in various

areas of engineering such as machine learning [19],

numerical optimization, image processing, etc. Several other

techniques for prioritizing test cases have evolved over the

years. Omdev et al. have proposed a hybrid cuckoo and

neural network-based technique for the same [20].

The study of vast literature gave us insights into the

importance of swarm intelligence-based techniques for

optimizing the search problems. It is also clinched that
researchers are interested in utilizing the best out of the

various techniques by augmenting one with the other keeping

the tradeoff balanced. ABC also has the potential to discover

more faults with lesser execution time and a shorter test

suite.

III. THE PROPOSED APPROACH
Artificial bee colony optimization is a lightweight

technique for optimizing search problems. It has a very

smaller number of control parameters that provide both local

and global search. In this article enhanced version of scout-
less ABC is proposed to select a minimal test suite with the

efficiency of higher fault coverage. The flowchart of the

proposed approach is given below in Fig 1. The proposed

approach starts with the initialization of parameters such as

initial population size (i.e., No. of test cases in our case) TN.

Each test case is represented by Ti, where i = 1, 2, . . ., TN.

Before applying the proposed technique, the selected

programs are injected with mutants. Each mutant creates a

point of error in the program which the test cases need to

detect. A mutant can also change the flow of control of the

program for a given set of input values. Based on these

mutants, the initial fault matrix is created. Each solution (test
case) is related to D dimensional parameter vector that

defines a particular solution based on fault matrix i.e.

Xi = {𝑥𝑖
1, 𝑥𝑖

2 , . . ., 𝑥𝑖
𝐷}, i = 1, 2, . . ., TN.

For a fault j in fault matrix for the ith test case, the

initial value 𝑥𝑖
𝑗
is generated by

𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛

𝑗
+ rand(0, 1) × (𝑥𝑚𝑎𝑥

𝑗
− 𝑥𝑚𝑖𝑛

𝑗
), (1)

where, i = 1, 2, . . ., TN and j = 1, 2, . . ., D. rand(0, 1)

is a random number whose value belongs to [0, 1], max and

min are the maximum and minimum value in case of each

parameter respectively. Each employed bee maintains

individual solutions, so their number is equal to the total
number of test cases, that is, TN. For each test case i,

employed bees to generate a new vector, Yi.

The neighbor search is performed by modifying the jth

parameter of Yi where j ∈ {1, 2, . . ., D}. The following

equation is used for updates done by employed bees

(Karaboga and Basturk 2007):

𝑦𝑖
𝑗
= 𝑥𝑖

𝑗
+ 𝛷𝑖

𝑗
×(𝑥𝑖

𝑗
− 𝑥𝑘

𝑗
). (2)

Here k is randomly selected, and i ≠ k. Xi will be

replaced by Yi in the population greedily if Yi is better. 𝛷𝑖
𝑗
 is

for randomness ranging in [−1, 1]. The probability of

selecting a test case “i” by an onlooker bee is denoted by pi,

which is calculated by

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑗
𝑇𝑁
𝑗=1

 (3)

where fiti denotes the fitness value of ith test case,

which is calculated on the basis of the probability of test

cases to find a given set of errors. The onlooker bee also

generates a new solution Yi using equation (2) similar to the

employed bee.

Figure 1: Flowchart of Hybrid Scout Less ABC

Technique

The employed bee and onlooker bee in the proposed

technique works similar to the basic ABC optimizer, but the

scout bees are compromised here. Instead of the scout bees,

whenever an abandoned solution is detected (i.e., a solution

Palak et al. / IJETT, 69(3), 39-45, 2021

42

with no further improvement), we took advantage of

hybridization with GA. Instead of random search by scout

bees for a new solution, it is preferred to use the genetic

crossover operator of GA to produce new solutions. The

crossover operator is similar to the biological crossover of
DNA in which a new child population is created by crossing

parts of the parent population. Thus, the abandoned solution

is crossed with the best solution so far to produce new

offspring. The new offspring is then evaluated using fitness

fiti, and the process goes on until the stopping criteria are

met.

IV. RESULTS AND DISCUSSION

In this section, implementation setup and performance

evaluation of the proposed approach are given along with the

graphical results. The proposed methodology is implemented

by taking some well-known programming problems into
consideration.

A. Implementation Setup

The proposed hybrid ABC approach is implemented in

Visual Studio C# 2010 on Microsoft Windows 10 (64 bits),

Intel Core i5 @2.40 GHz, and 8 GB memory. The

performance of the proposed technique is assessed by taking

five well-known programming problems into consideration.

The details of the programs take into consideration are given

below, consisting of the number of inputs, input domain, line

of code (LOC), total number of possible paths, and
description. These programs are written in C#.Net 2010.

Table 1. Program Details for Evaluation of Proposed

Approach

S
r
.
N

o
.

P
r
o

g
r
a

m

#
in

p
u

t

In
p

u
t

d
o

m
a

in

L
O

C

#
P

o
ss

ib
le

in

d
e
p

e
n

d
e
n

t

p
a
th

s

D
e
sc

ri
p

ti
o

n

1 BinarySea

rch

2 +

arra

y

size

Intege

r (32

Bits)

47 6 Searche

s an

element

in a

sorted

list

2 Quadratic

Equation

3 Intege

r (32

Bits)

43 3 Finds

roots of

a

quadrati

c
equatio

n

3 TriangleT 3 Intege 38 4 Tells

ype r (32

Bits)

about

the type

of

triangle

based

on its
sides

4 MergeSor

t

1+

arra

y

size

Intege

r (32

Bits)

74 5 Recursi

ve

sorting

using

Merge

sort

5 MatrixMu

ltiplicatio

n

4+

matr

ix 1

size

+

matr

ix 2
size

Intege

r (16

Bits)

80 8 Multipli

es two

matrices

if they

fulfill

the

conditio
n

B. Performance Evaluation

Branch coverage and execution time have remained the

most critical and worthy performance evaluation criteria for

any test case selection technique. The proposed technique is

assessed on the basis of the following three performance

evaluation criteria, namely “Average Coverage,” “Execution

Time,” “Percentage of test case selected.” The obtained

values of the following metrices are also used to compare the

proposed technique with other competitive approaches.

Description of these criteria is given below:

a) Average coverage

The percentage of branches covered is calculated

against the total number of branches as given in eq. 4. Then,

the average is calculated for all the repeated runs [19].

Average coverage =
∑ 𝐵𝑟𝐶𝑖

𝑛
𝑖=1

𝑛
 * 100 (4)

Where BrCi is the Branch coverage in ith run and n is the
total number of runs.

The experimental results are given in Table 2 for 100 runs.

The proposed technique is compared with ACO, PSO,

original ABC. It is hereby depicted from the following

experimental data that the proposed hybrid approach shows

significant improvement in average coverage and provides

near-optimum results (Fig. 2).

Palak et al. / IJETT, 69(3), 39-45, 2021

43

Table 2: Average Coverage
S

r
 N

o
.

P
r
o
g
r
a
m

A
C

O

P
S

O

A
B

C

P
r
o
p

o
se

d

H
y
b

ri
d

 A
B

C

1 BinarySearch 98.3 99.

2

99.0

0

99.2

2 QuadraticEquatio

n

99.4 99.

3

98.6 99.4

3 TriangleType 98.5 98.

3

99.4 99.5

4 MergeSort 98.3 98.

5

98.2 100

5 MatrixMultiplicat

ion

97.4 99.

2

97.6 99.0

Fig 2: Comparison of Average Coverage

b) Execution Time

Execution time to run the proposed technique is
measured in milliseconds for all the runs individually, and

then their average is calculated. The results are given in

Table 3. The experimental results of 100 runs show that the

proposed approach significantly reduces the execution time

and outperforms all its competitors with great margins Fig 3.

Table 3. Execution Time in millisecond(ms)

S
r
 N

o
.

P
r
o
g
r
a
m

A
C

O

P
S

O

A
B

C

P
r
o
p

o
se

d

H
y
b

ri
d

 A
B

C

1 BinarySearch 5.34 1.18 0.88 0.298

2 QuadraticEquatio

n

6.44 3.52 1.12 0.302

3 TriangleType 5.43 2.34 0.87 0.256

4 MergeSort 8.55 3.78 0.67 0.483

5 MatrixMultiplica

tion

9.87 4.36 0.97 0.504

Fig 3: Comparison of Execution Time (ms)

c) Percentage of selected test cases

Table 4 shows the experimental data regarding the

percentage of selected test cases over 100 runs over various

fitness ranges. Fitness range is divided into two groups i.e., 0

≤ f(x) < 0.5 and 0.5≤ f(x) < 1.0. It can be argued that the
proposed technique is capable of selecting a shorter subset of

efficient test cases with lower execution time over a given

fitness range (Fig 4).

Table 4. Percentage of test case selected over various

fitness range

P
r
o

g
r
a

m

F
it

n
e
ss

V

a
lu

e

R
a

n
g

e

A
C

O

P
S

O

A
B

C

P
r
o

p
o

se
d

H
y

b
ri

d
 A

B
C

BinarySear

ch

0 ≤ f(x)

< 0.5
40.75 42.5 35.5 35.5

0.5≤

f(x) <

1.0

36.25
38.7

5
32 31

QuadraticE
quation

0 ≤ f(x)

< 0.5
43.75 47.5

40.7

5

35.7

5

0.5≤

f(x) <

1.0

33.7 40.5
31.4

5
30

TriangleTy

pe

0 ≤ f(x)

< 0.5
49.6 40 45.5

42.7

5

0.5≤

f(x) <
1.0

39.75
38.7
5

37.7
5

35.5

Palak et al. / IJETT, 69(3), 39-45, 2021

44

MergeSort

0 ≤ f(x)

< 0.5
42.75 39.5 41.5

34.7

5

0.5≤

f(x) <

1.0

31.5
32.7

5
30

30.2

5

MatrixMult

iplication

0 ≤ f(x)

< 0.5
50.5 45.5 47

40.7

5

0.5≤

f(x) <
1.0

40.25 38.3 35.5 32

Fig 4: Comparison of Percentage of test cases selected

It is hereby depicted from the graphical comparison between

various competitive techniques and the proposed

methodology that the later one is much more economic and

efficient. The comparison is made over various fitness

ranges, and from the experimental results, it is argued that

the proposed technique provides a shorter test suite with

equivalent efficiency.

V. CONCLUSION

Swarm-based search techniques are very helpful in
optimizing the test case selection process. The same is

exploited in this research work. A hybrid ABC technique for

optimizing overall branch coverage in minimum time is

proposed. The proposed approach uses the concept of scout-

less bees with a Genetic crossover operator. The proposed

technique is compared with its competitors, i.e., ACO, PSO,

and original ABC, by considering five well-known

programming problems. Initially, the programs under

consideration are injected with mutants for better control and

assessment. Three performance evaluation criteria are

considered, namely “Average Coverage,” “Execution Time,”
“Percentage of test case selected.” The results verify the

better performance of the proposed technique in comparison

to other swarm intelligence techniques at a various fitness

value range. The proposed model is capable of providing

higher branch coverage and lesser execution time with a

comparatively lower percentage of selected test cases. In the

future, the proposed technique will be evaluated by taking

more complex problems into consideration.

REFERENCES

[1] F. Khomh, B. Adams, J. Cheng, M. Fokaefs, and G. Antoniol,

Software Engineering for Machine-Learning Applications: The Road

Ahead, IEEE Softw., 35(5) 81–84.

[2] doi: 10.1109/MS.2018.3571224.

[3] W. E. Lewis, Software Testing and Continuous Quality Improvement.

CRC Press, (2017).

[4] M. S. Hemayati and H. Rashidi, Software Quality Models : A

Comprehensive Review and Analysis, J. Electr. Comput. Eng.

Innov.,6(1)(2019) 59–76, doi: 10.22061/JECEI.2019.1076.

[5] S. O. Barraood, H. M. Haslina, F. Baharom, and M. Intelligences, Test

Case Quality Factors : Content Analysis of Software Testing Websites,

Webology Spec. Issue Artif. Intell. Cloud Comput., 18, 75–87doi:

10.14704/WEB/V18SI01/WEB18007.

[6] J. Kim and J. W. Ryu, Machine Learning Frameworks for Automated

Software Testing Tools : A Study, Int. J. Contents,13(1)(2017) 38–44.

[7] D. B. Mishra, R. Mishra, and K. N. Das, A Systematic Review of

Software Testing Using Evolutionary Techniques, in Sixth

International Conference on Soft Computing for Problem Solving,

Advances in Intelligent Systems and Computing, 2(2017) 546 174–

184, doi: 10.1007/978-981-10-3322-3.

[8] D. Karaboga and B. Basturk, A powerful and efficient algorithm for

numerical function optimization : artificial bee colony (ABC)

algorithm, J. Glob. Optim., 39(3) (2007) 459–471 doi:

10.1007/s10898-007-9149-x.

[9] K. Singh Kaswan, S. Choudhary, and K. Sharma, Applications of

Artificial Bee Colony Optimization Technique Survey, in 2nd

International Conference on Computing for Sustainable Global

Development (INDIACom), (2015) 1660–1664.

[10] A. Chakraborty and A. K. Kar, Swarm Intelligence : A Review of

Algorithms Swarm Intelligence : A Review of Algorithms, in Nature-

Inspired Computing and Optimization, Modeling and Optimization in

Science and Technologies 10(2017) 475–494.

[11] L. P and T. V Suresh Kumar, Automatic Generation and Optimization

of Test case using Hybrid Cuckoo Search and Bee Colony Algorithm,

J. Intell. Syst., 30(1)(2021) 59–72.

[12] K. Hussain, M. N. Mohd Salleh, S. Cheng, Y. Shi, and R. Naseem,

Artificial bee colony algorithm: A component-wise analysis using

diversity measurement, J. King Saud Univ. - Comput. Inf. Sci.,

32(7)(2020) 794–808 doi: 10.1016/j.jksuci.2018.09.017.

[13] S. S. S. B and V. C. S. S. B, An Ant Colony Optimization Algorithm

Based Automated Generation of Software Test Cases, in International

Conference on Swarm Intelligence. (ICSI 2020), 1(2020) 231–239,

doi: 10.1007/978-3-030-53956-6.

[14] A. K. Alazzawi, H. M. Rais, and S. Basri, HABC: Hybrid artificial bee

colony for generating variable T-way test sets, J. Eng. Sci. Technol.,

15(2)(2020) 746–767.

[15] A. K. Alazzawi, H. Rais, S. Basri, and Y. A. Alsariera, PhABC : A

Hybrid Artificial Bee Colony Strategy for Pairwise test suite P h ABC :

A Hybrid Artificial Bee Colony Strategy for Pairwise test suite

Generation with Constraints Support, in IEEE Student Conference on

Research and Development (SCOReD), (2019) 106–111, doi:

10.1109/SCORED.2019.8896324.

[16] S. Sheoran, N. Mittal, and A. Gelbukh, Artificial bee colony algorithm

in data flow testing for optimal test suite generation, Int. J. Syst. Assur.

Eng. Manag., 11(2)(2020) 340–349 doi: 10.1007/s13198-019-00862-

1.

[17] A. Agrawal and A. Kaur, A Comprehensive Comparison of Ant

Colony and Hybrid Particle Swarm Optimization Algorithms Through

Test Case Selection A Comprehensive Comparison of Ant Colony and

Hybrid Particle Swarm Optimization Algorithms Through Test Case

Selection, Adv. Intell. Syst. Comput., (2018) 397–405, doi:

10.1007/978-981-10-3223-3.

[18] F. Hamad, Using Artificial Bee Colony Algorithm for Test Data

Generation and Path Testing Coverage, Mod. Appl. Sci., 12(7)(2018)

doi: 10.5539/mas.v12n7p99.

[19] Baswaraju Swathi, Dr. Harshvardhan Tiwari. Genetic Algorithm

Approach to Optimize Test Cases, International Journal of Engineering

Trends and Technology (IJETT), 68(10) 112-116.

Palak et al. / IJETT, 69(3), 39-45, 2021

45

[20] Jayakumar Sadhasivam, Senthil Jayavel, Arpit Rathore. Survey Of

Genetic Algorithm Approach In Machine Learning International

Journal of Engineering Trends and Technology (IJETT), 68(2) 115-

133.

[21] Omdev Dahiya, Kamna Solanki. An Efficient Requirement-based Test

Case Prioritization Technique using Optimized TFC-SVM Approach

 International Journal of Engineering Trends and Technology (IJETT),

69(1) 5-16.

[22] Z. K. Aghdam and B. Arasteh, An Efficient Method to Generate Test

Data for Software Structural Testing Using Artificial Bee Colony

Optimization Algorithm, Int. J. Softw. Eng. Knowl. Eng., 27(6)(2017)

951–966 doi: 10.1142/S0218194017500358.

	REFERENCES

